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Local systems (reminder)

DEFINITION: A local system is a locally constant sheaf of vector spaces.

THEOREM: A local system with fiber B at x ∈ M gives a homomorphism

π1(M,x)−→ Aut(B). This correspondence gives an equivalence of cat-

egories.

DEFINITION: A bundle (B,∇) is called flat if its curvature vanishes.

DEFINITION: A section b of (B,∇) is called parallel if ∇(b) = 0.

CLAIM: Let (B,∇) be a flat bundle on M , and B be the sheaf of parallel

sections. Then B is a locally constant sheaf.

THEOREM: This correspondence gives an equivalence of categories of

flat bundles and local systems.
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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.

3



LCK manifolds, lecture 13 M. Verbitsky

LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and (M̃, ω̃) its Kähler covering.
It is called LCK manifold with potential if M̃ admits an automorphic Kähler
potential ϕ : M̃ −→ R>0, ddcϕ = ω̃, which is proper (preimage of a compact
is again compact).

THEOREM: The property of being LCK with potential is stable under
small deformations.

THEOREM: Let M be an LCK manifold, Γ ⊂ R>0 the monodromy group,
and (M̃, ω̃) its Kähler covering, with M̃/Γ = M . Assume that ω̃ admits a
Γ-automorphic Kähler potential ϕ. The map ϕ is proper if and only if
Γ = Z.

THEOREM: Let M be an LCK manifold with potential, and M̃ its Kähler
Z-covering. Then a metric completion M̃c admits a structure of a complex
manifold, compatible with the complex structure on M̃ ⊂ M̃c. Moreover, the
monodromy action on M̃ is extended to a holomorphic automorphism of M̃c.

THEOREM: Let M be an LCK manifold with potential, dimCM > 2. Then
M admits a holomorphic embedding to a linear Hopf manifold.
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Morse-Novikov cohomology (reminder)

DEFINITION: Define the B-valued de Rham differential d∇ : Λi(M) ⊗
B −→ Λi+1(M)⊗B as d∇(η⊗ b) := dη⊗ b+ (−1)η̃η ∧∇b. It is easy to check

that d2
∇ = 0 if and only if the curvature of ∇ vanishes.

CLAIM: The cohomology of the complex (Λ∗M ⊗ B, d∇) are equal to

the cohomology of the local system B := ker∇.

REMARK: Let B be a line bundle equipped with a flat connection, ϕ its

trivialization, and θ its connection form, ∇(fϕ) = df ⊗ ϕ + fθ ⊗ ψ. Then

d∇(η ⊗ ψ) = dη ⊗ ψ + θ ∧ η ⊗ ψ. This is written as d∇ = d+ θ.

DEFINITION: Cohomology of the complex (Λ∗M,dθ := d − θ) are called

Morse-Novikov cohomology, or Lichnerowicz cohomology; the corre-

sponding complex – Morse-Novikov complex. They compute the coho-

mology of the local system L−1
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Automorphic forms (reminder)

DEFINITION: Let M be a manifold, M̃ its Galois covering. A form η on M̃

is called automorphic if for any γ ∈ π1(M) acting on M̃ as usual, the form

γ∗η is proportional to η. The character χη(γ) := γ∗η̃
η̃ is called the character

of automorphy, or weight for η.

DEFINITION: Let L be an oriented real line bundle equipped with a flat

connection (we call L weight bundle), and χ : π1(M)−→ R>0 its monodromy.

Automorphic form of weight λ is an automorphic form which satisfies

γ∗η̃ = λ−1χ(γ)η for each γ ∈ π1(M). We denote the space of such forms by

Λ∗(M)λ.

PROPOSITION: The Morse-Novikov complex with coefficients in Lλ

is identified with the de Rham complex of automorphic forms of weight

λ on M̃.
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Morse-Novikov Dolbeault complex (reminder)

DEFINITION: Let M be a complex manifold, and (L,∇) a flat, oriented,
real line bundle. Identifying sections of L with automorphic forms of weight 1
on M̃ as above, we consider the Hodge decomposition dθ = ∂θ + ∂θ, where
dθ is the de Rham differential on automorphic forms, and ∂θ, ∂θ its Hodge
components.

PROPOSITION: Let (L,∇) be a weight bundle on a complex manifold, ϕ
its trivialization, and θ a connection form. Denote by M̃

π−→ M the universal
covering, and let Φ be a non-zero parallel section of π∗L. Consider the
equivalence

(Λ∗(M)⊗ L, dθ)
Ξ−→ (Λ∗(M)λ, d)

between Morse-Novikov complex and the de Rham complex of automorphic
forms. Then this identification is compatible with Dolbeault decomposi-
tion, and gives an equivalence between ∂θ, ∂θ and Dolbeault differentials
on Λ∗(M)λ.

COROLLARY: This gives the following commutation relations: {∂θ, ∂θ} =
{∂θ, ∂θ} = {∂θ, ∂θ} = 0 = {dθ, dcθ}, and −2

√
−1 ∂θ∂θ = dθd

c
θ, where dcθ =

IdθI
−1 = −

√
−1 (∂θ − ∂θ) = dc − I(θ).
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Lee class of an LCK manifold (reminder)

DEFINITION: Let (M,ω, θ) be an LCK manifold. The cohomology class

[θ] ∈ H1(M,R) of its Lee form θ is called the Lee class of M .

REMARK: Monodromy group of an LCK manifold (M,ω, θ) is defined as

the Galois group of the smallest covering π : M̃ −→M such that π∗θ is exact.

Rank of an LCK manifold is rank of its monodromy group.

PROPOSITION: Let (M,ω, θ) be an LCK manifold and [θ] its Lee class.

Consider a smallest rational subspace V ⊂ H1(M,Q) such that V ⊗QR contains

[θ]. Then dimV is equal to the rank of M.

Proof: The group Γ is identified with an image of π1(M) under the map

[θ] : π1(M)−→ R, because it is equal to the monodromy of the weight bundle,

and the monodromy along a loop γ is equal to e

∫
γ θ.
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Morse-Novikov class of an LCK manifold (reminder)

DEFINITION: Let (M,ω, θ) be an LCK manifold, dω = ω∧θ. Then dθ(ω) = 0.

The cohomology class [ω]MN of ω in the Morse-Novikov cohomology is called

Morse-Novikov class of M .

CLAIM: [ω]MN vanishes for LCK manifolds with potential and, hence,

for Vaisman manifolds.

Proof: Indeed, the corresponding automorphic form ω̃ = Ξ(ω) is a differential

of an automorphic form, and the Morse-Novikov cohomology is cohomology

of the complex of automorphic forms.

REMARK: [ω]MN is known to be non-zero for some other LCK mani-

folds. All known examples of compact LCK manifolds with vanishing Morse-

Novikov class admit an LCK metric with potential.
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Bott-Chern cohomology (reminder)

DEFINITION: Let M be a complex manifold, and H
p,q
BC(M) the space of

closed (p, q)-forms modulo ddc(Λp−1,q−1(M)). Then H
p,q
BC(M) is called the

Bott-Chern cohomology of M .

THEOREM: Let M be a compact complex manifold. Then H
p,q
BC(M) is

finite-dimensional.

DEFINITION: Let M be a complex manifold, and L a flat vector bundle.

Consider the corresponding differential d∇ = dθ, and let ∂θ, ∂θ be its Hodge

components. The weighted Bott-Chern cohomology are defined as

H
p,q
BC(M,L) :=

ker dθ
∣∣∣Λp,q(M)⊗L

im ∂θ∂θ
.

THEOREM: Let M be a compact complex manifold, and L a flat vector

bundle. Then the group H
p,q
BC(M,L) is finite-dimensional.

10



LCK manifolds, lecture 13 M. Verbitsky

Bott-Chern class (reminder)

DEFINITION: (M,ω, θ) be an LCK manifold, and L its weight bundle. The

cohomology class of ω in H
1,1
BC(M,L) is called Bott-Chern class of M .

REMARK: It is the best analogue of the Kähler class, and the following

theorem (together with the Hopf embedding result) is an LCK analogue of

Kodaira embedding theorem.

THEOREM: Let (M,ω, θ) be an LCK manifold. Suppose that its Lee class

[θ] is proportional to a rational class in H1(M) and [ω]BC = 0. Then (M,ω, θ)

is an LCK manifold with potential.

Proof: Existence of an automorphic potential is precisely vanishing of [ω]BC.

Its properness is equivalent to Γ ∼= Z, where Γ is a monodromy group of M .

Since rank of Γ is equal to the dimension of a smallest rational subspace

generated by [θ], it is equal 1.
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Open questions (reminder)

A weighted version of ddc-lemma is known to be wrong, even for Vaisman

manifolds (Goto). However, the following (very weak) version of dθd
c
θ-lemma

could be true.

PROBLEM: Let M be a compact LCK manifold with its Morse-Novikov

class [ω]MN equal zero. Would it follow that M has monodromy Z?

Would it follow that M admits an LCK metric with potential, when its

monodromy is Z?

PROBLEM: Find an example of locally (but not globally) conformally sym-

plectic manifold of dimension > 3 not admitting LCK structure.

PROBLEM: Prove that a compact torus with non-Kähler complex structure

does not admit an LCK metric, or find one.
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LCK manifolds with S1-action: main theorem

THEOREM: Let M be a compact complex manifold, equipped with a holo-

morphic S1-action and an LCK metric (not necessarily compatible). Suppose

that the weight bundle L, restricted to a general orbit of this S1-action, is

non-trivial as a 1-dimensional local system. Then M admits an LCK metric

with an automorphic potential.

The proof takes the rest of this lecture.

REMARK: The converse statement is also true. Indeed, let M = M̃/Z be

an LCK manifold with potential, M̃ be its Kähler covering. As we have already

shown, the Z-action on M̃ admits a logarithm, given by a holomorphic vector

field A ∈ TM̃ . Then etA is a holomorphic S1-action with the required

properties.

13



LCK manifolds, lecture 13 M. Verbitsky

LCK manifolds with S1-action: Lee form

REMARK: Conformally equivalent metrics are metrics g, g′ = efg. Con-

formal class of a metric is its class of conformal equivalence.

LEMMA: Let M be a compact complex manifold, equipped with a holomor-

phic S1-action and an LCK metric (not necessarily compatible). Then there

exists an LCK metric in the same conformal class with S1-invariant Lee

form.

Proof: Let G be a compact subgroup of Aut(M). Averaging the Lee form

θ on G, we obtain a closed 1-form θ′ which is S1-invariant and stays in the

same cohomology class as θ: θ′ = θ+df . Then ω′ = e−fω is a LCK form with

Lee form θ′ and conformal to ω.
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LCK manifolds with S1-action: S1-invariance

Proposition 1: Let (M,ω, θ) be a compact complex manifold, equipped with

a holomorphic S1-action and an LCK metric (not necessarily compatible).

Then M admits an S1-invariant LCK metric.

Proof. Step 1: Using the previous lemma, we chose a metric in the same

conformal class with S1-invariant Lee form. Therefore, we may assume θ

is S1-invariant.

Proof. Step 2: For each t ∈ S1, let ωt := ρ(t)∗ω. Then d(ωt) = ωt ∧ θ.

Averaging ωt with respect to t, we obtain a positive, S1-invariant form ωav
satisfying d(ωav) = ωav ∧ θ.

CLAIM: Let (M,ω, θ) be a compact complex manifold, equipped with a holo-

morphic S1-action by isometries. Then, on a Kähler covering M̃ −→M , the

corresponding action of the covering S̃1 = R is by holomorphic homo-

theties.

Proof: Indeed, if two Kähler forms are conformally equivalent, they are pro-

portional.

15



LCK manifolds, lecture 13 M. Verbitsky

Holomorphic homotheties on Kähler manifolds

Proposition 2: Let A be a vector field acting on a Kähler manifold (M̃, ω̃)

by holomorphic homotheties: LieA ω̃ = λω̃, with λ 6= 0. Then

ddc|A|2 = λ2ω̃ + Lie2
Ac ω̃,

where Ac = I(A).

Proof. Step 1: Let η := ω̃yA = I(A)[ be the dual form to Ac. Replacing A

by λ−1A, we may assume that λ = 1. By Cartan’s formula,

ω̃ = LieA ω̃ = d(ω̃yA) = dη.

Step 2: Since A and Ac are holomorphic, LieAc commutes with I. This gives

LieAc ω̃ = LieAc Iω̃ = I LieAc ω̃ = IdI−1(ω̃yA) = dcη.

Step 3: Since LieA commutes with I, one has {dc, iAc} = I LieA I
−1 = LieA,

where iv(α) = αyv is the contraction operator.
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Holomorphic homotheties on Kähler manifolds (2)

Proposition 2: Let A be a vector field acting on a Kähler manifold (M̃, ω̃)
by holomorphic homotheties: LieA ω̃ = λω̃, with λ 6= 0. Then

ddc|A|2 = λ2ω̃ + Lie2
Ac ω̃,

where Ac = I(A).

Proof. Step 1: Let η := ω̃yA, and λ = 1. Then ω̃ = LieA ω̃ = d(ω̃yA) = dη.

Step 2: LieAc ω̃ = LieAc Iω̃ = I LieAc ω̃ = IdI−1(ω̃yA) = dcη.

Step 3: {dc, iAc} = I LieA I
−1 = LieA, where iv(α) = αyv is the contraction

operator.

Step 4:

Lie2
Ac ω̃ = LieAc d

cη = iAcdd
cη + diAcd

cη (∗)

(Step 2 and Cartan’s formula). The first summand vanishes because ddcη =
−dcdη = dcω̃ (Step 1). The second summand gives

diAcd
cη = ddc〈I(A), I(A)[〉 − d{dc, iAc}η (∗∗)

Finally, d{dc, iAc}η = dLieA η = LieA dη = ω̃ (Step 3 and Step 1). Therefore,
(*) and (**) give Lie2

Ac ω̃ = ddc|A|2 − ω, for λ = 1.
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LCK manifolds with S1-action: main theorem (proof)

THEOREM: Let M be a compact complex manifold, equipped with a holo-

morphic S1-action ρ and an LCK metric (not necessarily compatible). Sup-

pose that the weight bundle L, restricted to a general orbit of this S1-action,

is non-trivial as a 1-dimensional local system. Then M admits an LCK

metric with an automorphic potential.

Proof. Step 1: Using Proposition 1, we may assume that the metric ω

on M is S1-invariant. Denote the corresponding Kähler metric on M̃ by ω̃,

and let ρ̃ be the lift of S1-action to M̃ . Since conformally equivalent Kähler

metrics are proportional, ρ̃ acts by homotheties.

Step 2: Restriction of the flat connection in the weight bundle L to a loop

has trivial monodromy whenever this loop lifts to a homeomorphic loop in M̃ .

Since L is non-trivial on orbits of ρ, the lift ρ̃ is an R-action, not reducible to

S1-action. Denote the kernel of the natural map im ρ̃−→ im ρ by Γ. Since M̃

is a minimal Kähler covering, Γ acts on M̃ non-isometrically, hence ρ̃ acts by

non-trivial homotheties. Rescaling, we may assume that the vector field

A tangent to ρ̃ satisfies LieA ω̃ = ω̃.
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LCK manifolds with S1-action: main theorem (proof, part 2)

Step 3: Proposition 2 gives

ω̃ = ddc|A|2 − Lie2
Ac ω̃, (∗ ∗ ∗)

where A is the homothety vector field tangent to ρ̃, and Ac = I(A). Let
µt := ρc(t)∗[ω]BC be the Bott-Chern class of etA

c
(ω). By (***), µt satisfies

the differential equation µ′′t = −µt, hence µt = a sin(t) + b cos(t), for some
a, b ∈ H1,1

BC(M,L).

Step 4: From Step 3 it follows that
∫ 2π
0 etA

c
[ω̃]dt = 0. Consider the Kähler

form ω̃W :=
∫ 2π
0 etA

c
(ω̃)dt = 0 on M̃ . This form is an average of auto-

morphic forms of the same character of automorphicity, because etA
c

com-
mutes with et

′A. The Bott-Chern class of ωW vanishes, because
∫ 2π
0 sin(t)dt =∫ 2π

0 cos(t)dt = 0. Therefore, ω̃W admits an automorphic potential.

Step 5: To finish the proof, it remains to show that the monodromy of
M is Z. This is implied by the theorem proven in Lecture 5.

THEOREM: Let (M,ω, θ) be a compact LCK manifold, and X a vector field
acting on M by isometries and on M̃ by non-isometric homotheties. Then
Mon(M) = Z.
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