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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Conical Kähler manifolds (reminder)

DEFINITION: Let (X, g) be a Riemannian manifold, and C(X) := X ×R>0,

with the metric t2g + dt2, where t is a coordinate on R>0. Then C(X) is

called Riemannian cone of X. Multiplicative group R>0 acts on C(X) by

homotheties, (m, t)−→ (m,λt).

DEFINITION: Let (X, g) be a Riemannian manifold, C(X) := X × R>0 its

Riemannian cone, and hλ the homothety action. Assume that (C(X), gt2+dt2)

is equipped with a complex structure, in such a way that the conical metric

gt2+dt2 is Kähler, and hλ acts holomorphically. Then C(X) is called a conical

Kähler manifold. In this situation, X is called Sasakian manifold.

REMARK: A contact manifold is defined as a manifold X with symplectic

structure on C(X), and hλ acting by homotheties. In particular, Sasakian

manifolds are contact. Sasakian geometry is an odd-dimensional coun-

terpart to Kähler geometry

EXAMPLE: Let L be a positive holomorphic line bundle on a projective

manifold. Then the total space of its unit S1-fibration is Sasakian.
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Reeb field (reminder)

DEFINITION: A Sasakian manifold is a contact manifold S with a Rie-

mannian structure, such that the symplectic cone C(S) with its Riemannian

metric is Kähler.

DEFINITION: Let S be a Sasakian manifold, ω the Kähler form on C(S),

and r = t ddt the homothety vector field. Then LieIr t = 〈dt, Ir〉 = 0, hence iR

is tangent to S ⊂ C(S). This vector field (denoted by Reeb) is called the

Reeb field of a Sasakian manifold.

REMARK: The Reeb field is dual to the contact form θ = ωyr.

THEOREM: The Reeb field acts on a Sasakian manifold by contact

isometries.

DEFINITION: A Sasakian manifold is called regular if the Reeb field gen-

erates a free action of S1, quasiregular if all orbits of Reeb are closed, and

irregular otherwise.
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Vaisman manifolds (reminder)

EXAMPLE: For any given λ ∈ R>1, the quotient C(X)/hλ of a conical

Kähler manifold is locally conformally Kähler.

DEFINITION: An LCK manifold (M, g, ω, θ) is called Vaisman if ∇θ = 0,

where ∇ is the Levi-Civita connection associated with g.

THEOREM: Let M be a Vaisman manifold, M̃ its covering; the pullback of

the Lee form θ to M̃ is denoted by the same letter θ. Assume that dψ = θ on

M̃ (such ψ exists, for example, if M̃ is a universal cover of M). Consider the

form ω̃ := e−ψω. Then (M̃, ω̃) is a Kähler manifold, isometric to a cone.

THEOREM: Every Vaisman manifold is obtained as C(X)/Z, where X is

Sasakian, Z =

〈
(x, t) 7→ (ϕ(x), qt)

〉
, q > 1, and ϕ is a Sasakian automorphism

of X. Moreover, the triple (X,ϕ, q) is unique.
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LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and (M̃, ω̃) its Kähler covering.
It is called LCK manifold with potential if M̃ admits an automorphic Kähler
potential ϕ : M̃ −→ R>0, ddcϕ = ω̃, which is proper (preimage of a compact
is again compact).

THEOREM: The property of being LCK with potential is stable under
small deformations.

THEOREM: Let M be an LCK manifold, Γ ⊂ R>0 the monodromy group,
and (M̃, ω̃) its Kähler covering, with M̃/Γ = M . Assume that ω̃ admits a
Γ-automorphic Kähler potential ϕ. The map ϕ is proper if and only if
Γ = Z.

THEOREM: Let M be an LCK manifold with potential, and M̃ its Kähler
Z-covering. Then a metric completion M̃c admits a structure of a complex
manifold, compatible with the complex structure on M̃ ⊂ M̃c. Moreover, the
monodromy action on M̃ is extended to a holomorphic automorphism of M̃c.

THEOREM: Let M be an LCK manifold with potential, dimCM > 2. Then
M admits a holomorphic embedding to a linear Hopf manifold.
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CR-manifolds (reminder)

Definition: Let M be a smooth manifold, B ⊂ TM a sub-bundle in a tangent

bundle, and I : B −→B an endomorphism satisfying I2 = −1. Consider

its
√
−1 -eigenspace B1,0(M) ⊂ B ⊗ C ⊂ TCM = TM ⊗ C. Suppose that

[B1,0, B1,0] ⊂ B1,0. Then (B, I) is called a CR-structure on M .

Example: A complex manifold is CR, with B = TM . Indeed, [T1,0M,T1,0M ] ⊂
T1,0M is equivalent to integrability of the complex structure (Newlander-

Nirenberg).

Example: Let X be a complex manifold, and M ⊂ X a hypersurface.

Then B := dimC TM ∩ I(TM) = dimCX − 1, hence rkB = n − 1. Since

[T1,0X,T1,0X] ⊂ T1,0X, M is a CR-manifold.

Definition: A Frobenius form of a CR-manifold is the tensor B⊗B −→ TM/B

mapping X,Y to the ΠTM/B([X,Y ]). It is an obstruction to integrability of

the foliation given by B.
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Contact CR-manifolds (reminder).

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M is
called a contact CR-manifold if its Frobenius form is non-degenerate.

Remark: Since [B1,0, B1,0] ⊂ B1,0 and [B0,1, B0,1] ⊂ B0,1, the Frobenius form
is a pairing between B0,1 and B1,0. This means that it is Hermitian.

DEFINITION: This Hermitian form is called Levi form of a CR-manifold.

Definition: Let (M,B, I) be a CR-manifold, with codimB = 1. Then M

is called a strictly pseudoconvex CR-manifold if its Levi form is positive
definite.

PROPOSITION: Let M be a complex manifold, ϕ ∈ C∞M a smooth func-
tion, and s a regular value of ϕ. Consider S := ϕ−1(s) as a CR-manifold, with
B = TS ∩ I(TS) and let Φ be its Levi form, taking values in TS/B. Then
dcϕ : TS/B −→ C∞S trivializes TS/B. Consider tangent vectors u, v ∈ BxS.
Then −dcϕ(Φ(u, v)) = ddcϕ(x, y)).

COROLLARY: Let M be a complex manifold, ϕ ∈ C∞M a strictly plurisub-
harmonic function, and s a regular value of ϕ. Then S := ϕ−1(s) is strictly
pseudoconvex.
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Algebraic cones (reminder).

DEFINITION: An algebraic cone is an affine variety C admitting a C∗-
action ρ with a unique fixed point x0, called the origin, and satisfying the

following:

(i) C is smooth outside of x0,

(ii) ρ acts on the Zariski tangent space Tx0C with all eigenvalues |αi| < 1.

An open algebraic cone is a closed algebraic cone without the origin.

THEOREM: Let M = M̃/A be LCK manifold with potential, and M̃ its

Kähler Z-covering. Then M̃ is an open algebraic cone.
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Pseudoconvex shells and logarithm (reminder)

DEFINITION: Let M̃ be an open algebraic cone, M̃c the corresponding
closed cone, and ~r ∈ TC a holomorphic vector field such that for all t >
0 the diffeomorphism et~r is a holomorphic contraction of M̃c to origin. A
strictly pseudoconvex hypersurface S ⊂ M̃ is called a pseudoconvex shell if
S intersects each orbit of et~r, t ∈ R exactly once.

Theorem 1: Let M̃ be an algebraic cone, et~r a contraction, and S ⊂ M̃

a pseudoconvex shell. Then for each λ ∈ R there exists a unique function
ϕλ such that Lie~r ϕλ = λϕλ and ϕλ|S = 1. Moreover, such ϕλ is strictly
plurisubharmonic when λ� 0.

COROLLARY: (Gauduchon-Ornea)
All linear Hopf manifolds are LCK with potential.

THEOREM: Let M be an LCK manifold with potential, M̃ its Kähler its Z-
covering, and M = M̃/〈γ〉. Then there exists C ∈ Z>0 and a holomorphic
vector field ~r on M̃ such that γC = ~r.

Proof: Lecture 10.

DEFINITION: Such a vector field is called a logarithm of monodromy.
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Theorem of Kamishima-Ornea

THEOREM: (Kamishima-Ornea)

Let (M,ω, θ) be an LCK manifold equipped with a holomorphic conformal

C-action, which lifts to non-isometric homotheties on its Kähler covering M̃ .

Then (M,ω, θ) is conformally equivalent to a Vaisman manifold.

Proof. Step 1: Let ~r be a vector field of this C-action, and ω̃ the Kähler

form of M̃ . Then Lie~r ω̃ = aω̃ and LieI~r ω̃ = bω̃. Replacing ~r by a linear

combination of ~r and I(~r), we obtain a vector field preserving ω̃. Replacing

~r by an appropriate linear combination of ~r and I~r, we can assume that

LieI~r ω̃ = 0 and Lie~r ω̃ = ω̃.

Step 2: Lie~r ω̃ = d(ω̃y~r) = ω̃, and LieI~r ω̃ = dη = 0, where η = I(ωy~r) =

ωy(I~r).

Step 3: Lie~r η = η = d(ηy~r) = d〈η, ~r〉. This gives ω̃ = ddcϕ, where ϕ = 〈η, ~r〉.

Step 4: The action by ~r multiplies the Kähler potential ϕ by a constant; the

action by I(~r) preserves ϕ. Therefore, M̃ is locally isometric to a Kähler

cone, and ω := ϕ−1ω̃ is Vaisman (Lecture 3), that is, satisfies ∇θ = 0.
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Vaisman manifolds and homothety action

DEFINITION: Let M̃ be an algebraic cone, ρ := et~r a contraction, and

S ⊂ M̃ a pseudoconvex shell. Consider the (necessarily unique) function

potential ϕλ which satisfies Lie~r ϕλ = λϕλ. Assume that it is a Kähler potential

(by Theorem 1, it is a Kähler potential for λ � 0). Then ϕλ is called ρ-

automorphic Kähler potential, and ddcϕ ρ-automorphic Kähler form.

THEOREM: Let (M,ω) be an LCK-manifold with potential, and M̃ its al-

gebraic cone, M̃/〈γ〉 = M , and ϕ its Kähler potential. Then ω is conformally

equivalent to a Vaisman metric if and only if there exists a logarithm

~r of γ such that LieI~r ϕ = 0.

Proof: If M is Vaisman, M̃ = C(S), where S is Sasakian, ~r := t ddt its loga-

rithm, and I~r its Reeb field, acting on C(S) by holomorphic isometries.

Conversely, if M̃ admits a logarithm ~r with such properties, then the corre-

sponding holomorphic flow acts on M̃ by homotheties, and M is Vaisman by

Kamishima-Ornea.
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Stein manifolds (reminder).

DEFINITION: A complex variety M is called holomorphically convex if

for any infinite discrete subset S ⊂ M , there exists a holomorphic function

f ∈ OM which is unbounded on S.

DEFINITION: A complex variety is called Stein if it is holomorphically con-

vex, and has no compact complex subvarieties.

REMARK: Equivalently, a complex variety is Stein if it admits a closed

holomorphic embedding into Cn.

THEOREM: (K. Oka, 1942) A complex manifold M is Stein if and only

M admits a Kähler metric with a Kähler potential which is positive and

proper (proper = preimages of compact sets are compact).

THEOREM: (H. Cartan, 1951) A complex variety M is Stein if and only if

for any coherent sheaf F on M , its cohomology Hi(F ) vanish for all i > 0.
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CR-holomorphic functions and vector fields

DEFINITION: Let (S,B, I) be a CR-manifold. A function f on S is called

CR-holomorphic if for any vector field v ∈ B0,1, we have Liev f = 0. A vector

field v ∈ TM is called CR-holomorphic if the corresponding diffeomorphism

flow preserves B and I.

THEOREM: (Rossi-Andreotti-Siu)

Let S be a compact strictly pseudoconvex CR-manifold, dimR S > 5, and

H0(OS)b the ring of bounded CR-holomorphic functions. Then S is a

boundary of a Stein manifold M with isolated singularities, such that

H0(OS)b = H0(OM)b, where H0(OM)b denotes the ring of bounded holomor-

phic functions. Moreover, M is defined uniquely, M = Spec(H0(OS)b).

COROLLARY: The Lie group G := Aut(S) of CR-automorphisms is iden-

tified with the group of complex automorphisms of the corresponding Stein

space M . Its Lie algebra (the algebra of holomorphic vector fields) is

the Lie algebra of holomorphic vector fields on M.
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Burns-Lee theorem

THEOREM: (Dan Burns, John M. Lee)

Let S be a compact strictly pseudoconvex CR-manifold, and Aut0(S) the

connected component of its group of automorphisms. Then Aut0(S) is

compact unless S is equivalent to the standard sphere S2n−1 ⊂ Cn with its

induced CR-structure. In the latter case Aut0(S) = U(1, n).

This theorem would not be used.
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CR-manifolds and Sasakian manifolds

DEFINITION: Let (S,B, I) be a CR-manifold. We say that S admits a
Sasakian structure if it can be realized as a CR-hypersurface S ⊂ C(S),
where C(S) is a conical Kähler manifold.

DEFINITION: Let (S,B, I) be a CR-manifold, with TS/B oriented (for
strictly pseudoconvex CR-manifolds, the Levi form defines the orientation
on TS/B). A vector field v ∈ TS is called positive if it is transversal to B

everywhere, and its projection to TS/B is positive.

EXAMPLE: The Reeb field of a Sasakian manifold is always positive
(or negative, depending on the choice of orientation). Indeed, I Reeb is always
normal to S, hence Reeb /∈ B = TS ∩ I(TS).

THEOREM: Let S be a strictly pseudoconvex compact CR-manifold, dimR S >
5. Then S admits a Sasakian structure if and only if S admits a pos-
itive holomorphic vector field. This vector field becomes a Reeb field of
this Sasakian manifold.

REMARK: The implication “admits a Sasakian structure” ⇒ “admits a
positive holomorphic vector field” is clear, because the Reeb vector field is
positive and CR-holomorphic.
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CR-manifolds and Sasakian manifolds (2)

Assume that a strictly pseudoconvex compact CR-manifold S admits a CR-

holomorphic positive vector field R. We need to construct a Sasakian

metric on S such that R is its Reeb field.

REMARK: The argument here is essentially the same as used to embed an

LCK manifold with potential to a Hopf manifold.

Step 1: By Rossi-Andreotti-Siu, S = ∂M , where M = Spec(H0(OS)b) is

a Stein variety with isolated singularities, and R acts on M by holomorphic

automorphisms.

Step 2: Since R is positive, IR is transversal to ∂M ; replacing R by −R, we

can always assume that IR points toward interior of M , and Aε := eεIR for

small ε maps M to a subset Aε(M) ⊂M with compact closure.

Step 3: Consider the ring H = H0(OM)b of bounded holomprhic functions

on M , with sup-metric. Then H is a Banach ring. Since Aε(M) has compact

closure, A∗εH is a normal family, and A∗ε is a compact operator.
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CR-manifolds and Sasakian manifolds (3)

Step 4: By maximum principle, for any non-constant f ∈ H, one has

supAε(M)|f | < supM |f |. Since any limit point flim of a sequence (Aiε)
∗f

satisfies supAε(M)|f | = supM |f |, it is constant. A limit function flim exists,

because A∗εH is precompact.

Step 5: This implies that for each z ∈ M , a limit point zlim of a sequence

{z,Aεz,A2
εz, ...} is unique and independent of z. Indeed, flim(z) = f(zlim), but

flim = const. This implies that Aε is a holomorphic contraction contracting

M to the origin point x0 ⊂M.

Step 6: Since R
∣∣∣Sε = Aε(R) is nowhere vanishing for each ε, the vector

field ~r := IR is transversal to Sε := Aε(S) pointing to the origin. Therefore,

through each point of S passes a unique solution ρ(t) of an equation dρ(t)
dt = ~r.

Step 7: Let ϕλ be a ρ-automorphic Kähler potential associated with this S

and ρ as above. The Lie algebra 〈R, IR〉 acts on (M,ddcϕλ) by holomorphic

homotheties, hence it is a conical Kähler manifold (Kamishima-Ornea).

Therefore, S is Sasakian.
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Jordan-Chevalley decomposition

DEFINITION: An algebraic group is a group object in the category of

affine schemes. A pro-algebraic group is an inverse limit of algebraic groups.

Further on, all algebraic groups are considered over C.

DEFINITION: An element of an algebraic group G is called semisimple if

its image is semisimple for any algebraic representation of G, and unipotent

if its image is unipotent (that is, exponent of nilpotent) for any algebraic

representation of G

THEOREM: (The Jordan-Chevalley decomposition)

Let G be an algebraic group, and a ∈ G. Then there exists a unique

decomposition A = SU of A onto a product of commuting elements S

and U, where U is unipotent and S semisimple.

EXERCISE: Prove this theorem.

REMARK: Since this decomposition is unique, it is functorial. Therefore,

it is also true for all pro-algebraic groups.

19



LCK manifolds, lecture 11 M. Verbitsky

Semisimple LCK manifolds with potential

Recall that a linear operator is called semisimple if it is diagonalizable over

an algebraic closure of the basic field.

DEFINITION: Let M be an LCK manifold with potential, and j : M −→H a

holomorphic embedding to a Hopf manifold H = Cn\0/〈A〉. Then M is called

semisimple if A is semisimple.

REMARK: Let M be an LCK manifold with potential, M̃ its Kähler Z-

covering, M = M̃/〈A〉, j : M −→H a holomorphic embedding to a Hopf

manifold H = Cn\0/〈A〉, and M̃c its completion. Let R be a m-adic completion

of OM̃c
in the maximal ideal of the origin x0 ∈ M̃c, R = lim←OM̃c

/mk. Let

G := Aut(R); clearly,

G = lim← Aut(OM̃c
/mk),

hence it is a pro-algebraic group.
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Semisimple LCK manifolds with potential (2)

PROPOSITION: Let j : M −→H be an embedding of an LCK mani-

fold M = M̃/〈A〉 to a Hopf manifold H = V \0/〈A〉, such that V is an A-

invariant subspace in OM̃c
. Then the action of A on V is semisimple if

and only if A is semisimple as an element of the proalgebraic group

G = lim← Aut(OM̃c
/mk).

Proof: If A is semisimple as an element of G, its action on V , considered as

an A-invariant subspace in R ⊃ OM̃c
, is also semisimple.

Conversely, if A is semisimple on V , OM̃c
is a subring in R, which is a quotient

ring of C[[V ]]; the latter is an adic completion of the polynomial ring C[V ],

where A is clearly semisimple.
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Vaisman manifolds are semisimple

THEOREM: Let M be an LCK manifold with potential. Then M is semisim-

ple ⇔ it admits a Vaisman structure.

Proof of Vaisman ⇒ semisimple:

Let M be Vaisman, M = M̃/〈A〉, and M̃c its completion, equipped with

the Kähler potential ϕ : M̃c −→ R>0. Consider a compact subset M̃a
c :=

ϕ−1([0, a]). Consider an L2-structure on the ring H0(OM̃a
c
)b of bounded holo-

morphic functions, |f |2 =
∫
M̃a
c
|f |2ω̃n. Let ~r := t ddt be the homothety vector

field on M̃ = C(S). Then I~r acts on H0(OM̃a
c
)b by isometries, hence its

action on each finite-dimensional subspace of H0(OM̃a
c
)b is semisimple.
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Semisimple LCK manifolds are Vaisman

Proof of semisimple ⇒ Vaisman. Step 1:

Since all subvarieties of Vaisman manifolds are again Vaisman, it would suf-

fice only to show that all semisimple Hopf manifolds are Vaisman.

Step 2: Let H = V \0/〈A〉 be a semisimple Hopf manifold, ei an eigenvalue

basis in V , and A(ei) = αiuiei, with αi ∈]0,1[ and ui ∈ U(1). Consider a

unit sphere S ⊂ V = Cn, and let ρ(t)(ei) := αtiei. Then there exists a ρ-

automorphic Kähler potential ϕλ on V \0. Since A ◦ ρ(−1) preserves S and A

commutes with ρ(t), the function ϕλ is A-automorphic.

Step 3: By Kamishima-Ornea, this metric is Vaisman whenever S (and,

therefore, the potential ϕλ, and the corresponding automorphic Kähler form)

is invariant with respect to etI~r, where r = dρ(t)
dt . However, etI~r(ei) =

e
√
−1 t logαiei, and this operator is unitary.
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