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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kähler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,

with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is

called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by

homotheties, (m, t)−→ (m,λt).

DEFINITION: Let (X, g) be a Riemannian manifold, C(X) := X × R>0

its Riemannian cone, and hλ the homothety action. Assume that (X, g) is

equipped with a complex structure, in such a way that g is Kähler, and hλ
acts holomorphically. Then C(X) is called a conical Kähler manifold. In

this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic

structure on C(X), and hλ acting by homotheties. In particular, Sasakian

manifolds are contact. Sasakian geometry is an odd-dimensional coun-

terpart to Kähler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective

manifold. Then the total space of its unit S1-fibration is Sasakian.
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Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is

called plurisubharmonic (psh) if the (1,1)-form ddcf is positive, and strictly

plurisubharmonic if ddcf is an Hermitian form.

REMARK: Since ddcf is always closed, it is also Kähler when it is strictly

positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a

function f such that ddcf = ω.

THEOREM: Let S be a Sasakian manifold, C(S) = S × R>0 its cone, t the

coordinate along the second variable, and r = t ddt. Then t2 is a Kähler

potential on C(S).
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LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and (M̃, ω̃) its Kähler covering.
It is called LCK manifold with potential if M̃ admits an automorphic Kähler
potential ϕ : M̃ −→ R>0, ddcϕ = ω̃, which is proper (preimage of a compact
is again compact).

THEOREM: The property of being LCK with potential is stable under
small deformations.

REMARK: For any complex submanifold Z ⊂ M of an LCK manifold with
potential, Z is also an LCK manifold with potential.

THEOREM: Let M be an LCK manifold, Γ ⊂ R>0 the monodromy group,
and (M̃, ω̃) its Kähler covering, with M̃/Γ = M . Assume that ω̃ admits a
Γ-automorphic Kähler potential ϕ. The map ϕ is proper if and only if
Γ = Z.

THEOREM: Let M be an LCK manifold with potential, and M̃ its Kähler
Z-covering. Then a metric completion M̃c admits a structure of a complex
manifold, compatible with the complex structure on M̃ ⊂ M̃c. Moreover, the
monodromy action on M̃ is extended to a holomorphic automorphism of M̃c.
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Normal families of functions (reminder)

DEFINITION: Let C(M) be the space of functions on a topological space.

Topology of uniform convergence on compacts (also known as compact-

open topology; usually denoted as C0) is a topology on C(M) where a base

of open sets is given by

U(X,C) := {f ∈ C(M) | supK|f | < C},

for all compacts K ⊂ M and C > 0. A sequence fi of functions converges to

f if it converges to f uniformly on all compacts.

DEFINITION: Let M be a complex manifold, and F a family of holomorphic

functions fi ∈ H0(OM). We call F a normal family if for each compact

K ⊂M there exists CK > 0 such that for each f ∈ F, supK|f | 6 CK.

THEOREM: Let M be a complex manifold and F ⊂ H0(OM) a normal family

of functions. Denote by F its closure in C0-topology. Then F is compact

and contained in H0(OM).
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Banach space of holomorphic functions

DEFINITION: A Banach space is a complete normed vector space.

THEOREM: Let M be a complex manifold, and H0
b (OM) the space of

all bounded holomorphic functions, equipped with the sup-norm |f |sup :=

supM |f |. Then it is a Banach space.

Proof. Step 1: Let {fi} ∈ H0
b (OM) be a Cauchy sequence in sup-norm.

Then {fi} converges to a continuous function f in sup-topology.

Step 2: Since {fi} is a normal family, it has a subsequence which converges

in C0-topology to f̃ ∈ H0(OM). However, the C0-topology is weaker than

the sup-topology, hence f̃ = f. Therefore, f is holomorphic.
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Compact operators

DEFINITION: A bounded subset of a topological vector space V is a set
B ⊂ V such that for any open neighbourhood U 3 0, there exists λ > 0 such
that λB ⊂ U

REMARK: Bounded subsets of normed spaces are subsets which are con-
tained in a ball of a sufficiently big radius.

DEFINITION: A subset of a topological space is called precompact if its
closure is compact.

DEFINITION: Let V,W be topological vector spaces, and ϕ : V −→W a
continuous linear operator. It is called compact if an image of any bounded
set is precompact.

EXERCISE: Let V = H0(OM) be a space of holomorphic functions on a
complex manifold M with C0-topology. Prove that any bounded subset of
V is precompact. In this case, the identity map is a compact operator.

REMARK: By Riesz theorem, a closed ball in a normed vector space V is
never compact, unless V is finite-dimensional. This means that (H0(OM), C0)
does not admit a norm.
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Holomorphic contractions

DEFINITION: Contraction of a manifold M to a point x ⊂M is a morphism

ϕ : M −→M such that for any compact subset K ⊂ M and any open U 3 x
there exists N > 0 such that for all n > N , the map ϕn maps K to U .

THEOREM: Let X be a complex variety, and γ : X −→X a holomorphic

contraction such that γ(X) is precompact. Consider the Banach space V =

H0
b (OX) with sup-metric. Then γ∗ : V −→ V is compact, and its operator

norm ‖γ∗‖ := sup|v|61|γ∗(v)| is strictly less than 1.

Proof. Step 1: Let BC := {v ∈ V | |v|sup 6 C}. Then

|γ∗f |sup = sup
x∈γ(X)

|f(x)|.

Therefore, for any sequence {fi} converging in C0-topology, the se-

quence {γ∗fi} converges in sup-topology. However, BC is precompact in

C0-topology, because it is a normal family. Then γ∗BC is precompact in

sup-topology.
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Holomorphic contractions (part 2)

EXERCISE: Prove the maximum principle: a non-constant holomorphic

function cannot have any non-strict maxima.

Step 2: Since supX |γ∗f | = supγ(X)|f | 6 supX |f |, one has ‖γ∗‖ 6 1. If this in-

equality is not strict, for some sequence fi ∈ B1 one has limi supx∈γ(X)|fi(x)| =
1. Since B1 is a normal family, fi has a subsequence converging in C0-topology

to f . Then γ(fi) converges to γ(f) in sup-topology, giving limi supx∈γ(X)|fi(x)| =
supx∈γ(X)|f(x)| = 1. Since a holomorphic functions has no strict max-

ima, this means that |f(x)| > 1 somewhere on X. Then f cannot be a

C0-limit of fi ∈ B1.

10



LCK manifolds, lecture 9 M. Verbitsky

Hopf manifolds and finite vectors

DEFINITION: Let A ∈ End(Cn) be an invertible linear endomorphism with

all eigenvalues |αi| < 1. The quotient H := (Cn\0)/〈A〉 is called a linear Hopf

manifold.

Theorem 1: Let M be an LCK manifold with potential, dimCM > 2. Then

M admits a holomorphic embedding to a linear Hopf manifold.

DEFINITION: Let γ be an endomorphism of a vector space V . A vector

v ∈ V is called γ-finite if the space 〈v, γ(v), γ2(v), ...〉 is finite-dimensional.

Theorem 2: Let M be an LCK manifold with potential, dimCM > 2, and

M̃ its Kähler Z-covering. Consider a metric completion M̃c with its complex

structure and a contraction γ : M̃c −→ M̃c generating the Z-action. Let

H0(OM̃c
)f be the space of functions which are γ∗-finite. Then H0(OM̃c

)f is

dense in sup-topology on each compact subset of M̃c.

We deduce Theorem 1 from Theorem 2, and then prove Theorem 2 using

Riesz-Schauder Theorem.
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Embedding into Hopf manifolds

Theorem 2 ⇒ Theorem 1. Step 1:
Let W ⊂ H0(OM̃c

)f be an m-dimensional γ∗-invariant subspace W with basis
w1, ..., wm. Then the following diagram is commutative:

M̃
Ψ−→ Cm

γ

y yγ∗
M

Ψ−→ Cm

,

where Ψ(x) = (w1(x), w2(x), ..., wm(x)).

Suppose that the map Ψ associated with a given W ⊂ H0(OM̃c
)f is injective.

Then the quotient map gives an embedding Ψ : M̃/Z−→ (Cm\0)/γ∗; all
eigenvalues of γ∗ are < 1 because its operator norm is < 1.

Step 2: To find an appropriate W ⊂ H0(OM̃c
)f , choose a holomorphic em-

bedding Ψ1 : M̃c ↪→ Cn, which exists because M̃c is Stein. Let w̃1, ..., w̃n
be the coordinate functions of Ψ1. Theorem 2 allows one to approximate
w̃i by wi ∈ H0(OM̃c

)f in C0-topology. Choosing wi sufficiently close to
w̃i in a compact fundamental domain of Z-action, we obtain that
x−→ (w1(x), w2(x), ..., wn(x)) is injective in a compact fundamental do-
main of Z. To finish the argument, take W ⊂ H0(OM̃c

)f generated by the γ∗

from w1, ..., wn, and apply Step 1.
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Riesz-Schauder Theorem

To find enough γ∗-finite vectors, we use the Riesz-Schauder Theorem. It is

a Banach analogue of spectral theorem which easily follows from Fredholm

theory.

THEOREM: (Riesz-Schauder)

Let F : V −→ V be a compact operator on a Banach space. Then for each

non-zero µ ∈ C, there exists a sufficiently big number N ∈ Z such that for

each n > N one has V = ker(F − µ Id)n⊕ im(F − µ Id)n, where im(F − µ Id)n

is closure of the image. Moreover, ker(F − µ Id)n is finite-dimensional and

independent on n.
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Riesz-Schauder Theorem and adic filtration

In our case the Riesz-Schauder theorem is especially effective.

Proposition 1: Fix a precompact subset M̃a
c := ϕ−1([0, a[), where ϕ : M̃c

is the Kähler potential. Let A be the ring of bounded holomorphic functions

on M̃a
c , and m the maximal ideal of the origin point. Clearly, γ∗ preserves m

and all its powers. Let Pk(t) be the minimal polynomial of γ∗
∣∣∣A/mk . Then

im(Pk(γ∗) ⊂ mk(A), and kerPk(γ∗) generates A/mk.

Proof: Since Pk(t) is a minimal polynomial of γ∗ on A/mk, the endomorphism

Pk(γ∗) acts trivially on A/mk, hence it maps A to mk.

From Riesz-Schauder theorem applied to the Banach space A and F = Pk(γ∗)
it follows that A = im(Pk(γ∗)+im(F − µ Id)n hence kerPk(γ∗) generates A/mk.
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m-adic topology and C0-topology

DEFINITION: Let A be a ring and m an ideal. The base of open sets in
m-adic topology on A are mk and their translates.

Proposition 1 implies the following result

PROPOSITION: Let H0(OM̃c
)f ⊂ H0(OM̃c

) be the set of γ∗-finite functions
and m the maximal ideal of the origin in M̃c. Then H0(OM̃c

)f is dense in
m-adic topology.

Proof: A subspace V ⊂ A is dense in m-adic topology in A ⇔ the quotient
V/v ∩ mk surjects to A/mk. This is proven in Proposition 1 for the ring of
bounded holomorphic functions on M̃a

c . However, any such function can be
extended to γ∗-finite function on M̃c using γ∗-action.

Now Theorem 2 is implied by the following claim.

CLAIM: Let X be a connected complex variety, A the ring of bounded holo-
morphic functions, x ∈ X a point, m ⊂ A its maximal ideal, and R : A−→ Â

the natural map from A to its m-adic completion. Then R is continuous
in C0-topology and induces homeomorphism of any bounded set to its
image.
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m-adic topology and C0-topology, part 2

CLAIM: Let X be a connected complex variety, A the ring of bounded holo-

morphic functions, x ∈ X a point, m ⊂ A its maximal ideal, and R : A−→ Â

the natural map from A to its m-adic completion. Then R is continuous

in C0-topology and induces homeomorphism of any bounded set to its

image.

Proof: Continuity is clear because C0-topology is equivalent to C1-topology,

C2-topology and so on (Lecture 8). Therefore, taking successive derivatives

in a point is continuous in C0-topology. However, R takes a function and

replaces it by its Taylor series.

To see that R is a homeomorphism, notice that any bounded, closed subset

of A is compact, hence its image under a continuous map is also closed.
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