
LCK manifolds, lecture 10 M. Verbitsky

Locally conformally Kähler manifolds
lecture 10: pseudoconvex shells

Misha Verbitsky

HSE and IUM, Moscow

April 21, 2014

1



LCK manifolds, lecture 10 M. Verbitsky

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kähler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,

with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is

called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by

homotheties, (m, t)−→ (m,λt).

DEFINITION: Let (X, g) be a Riemannian manifold, C(X) := X × R>0 its

Riemannian cone, and hλ the homothety action. Assume that (C(X), gt2+dt2)

is equipped with a complex structure, in such a way that the conical metric

gt2+dt2 is Kähler, and hλ acts holomorphically. Then C(X) is called a conical

Kähler manifold. In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic

structure on C(X), and hλ acting by homotheties. In particular, Sasakian

manifolds are contact. Sasakian geometry is an odd-dimensional coun-

terpart to Kähler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective

manifold. Then the total space of its unit S1-fibration is Sasakian.
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Kähler potentials and plurisubharmonic functions (reminder)

DEFINITION: A real-valued smooth function on a complex manifold is

called plurisubharmonic (psh) if the (1,1)-form ddcf is positive, and strictly

plurisubharmonic if ddcf is an Hermitian form.

REMARK: Since ddcf is always closed, it is also Kähler when it is strictly

positive.

DEFINITION: Let (M, I, ω) be a Kähler manifold. Kähler potential is a

function f such that ddcf = ω.

THEOREM: Let S be a Sasakian manifold, C(S) = S × R>0 its cone, t the

coordinate along the second variable, and r = t ddt. Then t2 is a Kähler

potential on C(S).

4



LCK manifolds, lecture 10 M. Verbitsky

LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and (M̃, ω̃) its Kähler covering.
It is called LCK manifold with potential if M̃ admits an automorphic Kähler
potential ϕ : M̃ −→ R>0, ddcϕ = ω̃, which is proper (preimage of a compact
is again compact).

THEOREM: The property of being LCK with potential is stable under
small deformations.

THEOREM: Let M be an LCK manifold, Γ ⊂ R>0 the monodromy group,
and (M̃, ω̃) its Kähler covering, with M̃/Γ = M . Assume that ω̃ admits a
Γ-automorphic Kähler potential ϕ. The map ϕ is proper if and only if
Γ = Z.

THEOREM: Let M be an LCK manifold with potential, and M̃ its Kähler
Z-covering. Then a metric completion M̃c admits a structure of a complex
manifold, compatible with the complex structure on M̃ ⊂ M̃c. Moreover, the
monodromy action on M̃ is extended to a holomorphic automorphism of M̃c.

THEOREM: Let M be an LCK manifold with potential, dimCM > 2. Then
M admits a holomorphic embedding to a linear Hopf manifold.
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CR-manifolds

Definition: Let M be a smooth manifold, B ⊂ TM a sub-bundle in a tangent

bundle, and I : B −→B an endomorphism satisfying I2 = −1. Consider

its
√
−1 -eigenspace B1,0(M) ⊂ B ⊗ C ⊂ TCM = TM ⊗ C. Suppose that

[B1,0, B1,0] ⊂ B1,0. Then (B, I) is called a CR-structure on M .

Example: A complex manifold is CR, with B = TM . Indeed, [T1,0M,T1,0M ] ⊂
T1,0M is equivalent to integrability of the complex structure (Newlander-

Nirenberg).

Example: Let X be a complex manifold, and M ⊂ X a hypersurface.

Then B := dimC TM ∩ I(TM) = dimCX − 1, hence rkB = n − 1. Since

[T1,0X,T1,0X] ⊂ T1,0X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B⊗B −→ TM/B

mapping X,Y to the ΠTM/B([X,Y ]). It is an obstruction to integrability of

the foliation given by B.
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Contact CR-manifolds.

Complex algebraic geometry is a rich source of contact structures.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M is

called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1,0, B1,0] ⊂ B1,0 and [B0,1, B0,1] ⊂ B0,1, the Frobenius form

is a pairing between B0,1 and B1,0. This means that it is Hermitian.

DEFINITION: This Hermitian form is called Levi form of a CR-manifold.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M

is called a strictly pseudoconvex CR-manifold if its Levi form is positive

definite.

Example: Let h be a function on a complex manifold such that ∂∂h = ω is

a positive definite Hermitian form, and X = h−1(c) its level set. Then the

Frobenius form of X is equal to ω|X (see the next slide). In particular, X is

a strictly pseudoconvex CR-manifold.
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CR-manifolds and plurisubharmonic functions.

PROPOSITION: Let M be a complex manifold, ϕ ∈ C∞M a smooth func-

tion, and s a regular value of ϕ. Consider S := ϕ−1(s) as a CR-manifold, with

B = TS ∩ I(TS) and let Φ be its Levi form, taking values in

TS/B = ker dϕ/ker dϕ ∩ I(ker dϕ)

Then dcϕ : TS/B −→ C∞S trivializes TS/B. Consider tangent vectors u, v ∈
BxS. Then −dcϕ(Φ(u, v)) = ddcϕ(x, y)).

Proof: Extend u, v to vector fields u, v ∈ B = ker dϕ ∩ I(ker dϕ). Then

−dcϕ(Φ(u, v)) = −dcϕ([u, v]) = ddcϕ(u, v).

COROLLARY: Let M be a complex manifold, ϕ ∈ C∞M a strictly plurisub-

harmonic function, and s a regular value of ϕ. Then S := ϕ−1(s) is strictly

pseudoconvex.

Proof: By the above proposition, the Levi form of S is expressed as ddcϕ(u, v),

hence it is positive definite.
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Algebraic cones.

DEFINITION: An algebraic cone is an affine variety C admitting a C∗-
action ρ with a unique fixed point x0, called the origin, and satisfying the

following:

(i) C is smooth outside of x0,

(ii) ρ acts on the Zariski tangent space Tx0C with all eigenvalues |αi| < 1.

An open algebraic cone is a closed algebraic cone without the origin.

THEOREM: Let M = M̃/A be LCK manifold with potential, and M̃ its

Kähler Z-covering. Then M̃ is an open algebraic cone.

Proof. Step 1: Let M̃c be a Stein completion of M̃ equipped with an

A-equivariant embedding to Cn, where A acts as a linear operator with all

eigenvalues |αi| < 1. Denote the ideal of M̃c in the local ring OCn,0 as I.
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Algebraic cones and LCK manifolds with potential

THEOREM: Let M = M̃/A be LCK manifold with potential, and M̃ its
Kähler Z-covering. Then M̃ is an open algebraic cone.

Proof. Step 1: [...] Denote the ideal of M̃c in the local ring OCn,0 as I.

Step 2: Call an element f ∈ OCn,0 A-finite if 〈f,A∗f,A2∗f, ...〉 is finitely-
dimensional. A polynomial function is clearly A-finite. The converse is also
true, because a Taylor decomposition of an A-finite function f can have only
finitely many components, otherwise the eigenspace decomposition of f is
infinite. Therefore, the ideal IA := I ∩ OACn,0 is finitely generated, where

OACn,0 is a ring of A-finite functions (any ideal in the ring of polynomials is
finitely generated, by Hilbert basis theorem).

Step 3: As we have shown in Lecture 9, the ring OA
M̃c,0

is dense in OM̃c,0
in

m-adic topology. in other words, it has the same associated graded ring with
respect to the mn-filtration as OM̃c,0

. Then the Nakayama’s lemma implies

that I = IA ⊗OACn,0
OCn,0.

Step 4: Let f1, ..., fn ⊂ OCn be the polynomial generators of I ⊂ OCn,0. Then
M̃c is an affine variety defined by the ideal 〈f1, ..., fn〉.
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Pseudoconvex shells

DEFINITION: Let M̃ be an open algebraic cone, M̃c the corresponding
closed cone, and ~r ∈ TC a holomorphic vector field such that for all t >
0 the diffeomorphism et~r is a holomorphic contraction of M̃c to origin. A
strictly pseudoconvex hypersurface S ⊂ M̃ is called a pseudoconvex shell if
S intersects each orbit of et~r, t ∈ R exactly once.

Theorem 1: Let M̃ be an algebraic cone, et~r a contraction, and S ⊂ M̃

a pseudoconvex shell. Then for each λ ∈ R there exists a unique function
ϕλ such that Lie~r ϕ = λϕ and ϕλ|S = 1. Moreover, such ϕλ is strictly
plurisubharmonic when λ� 0.

Theorem 2: Any LCK manifold with potential admits a metric of this type.

Theorem 1 (proven later in this lecture) implies the following corollary.

COROLLARY: (Gauduchon-Ornea)
All linear Hopf manifolds are LCK with potential.

Proof: Let M = (Cn\0)/〈A〉, ~r = logA, and S ⊂ Cn be a unit sphere. Then S

is a pseudoconvex shell, and for λ sufficiently big a plurisubharmonic function
ϕλ gives an LCK-potential.
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Pseudoconvex shells and plurisubharmonic functions

Theorem 1: Let M̃ be an algebraic cone, et~r a contraction, and S ⊂ M̃

a pseudoconvex shell. Then for each λ ∈ R there exists a unique function

ϕλ such that Lie~r ϕλ = λϕλ and ϕλ|S = 1. Moreover, such ϕλ is strictly

plurisubharmonic when λ� 0.

Proof. Step 1: For each λ, ϕλ is uniquely determined on each orbit of

et~r, t ∈ R, because ϕλ restricted to this orbit is eλt.

Step 2: Let B := eR~r · (TS ∩ I(TS)) ⊂ TM̃ be a sub-bundle obtained from

TS ∩ I(TS) by translations along et~r. Then ddcϕ|B is the Levi form of S,

hence it is positive definite.

Step 3: Replacing ϕ by ϕ2a amounts to replacing λ by 2aλ. Then

ddcϕ2a = ϕ2a−2(2a · ϕddcϕ+ 2a(2a− 1)dϕ ∧ dcϕ).

To prove Theorem 1 it would suffice to show that ddcϕ2a|S > 0 for a suffi-

ciently big. However, S is compact, hence it is implied by the following lemma

applied to V = TM , W = B, h1 = ϕddcϕ, h2 = dϕ ∧ dcϕ.
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Positivity of Hermitian forms

LEMMA: Let h1, h2 be pseudo-Hermitian forms on a complex vector space V ,
and W ⊂ V a subspace of codimension 1. Assume that h1|W is strictly positive,
h2|W = 0, and h2

∣∣∣V/W is also strictly positive. Then there exists a number

T0 ∈ R which depends continuously on h1, h2 such that hT := h1 + Th2 is

positive definite for all T > T0.

Proof: We think of h1, h2 as of real valued bilinear symmetric forms. Let
y ∈ V be a vector which satisfies h2(y, y) = 1. Then any x ∈ V can be written
as x = ay + z, z ∈W . This gives

hT (x, x) = Ta2 + a2h1(y, y) + h1(z, z) + 2ah1(z, y) (∗)

Consider (*) as a polynomial on a. Then (*) is positive definite for all a if
and only if

(h1(z, y))2 − (T + h1(y, y)) · h1(z, z) < 0. (∗∗)

Let y′ ∈ W be a vector which satisfies h1(z, y′) = h1(z, y) for all z ∈ W , and
T > h1(y′, y′)− h1(y, y). Then (**) becomes

(h1(z, y′))2 − h1(y′, y′)h1(z, z) < 0

(Cauchy-Schwarz inequality).
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Logarithm

DEFINITION: A Banach ring is a Banach space equipped with a commu-
tative, continuous product. A Banach ring is finitely generated if it is a
closure of a finitely-generated ring.

EXAMPLE: A ring of bounded holomorphic function on a complex variety
is a Banach ring.

Proposition 1: Let R be a finitely generated, finitely presented Banach ring,
and R1 ⊂ R a finite-dimensional subspace containing unit, which generates R
multiplicatively. We write R = C[V ]/I, where I is an ideal and V = R1. Let
N a number such that I ∩ V N generates I. Consider an automorphism A of
R such that on RN := RN1 one has ‖A − Id ‖ < 1, where ‖ · ‖ is the operator

norm. For each x ∈ RN , define the logarithm: log(A)(x) :=
∑∞
i=1

(1−A)i

i (x)
(the series converges, because ‖A − Id ‖ < 1 on RN). Then logA can be
extended to a derivation on R which satisfies elogA = Id.

Proof: For each x, y, xy ∈ RN , one has log(A)(xy) = log(A)(x)y+x log(A)(y)
by formal identities with logarithms. Since all relations are generated by
elements of V N ∩ I, and log(A) = 0 on these by construction, the operator
log(A) can be extended to R using the Leibnitz identity.
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Logarithm on LCK manifolds with potential

Lemma 1: Let {a1, ..., an} be a finite set of complex numbers which satisfy
0 < |ai| < 1. Then there exists an integer C > 0 such that |aCi − 1| < 1.

Proof: Write ai = biui, where |ui| = 1, bi ∈ R. For any given ε one can find
C such that arg(uCi ) < ε for all i. The statement of the lemma is obtained
when ε = π

3.

THEOREM: Let M be an LCK manifold with potential, M̃ its Kähler its Z-
covering, and M = M̃/〈γ〉. Then there exists C ∈ Z>0 and a holomorphic

vector field ~r on M̃ such that γC = ~r.

Proof: Let Oγ
M̃c

be the ring of γ-finite functions (finitely generated and dense

in H0(OM̃c
), as shown above), R1 = V be a set of multiplicative generators

of Oγ
M̃c

, containing unit, with R = C[V ]/I and N a number such that I

is generated by V N ∩ I. Define the Banach norm on Oγ
M̃c

by taking |f | =
supx∈ϕ−1[0,a]|f(x)|, where ϕ is the LCK potential, and let R be its Banach

completion. Using Lemma 1, choose C ∈ Z>0 such that on RN := RN1 one
has |γC − Id | < 1, and let log γC be the logarithm defined as in Proposition 1.
Then elog γC = γC, hence we can take ~r := log γC.
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R-automorphic LCK metrics

REMARK: Let ϕ be any LCK-potential on M̃ , satisfying (γk)∗ϕ = eλϕ, ~r

a vector field constructed above, and ρ(t)−→ e−tλ(et~r)∗ the corresponding

endomorphism of C∞M . Since ρ(k+ t)(ϕ) = ρ(t)ϕ, the orbit of ϕ is compact.

Averaging ρ(t)ϕ over R, we obtain a ρ(t)-invariant Kähler potential ϕ0.

Then ϕ0 is obtained from a pseudoconvex shell ϕ−1
0 (1) and the vector field ~r

as in Theorem 1. This proves Theorem 2.
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