Locally conformally Kähler manifolds

lecture 10: pseudoconvex shells

Misha Verbitsky

HSE and IUM, Moscow

April 21, 2014

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, $\dim_{\mathbb{C}} M > 1$. Then M is called **locally conformally Kähler** (LCK) if $d\omega = \omega \wedge \theta$, where θ is a closed 1-form, called **the Lee form**.

DEFINITION: A manifold is locally conformally Kähler iff it admits a Kähler form taking values in a positive, flat vector bundle *L*, called **the weight bundle**.

DEFINITION: Deck transform, or monodromy maps of a covering $\tilde{M} \longrightarrow M$ are elements of the group $\operatorname{Aut}_{M}(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_{M}(\tilde{M}) = \pi_{1}(M)$.

DEFINITION: An LCK manifold is a complex manifold such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.

THEOREM: These three definitions are equivalent.

Conical Kähler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and $C(X) := X \times \mathbb{R}^{>0}$, with the metric $t^2g + dt^2$, where t is a coordinate on $\mathbb{R}^{>0}$. Then C(X) is called **Riemannian cone** of X. **Multiplicative group** $\mathbb{R}^{>0}$ **acts on** C(X) by **homotheties,** $(m,t) \longrightarrow (m, \lambda t)$.

DEFINITION: Let (X,g) be a Riemannian manifold, $C(X) := X \times \mathbb{R}^{>0}$ its Riemannian cone, and h_{λ} the homothety action. Assume that $(C(X), gt^2 + dt^2)$ is equipped with a complex structure, in such a way that the conical metric $gt^2 + dt^2$ is Kähler, and h_{λ} acts holomorphically. Then C(X) is called a conical Kähler manifold. In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic structure on C(X), and h_{λ} acting by homotheties. In particular, Sasakian manifolds are contact. Sasakian geometry is an odd-dimensional counterpart to Kähler geometry

EXAMPLE: Let *L* be a positive holomorphic line bundle on a projective manifold. Then the total space of its unit S^1 -fibration is Sasakian.

3

Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is called **plurisubharmonic (psh)** if the (1,1)-form $dd^c f$ is positive, and **strictly plurisubharmonic** if $dd^c f$ is an Hermitian form.

REMARK: Since $dd^c f$ is always closed, it is also Kähler when it is strictly positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a function f such that $dd^c f = \omega$.

THEOREM: Let *S* be a Sasakian manifold, $C(S) = S \times \mathbb{R}^{>0}$ its cone, *t* the coordinate along the second variable, and $r = t \frac{d}{dt}$. Then t^2 is a Kähler potential on C(S).

LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and $(\tilde{M}, \tilde{\omega})$ its Kähler covering. It is called **LCK manifold with potential** if \tilde{M} admits an automorphic Kähler potential $\varphi : \tilde{M} \longrightarrow \mathbb{R}^{>0}$, $dd^c \varphi = \tilde{\omega}$, which is **proper** (preimage of a compact is again compact).

THEOREM: The property of being LCK with potential is stable under small deformations.

THEOREM: Let M be an LCK manifold, $\Gamma \subset \mathbb{R}^{>0}$ the monodromy group, and $(\tilde{M}, \tilde{\omega})$ its Kähler covering, with $\tilde{M}/\Gamma = M$. Assume that $\tilde{\omega}$ admits a Γ -automorphic Kähler potential φ . The map φ is proper if and only if $\Gamma = \mathbb{Z}$.

THEOREM: Let M be an LCK manifold with potential, and \tilde{M} its Kähler \mathbb{Z} -covering. Then a metric completion \tilde{M}_c admits a structure of a complex manifold, compatible with the complex structure on $\tilde{M} \subset \tilde{M}_c$. Moreover, the monodromy action on \tilde{M} is extended to a holomorphic automorphism of \tilde{M}_c .

THEOREM: Let *M* be an LCK manifold with potential, dim_{\mathbb{C}} M > 2. Then *M* admits a holomorphic embedding to a linear Hopf manifold.

CR-manifolds

Definition: Let M be a smooth manifold, $B \subset TM$ a sub-bundle in a tangent bundle, and $I : B \longrightarrow B$ an endomorphism satisfying $I^2 = -1$. Consider its $\sqrt{-1}$ -eigenspace $B^{1,0}(M) \subset B \otimes \mathbb{C} \subset T_C M = TM \otimes \mathbb{C}$. Suppose that $[B^{1,0}, B^{1,0}] \subset B^{1,0}$. Then (B, I) is called a **CR-structure on** M.

Example: A complex manifold is CR, with B = TM. Indeed, $[T^{1,0}M, T^{1,0}M] \subset T^{1,0}M$ is equivalent to integrability of the complex structure (Newlander-Nirenberg).

Example: Let X be a complex manifold, and $M \subset X$ a hypersurface. Then $B := \dim_{\mathbb{C}} TM \cap I(TM) = \dim_{\mathbb{C}} X - 1$, hence $\operatorname{rk} B = n - 1$. Since $[T^{1,0}X, T^{1,0}X] \subset T^{1,0}X$, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor $B \otimes B \longrightarrow TM/B$ mapping X, Y to the $\prod_{TM/B}([X, Y])$. It is an obstruction to integrability of the foliation given by B.

Contact CR-manifolds.

Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M, B, I) be a CR-manifold, with codim B = 1. Then M is called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since $[B^{1,0}, B^{1,0}] \subset B^{1,0}$ and $[B^{0,1}, B^{0,1}] \subset B^{0,1}$, the Frobenius form is a pairing between $B^{0,1}$ and $B^{1,0}$. This means that it is Hermitian.

DEFINITION: This Hermitian form is called **Levi form** of a CR-manifold.

Definition: Let (M, B, I) be a CR-manifold, with codim B = 1. Then M is called a strictly pseudoconvex CR-manifold if its Levi form is positive definite.

Example: Let *h* be a function on a complex manifold such that $\partial \overline{\partial} h = \omega$ is a positive definite Hermitian form, and $X = h^{-1}(c)$ its level set. Then the Frobenius form of *X* is equal to $\omega|_X$ (see the next slide). In particular, *X* is a strictly pseudoconvex CR-manifold.

CR-manifolds and plurisubharmonic functions.

PROPOSITION: Let M be a complex manifold, $\varphi \in C^{\infty}M$ a smooth function, and s a regular value of φ . Consider $S := \varphi^{-1}(s)$ as a CR-manifold, with $B = TS \cap I(TS)$ and let Φ be its Levi form, taking values in

$$TS/B = \ker d\varphi / \ker d\varphi \cap I(\ker d\varphi)$$

Then $d^c \varphi$: $TS/B \longrightarrow C^{\infty}S$ trivializes TS/B. Consider tangent vectors $u, v \in B_xS$. Then $-d^c \varphi(\Phi(u, v)) = dd^c \varphi(x, y)$.

Proof: Extend u, v to vector fields $u, v \in B = \ker d\varphi \cap I(\ker d\varphi)$. Then $-d^c\varphi(\Phi(u,v)) = -d^c\varphi([u,v]) = dd^c\varphi(u,v)$.

COROLLARY: Let *M* be a complex manifold, $\varphi \in C^{\infty}M$ a strictly plurisubharmonic function, and *s* a regular value of φ . Then $S := \varphi^{-1}(s)$ is strictly pseudoconvex.

Proof: By the above proposition, the Levi form of S is expressed as $dd^c\varphi(u, v)$, hence it is positive definite.

Algebraic cones.

DEFINITION: An algebraic cone is an affine variety C admitting a \mathbb{C}^* -action ρ with a unique fixed point x_0 , called **the origin**, and satisfying the following:

(i) C is smooth outside of x_0 ,

(ii) ρ acts on the Zariski tangent space $T_{x_0}C$ with all eigenvalues $|\alpha_i| < 1$.

An open algebraic cone is a closed algebraic cone without the origin.

THEOREM: Let $M = \tilde{M}/A$ be LCK manifold with potential, and \tilde{M} its Kähler \mathbb{Z} -covering. Then \tilde{M} is an open algebraic cone.

Proof. Step 1: Let \tilde{M}_c be a Stein completion of \tilde{M} equipped with an *A*-equivariant embedding to \mathbb{C}^n , where *A* acts as a linear operator with all eigenvalues $|\alpha_i| < 1$. Denote the ideal of \tilde{M}_c in the local ring $\mathcal{O}_{\mathbb{C}^n,0}$ as *I*.

Algebraic cones and LCK manifolds with potential

THEOREM: Let $M = \tilde{M}/A$ be LCK manifold with potential, and \tilde{M} its Kähler \mathbb{Z} -covering. Then \tilde{M} is an open algebraic cone.

Proof. Step 1: [...] Denote the ideal of \tilde{M}_c in the local ring $\mathcal{O}_{\mathbb{C}^n,0}$ as I.

Step 2: Call an element $f \in \mathcal{O}_{\mathbb{C}^n,0}$ *A*-finite if $\langle f, A^*f, A^{2^*}f, ... \rangle$ is finitelydimensional. A polynomial function is clearly *A*-finite. The converse is also true, because a Taylor decomposition of an *A*-finite function *f* can have only finitely many components, otherwise the eigenspace decomposition of *f* is infinite. Therefore, **the ideal** $I^A := I \cap \mathcal{O}^A_{\mathbb{C}^n,0}$ **is finitely generated**, where $\mathcal{O}^A_{\mathbb{C}^n,0}$ is a ring of *A*-finite functions (any ideal in the ring of polynomials is finitely generated, by Hilbert basis theorem).

Step 3: As we have shown in Lecture 9, the ring $\mathcal{O}_{\tilde{M}_{c},0}^{A}$ is dense in $\mathcal{O}_{\tilde{M}_{c},0}$ in m-adic topology. In other words, it has the same associated graded ring with respect to the \mathfrak{m}^{n} -filtration as $\mathcal{O}_{\tilde{M}_{c},0}$. Then the Nakayama's lemma implies that $I = I^{A} \otimes_{\mathcal{O}_{\mathbb{C}^{n},0}} \mathcal{O}_{\mathbb{C}^{n},0}$.

Step 4: Let $f_1, ..., f_n \subset \mathcal{O}_{\mathbb{C}^n}$ be the polynomial generators of $I \subset \mathcal{O}_{\mathbb{C}^n,0}$. Then \tilde{M}_c is an affine variety defined by the ideal $\langle f_1, ..., f_n \rangle$.

Pseudoconvex shells

DEFINITION: Let \tilde{M} be an open algebraic cone, \tilde{M}_c the corresponding closed cone, and $\vec{r} \in TC$ a holomorphic vector field such that for all t > 0 the diffeomorphism $e^{t\vec{r}}$ is a holomorphic contraction of \tilde{M}_c to origin. A strictly pseudoconvex hypersurface $S \subset \tilde{M}$ is called a pseudoconvex shell if S intersects each orbit of $e^{t\vec{r}}$, $t \in \mathbb{R}$ exactly once.

Theorem 1: Let \tilde{M} be an algebraic cone, $e^{t\vec{r}}$ a contraction, and $S \subset \tilde{M}$ a pseudoconvex shell. Then for each $\lambda \in \mathbb{R}$ there exists a unique function φ_{λ} such that $\operatorname{Lie}_{\vec{r}} \varphi = \lambda \varphi$ and $\varphi_{\lambda}|_{S} = 1$. Moreover, such φ_{λ} is strictly plurisubharmonic when $\lambda \gg 0$.

Theorem 2: Any LCK manifold with potential admits a metric of this type.

Theorem 1 (proven later in this lecture) implies the following corollary.

COROLLARY: (Gauduchon-Ornea) All linear Hopf manifolds are LCK with potential.

Proof: Let $M = (\mathbb{C}^n \setminus 0)/\langle A \rangle$, $\vec{r} = \log A$, and $S \subset \mathbb{C}^n$ be a unit sphere. Then S is a pseudoconvex shell, and for λ sufficiently big a plurisubharmonic function φ_{λ} gives an LCK-potential.

Pseudoconvex shells and plurisubharmonic functions

Theorem 1: Let \tilde{M} be an algebraic cone, $e^{t\vec{r}}$ a contraction, and $S \subset \tilde{M}$ a pseudoconvex shell. Then for each $\lambda \in \mathbb{R}$ there exists a unique function φ_{λ} such that $\operatorname{Lie}_{\vec{r}}\varphi_{\lambda} = \lambda \varphi_{\lambda}$ and $\varphi_{\lambda}|_{S} = 1$. Moreover, such φ_{λ} is strictly plurisubharmonic when $\lambda \gg 0$.

Proof. Step 1: For each λ , φ_{λ} is uniquely determined on each orbit of $e^{t\vec{r}}$, $t \in \mathbb{R}$, because φ_{λ} restricted to this orbit is $e^{\lambda t}$.

Step 2: Let $B := e^{\mathbb{R}\vec{r}} \cdot (TS \cap I(TS)) \subset T\tilde{M}$ be a sub-bundle obtained from $TS \cap I(TS)$ by translations along $e^{t\vec{r}}$. Then $dd^c\varphi|_B$ is the Levi form of S, hence it is positive definite.

Step 3: Replacing φ by φ^{2a} amounts to replacing λ by $2a\lambda$. Then

$$dd^{c}\varphi^{2a} = \varphi^{2a-2}(2a \cdot \varphi dd^{c}\varphi + 2a(2a-1)d\varphi \wedge d^{c}\varphi).$$

To prove Theorem 1 it would suffice to show that $dd^c \varphi^{2a}|_S > 0$ for a sufficiently big. However, S is compact, hence it is implied by the following lemma applied to V = TM, W = B, $h_1 = \varphi dd^c \varphi$, $h_2 = d\varphi \wedge d^c \varphi$.

Positivity of Hermitian forms

LEMMA: Let h_1, h_2 be pseudo-Hermitian forms on a complex vector space V, and $W \subset V$ a subspace of codimension 1. Assume that $h_1|_W$ is strictly positive, $h_2|_W = 0$, and $h_2|_{V/W}$ is also strictly positive. Then there exists a number $T_0 \in \mathbb{R}$ which depends continuously on h_1, h_2 such that $h_T := h_1 + Th_2$ is positive definite for all $T > T_0$.

Proof: We think of h_1 , h_2 as of real valued bilinear symmetric forms. Let $y \in V$ be a vector which satisfies $h_2(y, y) = 1$. Then any $x \in V$ can be written as x = ay + z, $z \in W$. This gives

$$h_T(x,x) = Ta^2 + a^2h_1(y,y) + h_1(z,z) + 2ah_1(z,y) \quad (*)$$

Consider (*) as a polynomial on a. Then (*) is positive definite for all a if and only if

$$(h_1(z,y))^2 - (T + h_1(y,y)) \cdot h_1(z,z) < 0.$$
 (**)

Let $y' \in W$ be a vector which satisfies $h_1(z, y') = h_1(z, y)$ for all $z \in W$, and $T > h_1(y', y') - h_1(y, y)$. Then (**) becomes

$$(h_1(z,y'))^2 - h_1(y',y')h_1(z,z) < 0$$

(Cauchy-Schwarz inequality). ■

M. Verbitsky

Logarithm

DEFINITION: A **Banach ring** is a Banach space equipped with a commutative, continuous product. A Banach ring is **finitely generated** if it is a closure of a finitely-generated ring.

EXAMPLE: A ring of bounded holomorphic function on a complex variety is a Banach ring.

Proposition 1: Let R be a finitely generated, finitely presented Banach ring, and $R_1 \subset R$ a finite-dimensional subspace containing unit, which generates Rmultiplicatively. We write $R = \mathbb{C}[V]/I$, where I is an ideal and $V = R_1$. Let N a number such that $I \cap V^N$ generates I. Consider an automorphism A of R such that on $R_N := R_1^N$ one has $||A - \operatorname{Id}|| < 1$, where $|| \cdot ||$ is the operator norm. For each $x \in R_N$, define **the logarithm**: $\log(A)(x) := \sum_{i=1}^{\infty} \frac{(1-A)^i}{i}(x)$ (the series converges, because $||A - \operatorname{Id}|| < 1$ on R_N). Then $\log A$ can be extended to a derivation on R which satisfies $e^{\log A} = \operatorname{Id}$.

Proof: For each $x, y, xy \in R_N$, one has $\log(A)(xy) = \log(A)(x)y + x \log(A)(y)$ by formal identities with logarithms. Since all relations are generated by elements of $V^N \cap I$, and $\log(A) = 0$ on these by construction, the operator $\log(A)$ can be extended to R using the Leibnitz identity.

Logarithm on LCK manifolds with potential

Lemma 1: Let $\{a_1, ..., a_n\}$ be a finite set of complex numbers which satisfy $0 < |a_i| < 1$. Then there exists an integer C > 0 such that $|a_i^C - 1| < 1$.

Proof: Write $a_i = b_i u_i$, where $|u_i| = 1$, $b_i \in \mathbb{R}$. For any given ε one can find C such that $\arg(u_i^C) < \varepsilon$ for all i. The statement of the lemma is obtained when $\varepsilon = \frac{\pi}{3}$.

THEOREM: Let M be an LCK manifold with potential, \tilde{M} its Kähler its \mathbb{Z} covering, and $M = \tilde{M}/\langle \gamma \rangle$. Then there exists $C \in \mathbb{Z}^{>0}$ and a holomorphic
vector field \vec{r} on \tilde{M} such that $\gamma^C = \vec{r}$.

Proof: Let $\mathcal{O}_{\tilde{M}_c}^{\gamma}$ be the ring of γ -finite functions (finitely generated and dense in $H^0(\mathcal{O}_{\tilde{M}_c})$, as shown above), $R_1 = V$ be a set of multiplicative generators of $\mathcal{O}_{\tilde{M}_c}^{\gamma}$, containing unit, with $R = \mathbb{C}[V]/I$ and N a number such that Iis generated by $V^N \cap I$. Define the Banach norm on $\mathcal{O}_{\tilde{M}_c}^{\gamma}$ by taking |f| = $\sup_{x \in \varphi^{-1}[0,a]} |f(x)|$, where φ is the LCK potential, and let R be its Banach completion. Using Lemma 1, choose $C \in \mathbb{Z}^{>0}$ such that on $R_N := R_1^N$ one has $|\gamma^C - \mathrm{Id}| < 1$, and let $\log \gamma^C$ be the logarithm defined as in Proposition 1. Then $e^{\log \gamma^C} = \gamma^C$, hence we can take $\vec{r} := \log \gamma^C$.

$\mathbb R\text{-}automorphic \ \text{LCK}\ metrics$

REMARK: Let φ be any LCK-potential on \tilde{M} , satisfying $(\gamma^k)^* \varphi = e^\lambda \varphi$, \vec{r} a vector field constructed above, and $\rho(t) \longrightarrow e^{-t\lambda}(e^{t\vec{r}})^*$ the corresponding endomorphism of $C^{\infty}M$. Since $\rho(k+t)(\varphi) = \rho(t)\varphi$, the orbit of φ is compact. **Averaging** $\rho(t)\varphi$ **over** \mathbb{R} , we obtain a $\rho(t)$ -invariant Kähler potential φ_0 . Then φ_0 is obtained from a pseudoconvex shell $\varphi_0^{-1}(1)$ and the vector field \vec{r} as in Theorem 1. This proves Theorem 2.