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LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kahler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and C(X) := X x R>0,
with the metric t2g 4 dt2, where t is a coordinate on R>9. Then C(X) is
called Riemannian cone of X. Multiplicative group R>° acts on C(X) by
homotheties, (m,t) — (m, A\t).

DEFINITION: Let (X,g) be a Riemannian manifold, C(X) := X x R>0
its Riemannian cone, and h, the homothety action. Assume that (X, g) is
equipped with a complex structure, in such a way that g is Kahler, and h
acts holomorphically. Then C(X) is called a conical Kahler manifold. In
this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hy, acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian geometry is an odd-dimensional coun-
terpart to Kahler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit Sl_fibration is Sasakian.
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Kahler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is
called plurisubharmonic (psh) if the (1,1)-form dd°¢f is positive, and strictly
plurisubharmonic if dd°f is an Hermitian form.

REMARK: Since dd°f is always closed, it is also Kahler when it is strictly
positive.

DEFINITION: Let (M,I,w) be a Kahler manifold. Kahler potential is a
function f such that dd°f = w.

THEOREM: Let S be a Sasakian manifold, C(S) = S x R>Y its cone, ¢ the
coordinate along the second variable, and r = t%. Then t2 is a Kahler
potential on C(S).
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LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and (M, &) its Kahler covering.
It is called LCK manifold with potential if M admits an automorphic Kahler
potential ¢ : M —>R>O, dd°p = &, which is proper (preimage of a compact
iS again compact).

THEOREM: The property of being LCK with potential is stable under
small deformations.

REMARK: For any complex submanifold Z C M of an LCK manifold with
potential, Z is also an LCK manifold with potential.

THEOREM: Let M be an LCK manifold, ' C R>0 the monodromy group,
and (M,) its Kahler covering, with M/IT = M. Assume that & admits a
[-automorphic Kahler potential . The map ¢ is proper if and only if
= 7.

THEOREM: Let M be an LCK manifold with potential, and M its Kahler
Z-covering. Then a metric completion M. admits a structure of a complex
manifold, compatible with the complex structure on M C M.. Moreover, the
monodromy action on M is extended to a holomorphic automorphism of M..
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Normal families of functions (reminder)

DEFINITION: Let C(M) be the space of functions on a topological space.
Topology of uniform convergence on compacts (also known as compact-
open topology; usually denoted as CY) is a topology on C(M) where a base
of open sets is given by

UX,C) :={feCM) | supklf| <C},

for all compacts K C M and C' > 0. A sequence f; of functions converges to
f if it converges to f uniformly on all compacts.

DEFINITION: Let M be a complex manifold, and F a family of holomorphic
functions f; € H9(©,;). We call F a normal family if for each compact
K C M there exists Cx > 0 such that for each f € F, supg|f| < Ck.

THEOREM: Let M be a complex manifold and F ¢ H9(®j,) a normal family
of functions. Denote by F its closure in CO-topology. Then F is compact
and contained in H°(Oy,).
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Banach space of holomorphic functions
DEFINITION: A Banach space is a complete normed vector space.

THEOREM: Let M be a complex manifold, and HI?(OM) the space of
all bounded holomorphic functions, equipped with the sup-norm |f|sup =
sup,s|f|- Then it is a Banach space.

Proof. Step 1: Let {f;} € HE(OM) be a Cauchy sequence in sup-norm.
Then {f;} converges to a continuous function f in sup-topology.

Step 2: Since {f;} is a normal family, it has a subsequence which converges
in CO-topology to f € HO(®;;). However, the CO-topology is weaker than
the sup-topology, hence f = f. Therefore, f is holomorphic. m
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Compact operators

DEFINITION: A bounded subset of a topological vector space V is a set
B C V such that for any open neighbourhood U > 0, there exists A > 0 such
that ABC U

REMARK: Bounded subsets of normed spaces are subsets which are con-
tained in a ball of a sufficiently big radius.

DEFINITION: A subset of a topological space is called precompact if its
closure is compact.

DEFINITION: Let V,W be topological vector spaces, and ¢ : V — W a
continuous linear operator. It is called compact if an image of any bounded
set is precompact.

EXERCISE: Let V = HO(OM) be a space of holomorphic functions on a
complex manifold M with Co-topology. Prove that any bounded subset of
V is precompact. In this case, the identity map is a compact operator.

REMARK: By Riesz theorem, a closed ball in a normed vector space V is
never compact, unless V is finite-dimensional. This means that (H°(O,,),C®)
does not admit a norm.
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Holomorphic contractions

DEFINITION: Contraction of a manifold M to a point x C M is a morphism
@ . M — M such that for any compact subset K C M and any open U > x
there exists N > 0 such that for all n > N, the map ¢™ maps K to U.

THEOREM: Let X be a complex variety, and v : X — X a holomorphic
contraction such that v(X) is precompact. Consider the Banach space V =
HP(Ox) with sup-metric. Then v*: V — V is compact, and its operator
norm |[|v*|| := supy,<1[v*(v)| is strictly less than 1.

Proof. Step 1: Let Bo:={veV | |vlsup<C}. Then

v flsup = SUD%WU(@‘N-

Therefore, for any sequence {f;} converging in Co—topology, the se-
quence {~*f;} converges in sup-topology. However, Bg is precompact in
Co—topology, because it is a normal family. Then v*Bg is precompact in
sup-topology.
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Holomorphic contractions (part 2)

EXERCISE: Prove the maximum principle: a non-constant holomorphic
function cannot have any non-strict maxima.

Step 2: Since supx|v*f| = sup,(x)|f| <supx|f|, one has [|[7*|| < 1. If this in-
equality is not strict, for some sequence f; € By one has Iimisupx@(X)|fi(a:)| =

1. Since B4 is a normal family, f; has a subsequence converging in Co-topology
to f. Then ~(f;) converges to v(f) in sup-topology, giving Iimisup$€7(X)|fz-(:c)| =
supxeﬁy(X)|f(ac)| = 1. Since a holomorphic functions has no strict max-
ima, this means that |f(x)| > 1 somewhere on X. Then f cannot be a
CO-limit of f; € B1. m
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Hopf manifolds and finite vectors

DEFINITION: Let A € End(C"™) be an invertible linear endomorphism with
all eigenvalues |o;| < 1. The quotient H := (C™\0)/(A) is called a linear Hopf
manifold.

Theorem 1: Let M be an LCK manifold with potential, dimg M > 2. Then
M admits a holomorphic embedding to a linear Hopf manifold.

DEFINITION: Let v be an endomorphism of a vector space V. A vector
v € V is called ~-finite if the space (v,vy(v),~2(v),...) is finite-dimensional.

Theorem 2: Let M be an LCK manifold with potential, dimg¢ M > 2, and
M its Kahler Z-covering. Consider a metric completion M. with its complex
structure and a contraction v : M. — M. generating the Z-action. Let
HO(Oy; )5 be the space of functions which are v*-finite. Then HY(O; )y is
dense in sup-topology on each compact subset of M.

We deduce Theorem 1 from Theorem 2, and then prove Theorem 2 using
Riesz-Schauder Theorem.
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Embedding into Hopf manifolds

Theorem 2 = Theorem 1. Step 1:
Let W C HO(OMC)f be an m-dimensional ~*-invariant subspace W with basis
wi, ..., wm. 1 hen the following diagram is commutative:

Y, om

v| &

M Y, om

where W (xz) = (w1(x),ws(x),...,wm(x)).

Suppose that the map W associated with a given W C HO(O ) is injective.
Then the quotlent map gives an embedding WV : M/Z—> ((Cm\O)/fy ; all
eigenvalues of ~* are < 1 because its operator norm is < 1.

Step 2: To find an appropriate W C HO(O )f choose a holomorphic em-
bedding Wy : M. — C™, which exists because M. is Stein. Let w1, ..., Wn
be the coordinate functions of Wy. Theorem 2 allows one to approximate
w; by w; € H(Op; )5 in CO-topology. Choosing w; sufficiently close to
w; In a compact fundamental domain of Z-action, we obtain that
xr — (w1 (x),ws(x),...,wp(x)) is Iinjective in a compact fundamental do-
main of Z. To finish the argument, take W C HO(OMC)]: generated by the ~*
from w1y, ...,wn, and apply Step 1. =
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Riesz-Schauder Theorem

To find enough ~*-finite vectors, we use the Riesz-Schauder Theorem. It is
a Banach analogue of spectral theorem which easily follows from Fredholm
theory.

THEOREM: (Riesz-Schauder)

Let F': V — V be a compact operator on a Banach space. Then for each
non-zero u € C, there exists a sufficiently big number N € Z such that for
eachn > N one has V = ker(F' — plId)"® im(F — pId)”, where im(F — pId)™
Is closure of the image. Moreover, ker(F — pulId)™ is finite-dimensional and
independent on n.
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Riesz-Schauder Theorem and adic filtration
In our case the Riesz-Schauder theorem is especially effective.

Proposition 1: Fix a precompact subset M2 := o~ 1([0,a[), where ¢ : N,
is the Kahler potential. Let A be the ring of bounded holomorphic functions
on M2 and m the maximal ideal of the origin point. Clearly, ~* preserves m

c
and all its powers. Let P, (t) be the minimal polynomial of ~* Afmk- Then

im(P,(v*) C m*(A), and ker P.(v*) generates A/mF,

Proof: Since P,(t) is a minimal polynomial of v* on A/mk, the endomorphism
P.(v*) acts trivially on A/m*, hence it maps A to mF.

From Riesz-Schauder theorem applied to the Banach space A and F = P.(v*)
it follows that A = im(P,(v*)+im(F — 1 Id)™ hence ker P.(1*) generates A/m*.
u

14



L. CK manifolds, lecture 9 M. Verbitsky

m-adic topology and CP-topology

DEFINITION: Let A be a ring and m an ideal. The base of open sets in
m-adic topology on A are m* and their translates.

Proposition 1 implies the following result

PROPOSITION: Let H°(Oy; )¢ C HO(OMC) be the set of v*-finite functions
and m the maximal ideal of the origin in Mc. Then H°(O; )s is dense in
m-adic topology.

Proof: A subspace V C A is dense in m-adic topology in A < the quotient
V/v N mF surjects to A/mF. This is proven in Proposition 1 for the ring of
bounded holomorphic functions on Mg. However, any such function can be
extended to ~v*-finite function on M. using v*-action. =

Now Theorem 2 is implied by the following claim.

CLAIM: Let X be a connected complex variety, A the ring of bounded holo-
morphic functions, z € X a point, m C A its maximal ideal, and R: A— A
the natural map from A to its m-adic completion. Then R is continuous
in Co—topology and induces homeomorphism of any bounded set to its
image.
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m-adic topology and C°-topology, part 2

CLAIM: Let X be a connected complex variety, A the ring of bounded holo-
morphic functions, z € X a point, m C A its maximal ideal, and R: A— A
the natural map from A to its m-adic completion. Then R is continuous
in Co—topology and induces homeomorphism of any bounded set to its
image.

Proof: Continuity is clear because C°-topology is equivalent to C1l-topology,
C?2-topology and so on (Lecture 8). Therefore, taking successive derivatives
in a point is continuous in Co—topology. However, R takes a function and
replaces it by its Taylor series.

To see that R is a homeomorphism, notice that any bounded, closed subset
of A is compact, hence its image under a continuous map is also closed. =
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