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L. CK manifolds, lecture 10 M. Verbitsky

LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kahler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and C(X) := X x R>0,
with the metric t2g 4 dt2, where t is a coordinate on R>9. Then C(X) is
called Riemannian cone of X. Multiplicative group R>° acts on C(X) by
homotheties, (m,t) — (m, A\t).

DEFINITION: Let (X,g) be a Riemannian manifold, C(X) := X x R>0 its
Riemannian cone, and h) the homothety action. Assume that (C(X), gt2+dt?)
IS equipped with a complex structure, in such a way that the conical metric
gt2+dt? is Kihler, and hy acts holomorphically. Then C(X) is called a conical
Kahler manifold. In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hy, acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian geometry is an odd-dimensional coun-
terpart to Kahler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit Sl_fibration is Sasakian.
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Kahler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is
called plurisubharmonic (psh) if the (1,1)-form dd°¢f is positive, and strictly
plurisubharmonic if dd°f is an Hermitian form.

REMARK: Since dd°f is always closed, it is also Kahler when it is strictly
positive.

DEFINITION: Let (M,I,w) be a Kahler manifold. Kahler potential is a
function f such that dd°f = w.

THEOREM: Let S be a Sasakian manifold, C(S) = S x R>Y its cone, ¢ the
coordinate along the second variable, and r = t%. Then t2 is a Kahler
potential on C(S).
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LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and (M, &) its Kahler covering.
It is called LCK manifold with potential if M admits an automorphic Kahler
potential ¢ : M —>R>O, dd°p = &, which is proper (preimage of a compact
iS again compact).

THEOREM: The property of being LCK with potential is stable under
small deformations.

THEOREM: Let M be an LCK manifold, I C R>0 the monodromy group,
and (M,&) its Kahler covering, with M/ = M. Assume that & admits a
[-automorphic Kahler potential . The map ¢ is proper if and only if
= Z.

THEOREM: Let M be an LCK manifold with potential, and M its Kahler
Z-covering. Then a metric completion M. admits a structure of a complex
manifold, compatible with the complex structure on M C M.. Moreover, the
monodromy action on M is extended to a holomorphic automorphism of M..

THEOREM: Let M be an LCK manifold with potential, dimgc M > 2. Then
M admits a holomorphic embedding to a linear Hopf manifold.
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CR-manifolds

Definition: Let M be a smooth manifold, B C T'M a sub-bundle in a tangent
bundle, and I : B — B an endomorphism satisfying [?2 = —1. Consider
its v/—1 -eigenspace B1.9(M) c B®C Cc ToM = TM ® C. Suppose that
[B1.O B1.O] ¢ B1.O. Then (B,I) is called a CR-structure on M.

Example: A complex manifold is CR, with B = T M. Indeed, [TYOM, T1.0M] ¢
T1.OM is equivalent to integrability of the complex structure (Newlander-
Nirenberg).

Example: Let X be a complex manifold, and M C X a hypersurface.
Then B (= dimgTM N I(TM) = dimgX — 1, hence rkB = n — 1. Since
[T19x 71.0x] c 719X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B B— T'M/B
mapping X,Y to the I‘ITM/B([X, Y]). It is an obstruction to integrability of
the foliation given by B.
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Contact CR-manifolds.
Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M, B,I) be a CR-manifold, with codimB = 1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B10, B1.0] ¢ B1.0 and [BY1, B91] ¢ BY1, the Frobenius form
is a pairing between BY%! and B0, This means that it is Hermitian.

DEFINITION: This Hermitian form is called Levi form of a CR-manifold.

Definition: Let (M,B,I) be a CR-manifold, with codimB = 1. Then M
is called a strictly pseudoconvex CR-manifold if its Levi form is positive
definite.

Example: Let h be a function on a complex manifold such that 90h = w is
a positive definite Hermitian form, and X = h~1(c¢) its level set. Then the
Frobenius form of X is equal to w|x (see the next slide). In particular, X is
a strictly pseudoconvex CR-manifold.
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CR-manifolds and plurisubharmonic functions.

PROPOSITION: Let M be a complex manifold, ¢ € C"°°M a smooth func-
tion, and s a regular value of ¢. Consider S := ¢~ 1(s) as a CR-manifold, with
B=TSNI(TS) and let ® be its Levi form, taking values in

TS/B = kerdy/ kerdep N I(ker dy)

Then d% : T'S/B — C°S trivializes T'S/B. Consider tangent vectors u,v €
BzS. Then —dp(P(u,v)) = ddp(x,vy)).

Proof: Extend wu,v to vector fields u,v € B = kerdyp N I(kerdy). Then
—d°p(P(u,v)) = —d%([u,v]) = dd%(u,v). =

COROLLARY: Let M be a complex manifold, ¢ € C°°M a strictly plurisub-
harmonic function, and s a regular value of ¢. Then S := go—l(s) is strictly
pseudoconvex.

Proof: By the above proposition, the Levi form of S is expressed as ddp(u,v),
hence it is positive definite. m
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Algebraic cones.

DEFINITION: An algebraic cone is an affine variety C admitting a C*-
action p with a unique fixed point zg, called the origin, and satisfying the
following:

(i) C is smooth outside of zg,

(ii) p acts on the Zariski tangent space T,,C with all eigenvalues |o;| < 1.

An open algebraic cone is a closed algebraic cone without the origin.

THEOREM: Let M = M/A be LCK manifold with potential, and M its
Kahler Z-covering. Then M is an open algebraic cone.

Proof. Step 1: Let M. be a Stein completion of M equipped with an
A-equivariant embedding to C", where A acts as a linear operator with all
eigenvalues |a;| < 1. Denote the ideal of M. in the local ring Ocn g as I.
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Algebraic cones and LCK manifolds with potential

THEOREM: Let M = M/A be LCK manifold with potential, and M its
Kahler Z-covering. Then M is an open algebraic cone.

Proof. Step 1: [...] Denote the ideal of M. in the local ring O¢ng as I.

Step 2: Call an element f € Oc¢ng A-finite if (f, A*f, AZTf ) is finitely-
dimensional. A polynomial function is clearly A-finite. The converse is also
true, because a Taylor decomposition of an A-finite function f can have only
finitely many components, otherwise the eigenspace decomposition of f is
infinite. Therefore, the ideal I := 1N O, , is finitely generated, where

Ocno is a ring of A-finite functions (any ideal in the ring of polynomials is
flmtely generated, by Hilbert basis theorem).

Step 3: As we have shown in Lecture 9, the ring O;@ o is densein Oy 4 in
m-adic topology. in other words, it has the same associated graded ring with
respect to the m"-filtration as OMco- Then the Nakayama's lemma implies

that I = IA ®Oéno OC”,O-

Step 4: Let fq,..., fn C O¢n be the polynomial generators of I C O¢n g. Then
M. is an affine variety defined by the ideal (fq,..., frn). ®
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Pseudoconvex shells

DEFINITION: Let M be an open algebraic cone, M. the corresponding
closed cone, and € TC a holomorphic vector field such that for all ¢t >
0 the diffeomorphism e!™ is a holomorphic contraction of N, to origin. A
strictly pseudoconvex hypersurface S C M is called a pseudoconvex shell if
S intersects each orbit of eﬁ, t € R exactly once.

Theorem 1: Let M be an algebraic cone, e!™ a contraction, and S C M
a pseudoconvex shell. Then for each A € R there exists a unique function
@y such that Liezp = Ap and ¢,|g = 1. Moreover, such ¢, is strictly
plurisubharmonic when )\ > 0.

Theorem 2: Any LCK manifold with potential admits a metric of this type.
Theorem 1 (proven later in this lecture) implies the following corollary.

COROLLARY: (Gauduchon-Ornea)
All linear Hopf manifolds are LCK with potential.

Proof: Let M = (C"\0)/(A), =109 A, and S C C™ be a unit sphere. Then S
IS a pseudoconvex shell, and for A\ sufficiently big a plurisubharmonic function
wy gives an LCK-potential. =
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Pseudoconvex shells and plurisubharmonic functions

Theorem 1: Let M be an algebraic cone, e!” a contraction, and S C M
a pseudoconvex shell. Then for each A € R there exists a unique function
@y such that Liezpy = Ap) and ¢)|g¢ = 1. Moreover, such ¢, is strictly
plurisubharmonic when X\ > 0.

Proof. Step 1: For each A\, ¢, is uniquely determined on each orbit of
et”, t € R, because @) restricted to this orbit is et

Step 2: Let B := eR7. (TSN I(TS)) C TM be a sub-bundle obtained from
TSN I(TS) by translations along e!”. Then ddy|p is the Levi form of S,
hence it is positive definite.

Step 3: Replacing ¢ by gpza amounts to replacing A by 2aX. Then

ddCp?® = 2% 2(2a - pdd o + 2a(2a — 1)dyp A d°p).

To prove Theorem 1 it would suffice to show that dd®p2%|¢ > 0 for a Suffi-
ciently big. However, S is compact, hence it is implied by the following lemma
applied to V=TM, W = B, h1 = pdd®p, ho = dp A dp.
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Positivity of Hermitian forms

LEMMA: Let hq1, ho be pseudo-Hermitian forms on a complex vector space V/,
and W C V a subspace of codimension 1. Assume that hqlyy is strictly positive,
holyw = 0, and h2|V/W IS also strictly positive. Then there exists a number
To € R which depends continuously on hy,hy such that hp := hy +Tho IS
positive definite for all T > Tj.

Proof: We think of hi, ho as of real valued bilinear symmetric forms. Let
y € V be a vector which satisfies ho(y,y) = 1. Then any x € V can be written
as x =ay + z, z € W. This gives

hy(z,x) = Ta? + a®h1(y,y) + h1(z, 2) + 2ahy(z,y) (%)

Consider (*) as a polynomial on a. Then (*) is positive definite for all a if
and only if

(h1(2,9))% = (T + h1(y,9)) - h1(2,2) <O. (%)

Let v/ € W be a vector which satisfies h1(z,vy') = h1(z,y) for all z € W, and
T > h1(y',y") — h1(y,y). Then (**) becomes

(h1(2,9y"))% = h1 (¥, y)h1(z,2) <O
(Cauchy-Schwarz inequality). =
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Logarithim

DEFINITION: A Banach ring is a Banach space equipped with a commu-
tative, continuous product. A Banach ring is finitely generated if it is a
closure of a finitely-generated ring.

EXAMPLE: A ring of bounded holomorphic function on a complex variety
IS a Banach ring.

Proposition 1: Let R be a finitely generated, finitely presented Banach ring,
and R1 C R a finite-dimensional subspace containing unit, which generates R
multiplicatively. We write R = C[V']/I, where [ is an ideal and V = R;. Let
N a number such that I N V& generates I. Consider an automorphism A of
R such that on Ry = Riv one has ||[A—-1Id|| < 1, where || - || is the operator

norm. For each z € Ry, define the logarithm: log(A)(x) := >72 4 M(m)
(the series converges, because ||[A —1Id|| < 1 on Rpy). Then log A can be
extended to a derivation on R which satisfies ¢/°94 = Id.

Proof: For each z,y,zy € Ry, one has log(A)(zy) = log(A)(x)y+x109(A)(y)
by formal identities with logarithms. Since all relations are generated by
elements of V¥ NI, and log(A) = 0 on these by construction, the operator
log(A) can be extended to R using the Leibnitz identity. =
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Logarithm on LCK manifolds with potential

Lemma 1: Let {aq,...,an} be a finite set of complex numbers which satisfy
0 < |a;| < 1. Then there exists an integer C > 0 such that |GJZ-C — 1| < 1.

Proof: Write a; = bju;, where |u;| = 1, b; € R. For any given € one can find
C' such that arg(uic) < ¢ for all =. The statement of the lemma is obtained

when s:%. n

THEOREM: Let M be an LCK manifold with potential, M its Kahler its Z-
covering, and M = M /{(v). Then there exists C € Z>9 and a holomorphic
vector field 7 on I such that ¢ = 7.

Proof: Let O'y be the ring of ~4-finite functions (finitely generated and dense

in HO(O ) as shown above), R1 = V be a set of multiplicative generators
of (97 X containing unit, with R = C[V]/I and N a number such that I

IS generated by VN nI. Define the Banach norm on (97 by taking |f| =
SUP,c 1[0, a]|f(x)| where ¢ is the LCK potential, and Iet ‘R be its Banach

completion. Using Lemma 1, choose C € Z>0 such that on Ry = RN one

has |y¢ —Id\ < 1, and let log 70 be the Iogarlthm defined as in Prop05|t|on 1.
Then €l°97° = ,yc hence we can take 7:=log~%. m
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R-automorphic LCK metrics

REMARK: Let ¢ be any LCK-potential on M, satisfying (7%)*¢ = erp, 7
a vector field constructed above, and p(t) — e tA(e!f™)* the corresponding
endomorphism of C°M. Since p(k+1t)(p) = p(t)p, the orbit of ¢ is compact.
Averaging p(t)p over R, we obtain a p(¢)-invariant Kahler potential (.
Then g is obtained from a pseudoconvex shell goal(l) and the vector field ¥
as in Theorem 1. This proves Theorem 2.
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