Locally conformally Kähler manifolds

lecture 9: holomorphic contractions and Riesz-Schauder theorem

Misha Verbitsky

HSE and IUM, Moscow

April 14, 2014

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, $\dim_{\mathbb{C}} M > 1$. Then M is called **locally conformally Kähler** (LCK) if $d\omega = \omega \wedge \theta$, where θ is a closed 1-form, called **the Lee form**.

DEFINITION: A manifold is locally conformally Kähler iff it admits a Kähler form taking values in a positive, flat vector bundle *L*, called **the weight bundle**.

DEFINITION: Deck transform, or monodromy maps of a covering $\tilde{M} \longrightarrow M$ are elements of the group $\operatorname{Aut}_{M}(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_{M}(\tilde{M}) = \pi_{1}(M)$.

DEFINITION: An LCK manifold is a complex manifold such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.

THEOREM: These three definitions are equivalent.

Conical Kähler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and $C(X) := X \times \mathbb{R}^{>0}$, with the metric $t^2g + dt^2$, where t is a coordinate on $\mathbb{R}^{>0}$. Then C(X) is called **Riemannian cone** of X. **Multiplicative group** $\mathbb{R}^{>0}$ **acts on** C(X) by **homotheties,** $(m,t) \longrightarrow (m, \lambda t)$.

DEFINITION: Let (X,g) be a Riemannian manifold, $C(X) := X \times \mathbb{R}^{>0}$ its Riemannian cone, and h_{λ} the homothety action. Assume that (X,g) is equipped with a complex structure, in such a way that g is Kähler, and h_{λ} acts holomorphically. Then C(X) is called a conical Kähler manifold. In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic structure on C(X), and h_{λ} acting by homotheties. In particular, Sasakian manifolds are contact. Sasakian geometry is an odd-dimensional counterpart to Kähler geometry

EXAMPLE: Let *L* be a positive holomorphic line bundle on a projective manifold. Then the total space of its unit S^1 -fibration is Sasakian.

3

Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is called **plurisubharmonic (psh)** if the (1,1)-form $dd^c f$ is positive, and **strictly plurisubharmonic** if $dd^c f$ is an Hermitian form.

REMARK: Since $dd^c f$ is always closed, it is also Kähler when it is strictly positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a function f such that $dd^c f = \omega$.

THEOREM: Let *S* be a Sasakian manifold, $C(S) = S \times \mathbb{R}^{>0}$ its cone, *t* the coordinate along the second variable, and $r = t \frac{d}{dt}$. Then t^2 is a Kähler potential on C(S).

LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and $(\tilde{M}, \tilde{\omega})$ its Kähler covering. It is called **LCK manifold with potential** if \tilde{M} admits an automorphic Kähler potential $\varphi : \tilde{M} \longrightarrow \mathbb{R}^{>0}$, $dd^c \varphi = \tilde{\omega}$, which is **proper** (preimage of a compact is again compact).

THEOREM: The property of being LCK with potential is stable under small deformations.

REMARK: For any complex submanifold $Z \subset M$ of an LCK manifold with potential, Z is also an LCK manifold with potential.

THEOREM: Let M be an LCK manifold, $\Gamma \subset \mathbb{R}^{>0}$ the monodromy group, and $(\tilde{M}, \tilde{\omega})$ its Kähler covering, with $\tilde{M}/\Gamma = M$. Assume that $\tilde{\omega}$ admits a Γ -automorphic Kähler potential φ . The map φ is proper if and only if $\Gamma = \mathbb{Z}$.

THEOREM: Let M be an LCK manifold with potential, and \tilde{M} its Kähler \mathbb{Z} -covering. Then a metric completion \tilde{M}_c admits a structure of a complex manifold, compatible with the complex structure on $\tilde{M} \subset \tilde{M}_c$. Moreover, the monodromy action on \tilde{M} is extended to a holomorphic automorphism of \tilde{M}_c .

Normal families of functions (reminder)

DEFINITION: Let C(M) be the space of functions on a topological space. **Topology of uniform convergence on compacts** (also known as **compact-open topology**; usually denoted as C^0) is a topology on C(M) where a base of open sets is given by

 $U(X,C) := \{ f \in C(M) \mid \sup_{K} |f| < C \},\$

for all compacts $K \subset M$ and C > 0. A sequence f_i of functions converges to f if it converges to f uniformly on all compacts.

DEFINITION: Let M be a complex manifold, and \mathcal{F} a family of holomorphic functions $f_i \in H^0(\mathcal{O}_M)$. We call \mathcal{F} a normal family if for each compact $K \subset M$ there exists $C_K > 0$ such that for each $f \in \mathcal{F}$, $\sup_K |f| \leq C_K$.

THEOREM: Let M be a complex manifold and $\mathcal{F} \subset H^0(\mathcal{O}_M)$ a normal family of functions. Denote by $\overline{\mathcal{F}}$ its closure in C^0 -topology. Then $\overline{\mathcal{F}}$ is compact and contained in $H^0(\mathcal{O}_M)$.

Banach space of holomorphic functions

DEFINITION: A **Banach space** is a complete normed vector space.

THEOREM: Let M be a complex manifold, and $H_b^0(\mathcal{O}_M)$ the space of all bounded holomorphic functions, equipped with the sup-norm $|f|_{sup} := \sup_M |f|$. Then it is a Banach space.

Proof. Step 1: Let $\{f_i\} \in H_b^0(\mathcal{O}_M)$ be a Cauchy sequence in sup-norm. Then $\{f_i\}$ converges to a continuous function f in sup-topology.

Step 2: Since $\{f_i\}$ is a normal family, it has a subsequence which converges in C^0 -topology to $\tilde{f} \in H^0(\mathcal{O}_M)$. However, the C^0 -topology is weaker than the sup-topology, hence $\tilde{f} = f$. Therefore, f is holomorphic.

Compact operators

DEFINITION: A **bounded subset** of a topological vector space V is a set $B \subset V$ such that for any open neighbourhood $U \ni 0$, there exists $\lambda > 0$ such that $\lambda B \subset U$

REMARK: Bounded subsets of normed spaces are subsets which are contained in a ball of a sufficiently big radius.

DEFINITION: A subset of a topological space is called **precompact** if its closure is compact.

DEFINITION: Let V, W be topological vector spaces, and $\varphi : V \longrightarrow W$ a continuous linear operator. It is called **compact** if an image of any bounded set is precompact.

EXERCISE: Let $V = H^0(\mathcal{O}_M)$ be a space of holomorphic functions on a complex manifold M with C^0 -topology. **Prove that any bounded subset of** V is precompact. In this case, the identity map is a compact operator.

REMARK: By Riesz theorem, a closed ball in a normed vector space V is never compact, unless V is finite-dimensional. This means that $(H^0(\mathcal{O}_M), C^0)$ does not admit a norm.

Holomorphic contractions

DEFINITION: Contraction of a manifold M to a point $x \subset M$ is a morphism $\varphi : M \longrightarrow M$ such that for any compact subset $K \subset M$ and any open $U \ni x$ there exists N > 0 such that for all n > N, the map φ^n maps K to U.

THEOREM: Let X be a complex variety, and $\gamma : X \longrightarrow X$ a holomorphic contraction such that $\gamma(X)$ is precompact. Consider the Banach space $V = H_b^0(\mathcal{O}_X)$ with sup-metric. Then $\gamma^* : V \longrightarrow V$ is compact, and its operator norm $\|\gamma^*\| := \sup_{|v| \leq 1} |\gamma^*(v)|$ is strictly less than 1.

Proof. Step 1: Let
$$B_C := \{v \in V \mid |v|_{sup} \leq C\}$$
. Then

$$|\gamma^* f|_{sup} = \sup_{x \in \overline{\gamma(X)}} |f(x)|.$$

Therefore, for any sequence $\{f_i\}$ converging in C^0 -topology, the sequence $\{\gamma^* f_i\}$ converges in sup-topology. However, B_C is precompact in C^0 -topology, because it is a normal family. Then $\gamma^* B_C$ is precompact in sup-topology.

Holomorphic contractions (part 2)

EXERCISE: Prove the maximum principle: a non-constant holomorphic function cannot have any non-strict maxima.

Step 2: Since $\sup_X |\gamma^* f| = \sup_{\gamma(X)} |f| \leq \sup_X |f|$, one has $||\gamma^*|| \leq 1$. If this inequality is not strict, for some sequence $f_i \in B_1$ one has $\lim_i \sup_{x \in \gamma(X)} |f_i(x)| = 1$. Since B_1 is a normal family, f_i has a subsequence converging in C^0 -topology to f. Then $\gamma(f_i)$ converges to $\gamma(f)$ in sup-topology, giving $\lim_i \sup_{x \in \gamma(X)} |f_i(x)| = \sup_{x \in \gamma(X)} |f(x)| = 1$. Since a holomorphic functions has no strict maxima, this means that |f(x)| > 1 somewhere on X. Then f cannot be a C^0 -limit of $f_i \in B_1$.

Hopf manifolds and finite vectors

DEFINITION: Let $A \in \text{End}(\mathbb{C}^n)$ be an invertible linear endomorphism with all eigenvalues $|\alpha_i| < 1$. The quotient $H := (\mathbb{C}^n \setminus 0)/\langle A \rangle$ is called a linear Hopf manifold.

Theorem 1: Let M be an LCK manifold with potential, dim_{$\mathbb{C}} M > 2$. Then M admits a holomorphic embedding to a linear Hopf manifold.</sub>

DEFINITION: Let γ be an endomorphism of a vector space V. A vector $v \in V$ is called γ -finite if the space $\langle v, \gamma(v), \gamma^2(v), ... \rangle$ is finite-dimensional.

Theorem 2: Let M be an LCK manifold with potential, $\dim_{\mathbb{C}} M > 2$, and \tilde{M} its Kähler \mathbb{Z} -covering. Consider a metric completion \tilde{M}_c with its complex structure and a contraction $\gamma : \tilde{M}_c \longrightarrow \tilde{M}_c$ generating the \mathbb{Z} -action. Let $H^0(\mathcal{O}_{\tilde{M}_c})_f$ be the space of functions which are γ^* -finite. Then $H^0(\mathcal{O}_{\tilde{M}_c})_f$ is dense in sup-topology on each compact subset of \tilde{M}_c .

We deduce Theorem 1 from Theorem 2, and then prove Theorem 2 using Riesz-Schauder Theorem.

Embedding into Hopf manifolds

Theorem 2 \Rightarrow Theorem 1. Step 1:

Let $W \subset H^0(\mathcal{O}_{\tilde{M}_c})_f$ be an *m*-dimensional γ^* -invariant subspace W with basis $w_1, ..., w_m$. Then the following diagram is commutative:

Suppose that the map Ψ associated with a given $W \subset H^0(\mathcal{O}_{\tilde{M}_c})_f$ is injective. Then **the quotient map gives an embedding** $\Psi : \tilde{M}/\mathbb{Z} \longrightarrow (\mathbb{C}^m \setminus 0)/\gamma^*$; all eigenvalues of γ^* are < 1 because its operator norm is < 1.

Step 2: To find an appropriate $W \subset H^0(\mathcal{O}_{\tilde{M}_c})_f$, choose a holomorphic embedding Ψ_1 : $\tilde{M}_c \hookrightarrow \mathbb{C}^n$, which exists because \tilde{M}_c is Stein. Let $\tilde{w}_1, ..., \tilde{w}_n$ be the coordinate functions of Ψ_1 . Theorem 2 allows one to approximate \tilde{w}_i by $w_i \in H^0(\mathcal{O}_{\tilde{M}_c})_f$ in C^0 -topology. Choosing w_i sufficiently close to \tilde{w}_i in a compact fundamental domain of \mathbb{Z} -action, we obtain that $x \longrightarrow (w_1(x), w_2(x), ..., w_n(x))$ is injective in a compact fundamental domain of \mathbb{Z} . To finish the argument, take $W \subset H^0(\mathcal{O}_{\tilde{M}_c})_f$ generated by the γ^* from $w_1, ..., w_n$, and apply Step 1.

Riesz-Schauder Theorem

To find enough γ^* -finite vectors, we use the Riesz-Schauder Theorem. It is a Banach analogue of spectral theorem which easily follows from Fredholm theory.

THEOREM: (Riesz-Schauder)

Let $F: V \longrightarrow V$ be a compact operator on a Banach space. Then for each non-zero $\mu \in \mathbb{C}$, there exists a sufficiently big number $N \in \mathbb{Z}$ such that for each n > N one has $V = \ker(F - \mu \operatorname{Id})^n \oplus \overline{\operatorname{im}(F - \mu \operatorname{Id})^n}$, where $\overline{\operatorname{im}(F - \mu \operatorname{Id})^n}$ is closure of the image. Moreover, $\ker(F - \mu \operatorname{Id})^n$ is finite-dimensional and independent on n.

Riesz-Schauder Theorem and adic filtration

In our case the Riesz-Schauder theorem is especially effective.

Proposition 1: Fix a precompact subset $\tilde{M}_c^a := \varphi^{-1}([0, a[]), \text{ where } \varphi : \tilde{M}_c$ is the Kähler potential. Let A be the ring of bounded holomorphic functions on \tilde{M}_c^a , and \mathfrak{m} the maximal ideal of the origin point. Clearly, γ^* preserves \mathfrak{m} and all its powers. Let $P_k(t)$ be the minimal polynomial of $\gamma^*|_{A/\mathfrak{m}^k}$. Then $\operatorname{im}(P_k(\gamma^*) \subset \mathfrak{m}^k(A), \text{ and } \ker P_k(\gamma^*)$ generates A/\mathfrak{m}^k .

Proof: Since $P_k(t)$ is a minimal polynomial of γ^* on A/\mathfrak{m}^k , the endomorphism $P_k(\gamma^*)$ acts trivially on A/\mathfrak{m}^k , hence it maps A to \mathfrak{m}^k .

From Riesz-Schauder theorem applied to the Banach space A and $F = P_k(\gamma^*)$ it follows that $A = \operatorname{im}(P_k(\gamma^*) + \overline{\operatorname{im}(F - \mu \operatorname{Id})^n}$ hence $\operatorname{ker} P_k(\gamma^*)$ generates A/\mathfrak{m}^k .

m-adic topology and C^0 -topology

DEFINITION: Let A be a ring and \mathfrak{m} an ideal. The base of open sets in \mathfrak{m} -adic topology on A are \mathfrak{m}^k and their translates.

Proposition 1 implies the following result

PROPOSITION: Let $H^0(\mathcal{O}_{\tilde{M}_c})_f \subset H^0(\mathcal{O}_{\tilde{M}_c})$ be the set of γ^* -finite functions and \mathfrak{m} the maximal ideal of the origin in \tilde{M}_c . Then $H^0(\mathcal{O}_{\tilde{M}_c})_f$ is dense in \mathfrak{m} -adic topology.

Proof: A subspace $V \subset A$ is dense in m-adic topology in $A \Leftrightarrow$ the quotient $V/v \cap \mathfrak{m}^k$ surjects to A/\mathfrak{m}^k . This is proven in Proposition 1 for the ring of bounded holomorphic functions on \tilde{M}_c^a . However, any such function can be extended to γ^* -finite function on \tilde{M}_c using γ^* -action.

Now Theorem 2 is implied by the following claim.

CLAIM: Let X be a connected complex variety, A the ring of bounded holomorphic functions, $x \in X$ a point, $\mathfrak{m} \subset A$ its maximal ideal, and $R : A \longrightarrow \widehat{A}$ the natural map from A to its \mathfrak{m} -adic completion. Then R is continuous in C^0 -topology and induces homeomorphism of any bounded set to its image.

m-adic topology and C^0 -topology, part 2

CLAIM: Let X be a connected complex variety, A the ring of bounded holomorphic functions, $x \in X$ a point, $\mathfrak{m} \subset A$ its maximal ideal, and $R : A \longrightarrow \widehat{A}$ the natural map from A to its \mathfrak{m} -adic completion. Then R is continuous in C^0 -topology and induces homeomorphism of any bounded set to its image.

Proof: Continuity is clear because C^0 -topology is equivalent to C^1 -topology, C^2 -topology and so on (Lecture 8). Therefore, taking successive derivatives in a point is continuous in C^0 -topology. However, R takes a function and replaces it by its Taylor series.

To see that R is a homeomorphism, notice that any bounded, closed subset of A is compact, hence its image under a continuous map is also closed.