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LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kahler manifolds (reminder)

DEFINITION: Let (X,g) be a Riemannian manifold, and C(X) := X x R>0,
with the metric t2g 4 dt2, where t is a coordinate on R>9. Then C(X) is
called Riemannian cone of X. Multiplicative group R>° acts on C(X) by
homotheties, (m,t) — (m, A\t).

DEFINITION: Let (X,g) be a Riemannian manifold, C(X) := X x R>0 its
Riemannian cone, and h) the homothety action. Assume that (C(X), gt2+dt?)
IS equipped with a complex structure, in such a way that the conical metric
gt2+dt? is Kihler, and hy acts holomorphically. Then C(X) is called a conical
Kahler manifold. In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic
structure on C(X), and hy, acting by homotheties. In particular, Sasakian
manifolds are contact. Sasakian geometry is an odd-dimensional coun-
terpart to Kahler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective
manifold. Then the total space of its unit Sl_fibration is Sasakian.
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Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-
mannian structure, such that the symplectic cone C(S) with its Riemannian
metric is Kahler.

DEFINITION: Let S be a Sasakian manifold, w the Kahler form on C(S),
and r = t% the homothety vector field. Then Lie;,.t = (dt,Ir) = 0, hence R
is tangent to S C C(S). This vector field (denoted by Reeb) is called the
Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form 0 = wur.

THEOREM: The Reeb field acts on a Sasakian manifold by contact
iIsometries.

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-
erates a free action of Sl, quasiregular if all orbits of Reeb are closed, and
irregular otherwise.
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Vaisman manifolds (reminder)

EXAMPLE: For any given A € R>!, the quotient C(X)/h, of a conical
Kahler manifold is locally conformally Kahler.

DEFINITION: An LCK manifold (M, g,w,0) is called Vaisman if V6 = 0,
where V is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M its covering: the pullback of
the Lee form 0 to M is denoted by the same letter §. Assume that diy = 6 on
M (such 1 exists, for example, if M is a universal cover of M). Consider the
form & ;= e %w. Then (M,) is a Kahler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is
Sasakian, Z = <(:L',t) —> (go(:v),qt)>, g > 1, and ¢ is a Sasakian automorphism

of X. Moreover, the triple (X, ¢, q) is unique.
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LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and (M, &) its Kahler covering.
It is called LCK manifold with potential if M admits an automorphic Kahler
potential ¢ : M —>R>O, dd°p = &, which is proper (preimage of a compact
iS again compact).

THEOREM: The property of being LCK with potential is stable under
small deformations.

THEOREM: Let M be an LCK manifold, I C R>0 the monodromy group,
and (M,&) its Kahler covering, with M/ = M. Assume that & admits a
[-automorphic Kahler potential . The map ¢ is proper if and only if
= Z.

THEOREM: Let M be an LCK manifold with potential, and M its Kahler
Z-covering. Then a metric completion M. admits a structure of a complex
manifold, compatible with the complex structure on M C M.. Moreover, the
monodromy action on M is extended to a holomorphic automorphism of M..

THEOREM: Let M be an LCK manifold with potential, dimgc M > 2. Then
M admits a holomorphic embedding to a linear Hopf manifold.
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CR-manifolds (reminder)

Definition: Let M be a smooth manifold, B C T'M a sub-bundle in a tangent
bundle, and I : B — B an endomorphism satisfying [?2 = —1. Consider
its v/—1 -eigenspace B1.9(M) c B®C Cc ToM = TM ® C. Suppose that
[B1.O B1.O] ¢ B1.O. Then (B,I) is called a CR-structure on M.

Example: A complex manifold is CR, with B = T M. Indeed, [TYOM, T1.0M] ¢
T1.OM is equivalent to integrability of the complex structure (Newlander-
Nirenberg).

Example: Let X be a complex manifold, and M C X a hypersurface.
Then B (= dimgTM N I(TM) = dimgX — 1, hence rkB = n — 1. Since
[T19x 71.0x] c 719X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B B— T'M/B
mapping X,Y to the I‘ITM/B([X, Y]). It is an obstruction to integrability of
the foliation given by B.
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Contact CR-manifolds (reminder).

Definition: Let (M, B,I) be a CR-manifold, with codimB = 1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B19, B1.0] ¢ B1.O and [BY1, B%1] ¢ BY1, the Frobenius form
is a pairing between B9 and BL:9. This means that it is Hermitian.

DEFINITION: This Hermitian form is called Levi form of a CR-manifold.

Definition: Let (M, B,I) be a CR-manifold, with codimB = 1. Then M
is called a strictly pseudoconvex CR-manifold if its Levi form is positive
definite.

PROPOSITION: Let M be a complex manifold, ¢ € C"°°M a smooth func-
tion, and s a regular value of ¢. Consider S := ¢~ 1(s) as a CR-manifold, with
B =TSNI(TS) and let & be its Levi form, taking values in T'S/B. Then
d¢p : TS/B — C®°S trivializes TS/B. Consider tangent vectors u,v € B.S.
Then —do(P(u,v)) = ddp(x,y)).

COROLLARY: Let M be a complex manifold, ¢ € C°°M a strictly plurisub-
harmonic function, and s a regular value of ¢». Then S := o~ 1(s) is strictly
pseudoconvex.
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Algebraic cones (reminder).

DEFINITION: An algebraic cone is an affine variety C admitting a C*-
action p with a unique fixed point zg, called the origin, and satisfying the
following:

(i) C is smooth outside of zg,
(ii) p acts on the Zariski tangent space T;,C with all eigenvalues |o;| < 1.
An open algebraic cone is a closed algebraic cone without the origin.

THEOREM: Let M = M/A be LCK manifold with potential, and M its
Kahler Z-covering. Then M is an open algebraic cone.
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Pseudoconvex shells and logarithm (reminder)

DEFINITION: Let M be an open algebraic cone, M. the corresponding
closed cone, and » € TC a holomorphic vector field such that for all t >
0O the diffeomorphism el™ is a holomorphic contraction of M. to origin. A
strictly pseudoconvex hypersurface S C M is called a pseudoconvex shell if
S intersects each orbit of e”?, t € R exactly once.

Theorem 1: Let M be an algebraic cone, e!™ a contraction, and S C M
a pseudoconvex shell. Then for each A € R there exists a unique function
@y such that Liezpy = Ap) and ¢)|g¢ = 1. Moreover, such ¢, is strictly
plurisubharmonic when X\ > 0.

COROLLARY: (Gauduchon-Ornea)
All linear Hopf manifolds are LCK with potential.

THEOREM: Let M be an LCK manifold with potential, M its Kihler its Z-
covering, and M = M /{~). Then there exists C € Z>° and a holomorphic
vector field ¥ on I/ such that +¢ = 7.

Proof: Lecture 10.

DEFINITION: Such a vector field is called a logarithm of monodromy.
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T heorem of Kamishima-Ornea

THEOREM: (Kamishima-Ornea)
Let (M,w,0) be an LCK manifold equipped with a holomorphic conformal

C-action, which lifts to non-isometric homotheties on its Kahler covering M.
Then (M,w,0) is conformally equivalent to a Vaisman manifold.

Proof. Step 1: Let ¥ be a vector field of this C-action, and & the Kahler
form of M. Then Lier&d = a& and Lie;~o = bl. Replacing 7 by a linear
combination of ¥ and I(¥), we obtain a vector field preserving &. Replacing
¥ by an appropriate linear combination of ¥ and Ir, we can assume that
Lie;zco = 0 and Liezw = @.

Step 2: Liepw = d(war) = &, and Liejzo = dn = 0, where n = I[(war) =
wa(IT).

Step 3: Liern =n=d(nor) =d{n,7). This gives & = dd°p, where ¢ = (n, 7).

Step 4: The action by 7 multiplies the Kahler potential ¢ by a constant; the
action by I(¥) preserves ¢. Therefore, M is locally isometric to a Kahler
cone, and w := ¢~ 1% is Vaisman (Lecture 3), that is, satisfies VO =0. m
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Vaisman manifolds and homothety action

DEFINITION: Let M be an algebraic cone, p = e!™ a contraction, and
S C M a pseudoconvex shell. Consider the (necessarily unique) function
potential ¢, which satisfies Liezp) = Ap). Assume that it is a Kahler potential
(by Theorem 1, it is a Kahler potential for A > 0). Then ¢, is called p-
automorphic Kahler potential, and dd“p p-automorphic Kahler form.

THEOREM: Let (M,w) be an LCK-manifold with potential, and M its al-
gebraic cone, M /{(vy) = M, and ¢ its Kahler potential. Then w is conformally
equivalent to a Vaisman metric if and only if there exists a logarithm
v of v such that Lie;z¢ = 0.

Proof: If M is Vaisman, M = C(S), where S is Sasakian, 7 := t% its loga-
rithm, and I7 its Reeb field, acting on C(S) by holomorphic isometries.

Conversely, if M admits a logarithm # with such properties, then the corre-
sponding holomorphic flow acts on M by homotheties, and M is Vaisman by
Kamishima-Ornea. =
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Stein manifolds (reminder).

DEFINITION: A complex variety M is called holomorphically convex if
for any infinite discrete subset S C M, there exists a holomorphic function
f € O which is unbounded on S.

DEFINITION: A complex variety is called Stein if it is holomorphically con-
vex, and has no compact complex subvarieties.

REMARK: Equivalently, a complex variety is Stein if it admits a closed
holomorphic embedding into C".

THEOREM: (K. Oka, 1942) A complex manifold M is Stein if and only
M admits a Kahler metric with a Kahler potential which is positive and
proper (proper = preimages of compact sets are compact).

THEOREM: (H. Cartan, 1951) A complex variety M is Stein if and only if
for any coherent sheaf F on M, its cohomology H*(F) vanish for all i > 0.
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CR-holomorphic functions and vector fields

DEFINITION: Let (S,B,I) be a CR-manifold. A function f on S is called
CR-holomorphic if for any vector field v € BO:1 we have Lie, f = 0. A vector
field v € T'M is called CR-holomorphic if the corresponding diffeomorphism
flow preserves B and I.

THEOREM: (Rossi-Andreotti-Siu)

Let S be a compact strictly pseudoconvex CR-manifold, dimp S > 5, and
HO(Og), the ring of bounded CR-holomorphic functions. Then S is a
boundary of a Stein manifold M with isolated singularities, such that
HO9(Og), = HO(Ou), where HO(O,,);, denotes the ring of bounded holomor-
phic functions. Moreover, M is defined uniquely, M = Spec(HO(OS)b).

COROLLARY: The Lie group G := Aut(S) of CR-automorphisms is iden-
tified with the group of complex automorphisms of the corresponding Stein
space M. Its Lie algebra (the algebra of holomorphic vector fields) is
the Lie algebra of holomorphic vector fields on M.
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Burns-Lee theorem

THEOREM: (Dan Burns, John M. Lee)

Let S be a compact strictly pseudoconvex CR-manifold, and Autg(S) the
connected component of its group of automorphisms. Then Autp(S) is
compact unless S is equivalent to the standard sphere S27—1 ¢ C™ with its
induced CR-structure. In the latter case Autg(S) = U(1,n).

This theorem would not be used.
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CR-manifolds and Sasakian manifolds

DEFINITION: Let (S,B,I) be a CR-manifold. We say that S admits a
Sasakian structure if it can be realized as a CR-hypersurface S C C(S),
where C(S) is a conical Kahler manifold.

DEFINITION: Let (S,B,I) be a CR-manifold, with T'S/B oriented (for
strictly pseudoconvex CR-manifolds, the Levi form defines the orientation
on TS/B). A vector field v € T'S is called positive if it is transversal to B
everywhere, and its projection to T'S/B is positive.

EXAMPLE: The Reeb field of a Sasakian manifold is always positive
(or negative, depending on the choice of orientation). Indeed, I Reeb is always
normal to S, hence Reeb ¢ B=TSnNI(TS).

THEOREM: Let S be a strictly pseudoconvex compact CR-manifold, dimp S >
5. Then S admits a Sasakian structure if and only if S admits a pos-
itive holomorphic vector field. This vector field becomes a Reeb field of
this Sasakian manifold.

REMARK: The implication “admits a Sasakian structure’ = “admits a
positive holomorphic vector field” is clear, because the Reeb vector field is
positive and CR-holomorphic.
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CR-manifolds and Sasakian manifolds (2)

Assume that a strictly pseudoconvex compact CR-manifold S admits a CR-
holomorphic positive vector field R. We need to construct a Sasakian
metric on S such that R is its Reeb field.

REMARK: The argument here is essentially the same as used to embed an
LCK manifold with potential to a Hopf manifold.

Step 1: By Rossi-Andreotti-Siu, S = M, where M = Spec(H?(Og);) is
a Stein variety with isolated singularities, and R acts on M by holomorphic
automorphisms.

Step 2: Since R is positive, IR is transversal to oM replacing R by —R, we
can always assume that IR points toward interior of M, and A. := {2 for
small ¢ maps M to a subset A.(M) C M with compact closure.

Step 3: Consider the ring H = H9(©,,); of bounded holomprhic functions
on M, with sup-metric. Then H is a Banach ring. Since A-(M) has compact
closure, A¥H is a normal family, and A is a compact operator.
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CR-manifolds and Sasakian manifolds (3)

Step 4: By maximum principle, for any non-constant f € H, one has
sup 4. (an)lfl < supplf|. Since any limit point f;,, of a sequence (ALY*f
satisfies supA:(M)|f| = sups|f], it Is constant. A limit function fj; exists,
because AIH is precompact.

Step 5: This implies that for each z € M, a limit point z;, Of a sequence
{z, Acz, A2z, ...} is unique and independent of z. Indeed, fiim(z) = f(zim), but
fiim = const. This implies that A: is a holomorphic contraction contracting
M to the origin point zg C M.

Step 6: Since R‘S5 = A:-(R) is nowhere vanishing for each e, the vector
field ¥ := IR is transversal to S: := A:-(S) pointing to the origin. Therefore,
through each point of S passes a unique solution p(t) of an equation dp(t) =7

Step 7: Let ¢, be a p-automorphic Kahler potential associated with this S
and p as above. The Lie algebra (R, IR) acts on (M, dd‘p,) by holomorphic
homotheties, hence it is a conical Kahler manifold (Kamishima-Ornea).
Therefore, S is Sasakian. m
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Jordan-Chevalley decomposition

DEFINITION: An algebraic group is a group object in the category of
affine schemes. A pro-algebraic group is an inverse limit of algebraic groups.
Further on, all algebraic groups are considered over C.

DEFINITION: An element of an algebraic group G is called semisimple if
its image is semisimple for any algebraic representation of G, and unipotent
if its image is unipotent (that is, exponent of nilpotent) for any algebraic
representation of GG

THEOREM: (The Jordan-Chevalley decomposition)

Let G be an algebraic group, and a € G. Then there exists a unique
decomposition A = SU of A onto a product of commuting elements S
and U, where U is unipotent and S semisimple.

EXERCISE: Prove this theorem.
REMARK: Since this decomposition is unique, it is functorial. T herefore,

it is also true for all pro-algebraic groups.
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Semisimple LCK manifolds with potential

Recall that a linear operator is called semisimple if it is diagonalizable over
an algebraic closure of the basic field.

DEFINITION: Let M be an LCK manifold with potential, andj: M — H a
holomorphic embedding to a Hopf manifold H = C"\0/(A). Then M is called
semisimple if A is semisimple.

REMARK: Let M be an LCK manifold with potential, M its Kahler Z-
covering, M = M/{(A), j : M — H a holomorphic embedding to a Hopf
manifold H = C™\0/(A), and M. its completion. Let R be a m-adic completion
of Oy in the maximal ideal of the origin zg € M, R = lim« OMC/mk- Let
G = Aut(R); clearly,

G = lim Aut(O g /m"),

hence it is a pro-algebraic group.
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Semisimple LCK manifolds with potential (2)

PROPOSITION: Let 57 : M — H be an embedding of an LCK mani-
fold M = M/(A) to a Hopf manifold H = V\0/(A), such that V is an A-
invariant subspace in O~C. Then the action of A on V is semisimple if
and only if A is semisimple as an element of the proalgebraic group
G = lim Aut(Oy; /m").

Proof: If A is semisimple as an element of G, its action on V, considered as
an A-invariant subspace in RO O v IS also semisimple.

Conversely, if A is semisimple on V, OMC IS a subring in R, which is a quotient
ring of C[[V]]; the latter is an adic completion of the polynomial ring C[V],
where A is clearly semisimple. =
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Vaisman manifolds are semisimple

THEOREM: Let M be an LCK manifold with potential. Then M is semisim-
ple < it admits a Vaisman structure.

Proof of Vaisman = semisimple:

Let M be Vaisman, M = M/(A), and M. its completion, equipped with
the Kahler potential ¢ : M. — R?9. Consider a compact subset M?% :=
0~ 1([0,a]). Consider an L2-structure on the ring HO(OMg)b of bounded holo-

morphic functions, |f|2 = [y |f|?&". Let #:= t% be the homothety vector
field on M = C(S). Then I acts on H°(O;,), by isometries, hence its
action on each finite-dimensional subspace of HO(OMQ)(, is semisimple.
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Semisimple LCK manifolds are Vaisman

Proof of semisimple = Vaisman. Step 1:
Since all subvarieties of Vaisman manifolds are again Vaisman, it would suf-
fice only to show that all semisimple Hopf manifolds are Vaisman.

Step 2: Let H = V\0/(A) be a semisimple Hopf manifold, e; an eigenvalue
basis in V, and A(e;) = ojuse;, with o4 €]0,1[ and uw; € U(1). Consider a
unit sphere S C V.= C", and let p(t)(e;) := ale;. Then there exists a p-
automorphic Kahler potential ¢, on V\0. Since Ao p(—1) preserves S and A
commutes with p(t), the function ¢, is A-automorphic.

Step 3: By Kamishima-Ornea, this metric is Vaisman whenever S (and,
therefore, the potential ¢, and the corresponding automorphic Kahler form)

is invariant with respect to ¢'/7, where r = 92U However, !7(e;) =

eV—1tlogeie. and this operator is unitary. m
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