Locally conformally Kähler manifolds

lecture 13: automorphisms of LCK manifolds

Misha Verbitsky

HSE and IUM, Moscow

May 19, 2014

Local systems (reminder)

DEFINITION: A local system is a locally constant sheaf of vector spaces.

THEOREM: A local system with fiber *B* at $x \in M$ gives a homomorphism $\pi_1(M, x) \longrightarrow \operatorname{Aut}(B)$. This correspondence gives an equivalence of categories.

DEFINITION: A bundle (B, ∇) is called **flat** if its curvature vanishes.

DEFINITION: A section b of (B, ∇) is called **parallel** if $\nabla(b) = 0$.

CLAIM: Let (B, ∇) be a flat bundle on M, and \mathcal{B} be the sheaf of parallel sections. Then \mathcal{B} is a locally constant sheaf.

THEOREM: This correspondence **gives an equivalence of categories** of flat bundles and local systems.

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, $\dim_{\mathbb{C}} M > 1$. Then M is called **locally conformally Kähler** (LCK) if $d\omega = \omega \wedge \theta$, where θ is a closed 1-form, called **the Lee form**.

DEFINITION: A manifold is locally conformally Kähler iff it admits a Kähler form taking values in a positive, flat vector bundle *L*, called **the weight bundle**.

DEFINITION: Deck transform, or monodromy maps of a covering $\tilde{M} \longrightarrow M$ are elements of the group $\operatorname{Aut}_{M}(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_{M}(\tilde{M}) = \pi_{1}(M)$.

DEFINITION: An LCK manifold is a complex manifold such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.

THEOREM: These three definitions are equivalent.

LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and $(\tilde{M}, \tilde{\omega})$ its Kähler covering. It is called **LCK manifold with potential** if \tilde{M} admits an automorphic Kähler potential $\varphi : \tilde{M} \longrightarrow \mathbb{R}^{>0}$, $dd^c \varphi = \tilde{\omega}$, which is **proper** (preimage of a compact is again compact).

THEOREM: The property of being LCK with potential is stable under small deformations.

THEOREM: Let M be an LCK manifold, $\Gamma \subset \mathbb{R}^{>0}$ the monodromy group, and $(\tilde{M}, \tilde{\omega})$ its Kähler covering, with $\tilde{M}/\Gamma = M$. Assume that $\tilde{\omega}$ admits a Γ -automorphic Kähler potential φ . The map φ is proper if and only if $\Gamma = \mathbb{Z}$.

THEOREM: Let M be an LCK manifold with potential, and \tilde{M} its Kähler \mathbb{Z} -covering. Then a metric completion \tilde{M}_c admits a structure of a complex manifold, compatible with the complex structure on $\tilde{M} \subset \tilde{M}_c$. Moreover, the monodromy action on \tilde{M} is extended to a holomorphic automorphism of \tilde{M}_c .

THEOREM: Let *M* be an LCK manifold with potential, dim_{\mathbb{C}} M > 2. Then *M* admits a holomorphic embedding to a linear Hopf manifold.

Morse-Novikov cohomology (reminder)

DEFINITION: Define the *B*-valued de Rham differential d_{∇} : $\Lambda^{i}(M) \otimes B \longrightarrow \Lambda^{i+1}(M) \otimes B$ as $d_{\nabla}(\eta \otimes b) := d\eta \otimes b + (-1)^{\tilde{\eta}} \eta \wedge \nabla b$. It is easy to check that $d_{\nabla}^{2} = 0$ if and only if the curvature of ∇ vanishes.

CLAIM: The cohomology of the complex $(\Lambda^* M \otimes B, d_{\nabla})$ are equal to the cohomology of the local system $\mathcal{B} := \ker \nabla$.

REMARK: Let *B* be a line bundle equipped with a flat connection, φ its trivialization, and θ its connection form, $\nabla(f\varphi) = df \otimes \varphi + f\theta \otimes \psi$. Then $d_{\nabla}(\eta \otimes \psi) = d\eta \otimes \psi + \theta \wedge \eta \otimes \psi$. This is written as $d_{\nabla} = d + \theta$.

DEFINITION: Cohomology of the complex $(\Lambda^*M, d_{\theta} := d - \theta)$ are called **Morse-Novikov cohomology**, or **Lichnerowicz cohomology**; the corresponding complex – **Morse-Novikov complex**. They compute the cohomology of the local system L^{-1}

Automorphic forms (reminder)

DEFINITION: Let M be a manifold, \tilde{M} its Galois covering. A form η on \tilde{M} is called **automorphic** if for any $\gamma \in \pi_1(M)$ acting on \tilde{M} as usual, the form $\gamma^*\eta$ is proportional to η . The character $\chi_\eta(\gamma) := \frac{\gamma^*\tilde{\eta}}{\tilde{\eta}}$ is called **the character of automorphy**, or weight for η .

DEFINITION: Let *L* be an oriented real line bundle equipped with a flat connection (we call *L* weight bundle), and $\chi : \pi_1(M) \longrightarrow \mathbb{R}^{>0}$ its monodromy. **Automorphic form of weight** λ is an automorphic form which satisfies $\gamma^* \tilde{\eta} = \lambda^{-1} \chi(\gamma) \eta$ for each $\gamma \in \pi_1(M)$. We denote the space of such forms by $\Lambda^*(M)_{\lambda}$.

PROPOSITION: The Morse-Novikov complex with coefficients in L^{λ} is identified with the de Rham complex of automorphic forms of weight λ on \tilde{M} .

Morse-Novikov Dolbeault complex (reminder)

DEFINITION: Let M be a complex manifold, and (L, ∇) a flat, oriented, real line bundle. Identifying sections of L with automorphic forms of weight 1 on \tilde{M} as above, we consider **the Hodge decomposition** $d_{\theta} = \partial_{\theta} + \overline{\partial}_{\theta}$, where d_{θ} is the de Rham differential on automorphic forms, and ∂_{θ} , $\overline{\partial}_{\theta}$ its Hodge components.

PROPOSITION: Let (L, ∇) be a weight bundle on a complex manifold, φ its trivialization, and θ a connection form. Denote by $\tilde{M} \xrightarrow{\pi} M$ the universal covering, and let Φ be a non-zero parallel section of π^*L . Consider the equivalence

$$(\Lambda^*(M)\otimes L, d_{\theta}) \xrightarrow{\Xi} (\Lambda^*(M)_{\lambda}, d)$$

between Morse-Novikov complex and the de Rham complex of automorphic forms. Then this identification is compatible with Dolbeault decomposition, and gives an equivalence between ∂_{θ} , $\overline{\partial}_{\theta}$ and Dolbeault differentials on $\Lambda^*(M)_{\lambda}$.

COROLLARY: This gives the following commutation relations: $\{\partial_{\theta}, \overline{\partial}_{\theta}\} = \{\partial_{\theta}, \partial_{\theta}\} = \{\overline{\partial}_{\theta}, \overline{\partial}_{\theta}\} = 0 = \{d_{\theta}, d_{\theta}^c\}, \text{ and } -2\sqrt{-1} \partial_{\theta}\overline{\partial}_{\theta} = d_{\theta}d_{\theta}^c, \text{ where } d_{\theta}^c = Id_{\theta}I^{-1} = -\sqrt{-1} (\partial_{\theta} - \overline{\partial}_{\theta}) = d^c - I(\theta).$

Lee class of an LCK manifold (reminder)

DEFINITION: Let (M, ω, θ) be an LCK manifold. The cohomology class $[\theta] \in H^1(M, \mathbb{R})$ of its Lee form θ is called **the Lee class** of M.

REMARK: Monodromy group of an LCK manifold (M, ω, θ) is defined as the Galois group of the smallest covering $\pi : \tilde{M} \longrightarrow M$ such that $\pi^* \theta$ is exact. **Rank** of an LCK manifold is rank of its monodromy group.

PROPOSITION: Let (M, ω, θ) be an LCK manifold and $[\theta]$ its Lee class. Consider a smallest rational subspace $V \subset H^1(M, \mathbb{Q})$ such that $V \otimes_{\mathbb{Q}} \mathbb{R}$ contains $[\theta]$. Then dim V is equal to the rank of M.

Proof: The group Γ is identified with an image of $\pi_1(M)$ under the map $[\theta]: \pi_1(M) \longrightarrow \mathbb{R}$, because it is equal to the monodromy of the weight bundle, and the monodromy along a loop γ is equal to $e^{\int_{\gamma} \theta}$.

Morse-Novikov class of an LCK manifold (reminder)

DEFINITION: Let (M, ω, θ) be an LCK manifold, $d\omega = \omega \wedge \theta$. Then $d_{\theta}(\omega) = 0$. The cohomology class $[\omega]_{MN}$ of ω in the Morse-Novikov cohomology is called **Morse-Novikov class** of M.

CLAIM: $[\omega]_{MN}$ vanishes for LCK manifolds with potential and, hence, for Vaisman manifolds.

Proof: Indeed, the corresponding automorphic form $\tilde{\omega} = \Xi(\omega)$ is a differential of an automorphic form, and the Morse-Novikov cohomology is cohomology of the complex of automorphic forms.

REMARK: $[\omega]_{MN}$ is known to be non-zero for some other LCK manifolds. All known examples of compact LCK manifolds with vanishing Morse-Novikov class admit an LCK metric with potential.

Bott-Chern cohomology (reminder)

DEFINITION: Let M be a complex manifold, and $H^{p,q}_{BC}(M)$ the space of closed (p,q)-forms modulo $dd^c(\Lambda^{p-1,q-1}(M))$. Then $H^{p,q}_{BC}(M)$ is called **the Bott-Chern cohomology** of M.

THEOREM: Let *M* be a compact complex manifold. Then $H_{BC}^{p,q}(M)$ is finite-dimensional.

DEFINITION: Let M be a complex manifold, and L a flat vector bundle. Consider the corresponding differential $d_{\nabla} = d_{\theta}$, and let ∂_{θ} , $\overline{\partial}_{\theta}$ be its Hodge components. The weighted Bott-Chern cohomology are defined as

$$H^{p,q}_{BC}(M,L) := \frac{\ker d_{\theta} \Big|_{\Lambda^{p,q}(M) \otimes L}}{\operatorname{im} \partial_{\theta} \overline{\partial}_{\theta}}.$$

THEOREM: Let M be a compact complex manifold, and L a flat vector bundle. Then the group $H^{p,q}_{BC}(M,L)$ is finite-dimensional.

Bott-Chern class (reminder)

DEFINITION: (M, ω, θ) be an LCK manifold, and L its weight bundle. The cohomology class of ω in $H^{1,1}_{BC}(M,L)$ is called **Bott-Chern class of** M.

REMARK: It is the best analogue of the Kähler class, and the following theorem (together with the Hopf embedding result) is an LCK analogue of Kodaira embedding theorem.

THEOREM: Let (M, ω, θ) be an LCK manifold. Suppose that its Lee class $[\theta]$ is proportional to a rational class in $H^1(M)$ and $[\omega]_{BC} = 0$. Then (M, ω, θ) is an LCK manifold with potential.

Proof: Existence of an automorphic potential is precisely vanishing of $[\omega]_{BC}$. Its properness is equivalent to $\Gamma \cong \mathbb{Z}$, where Γ is a monodromy group of M. Since rank of Γ is equal to the dimension of a smallest rational subspace generated by $[\theta]$, it is equal 1.

Open questions (reminder)

A weighted version of dd^c -lemma is known to be wrong, even for Vaisman manifolds (Goto). However, the following (very weak) version of $d_{\theta}d_{\theta}^c$ -lemma could be true.

PROBLEM: Let *M* be a compact LCK manifold with its Morse-Novikov class $[\omega]_{MN}$ equal zero. Would it follow that *M* has monodromy \mathbb{Z} ? Would it follow that *M* admits an LCK metric with potential, when its monodromy is \mathbb{Z} ?

PROBLEM: Find an example of locally (but not globally) conformally symplectic manifold of dimension ≥ 3 not admitting LCK structure.

PROBLEM: Prove that a compact torus with non-Kähler complex structure does not admit an LCK metric, or find one.

LCK manifolds with S^1 -action: main theorem

THEOREM: Let M be a compact complex manifold, equipped with a holomorphic S^1 -action and an LCK metric (not necessarily compatible). Suppose that the weight bundle L, restricted to a general orbit of this S^1 -action, is non-trivial as a 1-dimensional local system. Then M admits an LCK metric with an automorphic potential.

The proof takes the rest of this lecture.

REMARK: The converse statement is also true. Indeed, let $M = \tilde{M}/\mathbb{Z}$ be an LCK manifold with potential, \tilde{M} be its Kähler covering. As we have already shown, the \mathbb{Z} -action on \tilde{M} admits a logarithm, given by a holomorphic vector field $A \in T\tilde{M}$. Then e^{tA} is a holomorphic S^1 -action with the required properties.

LCK manifolds with S^1 -action: Lee form

REMARK: Conformally equivalent metrics are metrics $g, g' = e^f g$. Conformal class of a metric is its class of conformal equivalence.

LEMMA: Let M be a compact complex manifold, equipped with a holomorphic S^1 -action and an LCK metric (not necessarily compatible). Then there exists an LCK metric in the same conformal class with S^1 -invariant Lee form.

Proof: Let *G* be a compact subgroup of Aut(*M*). Averaging the Lee form θ on *G*, we obtain a closed 1-form θ' which is S^1 -invariant and stays in the same cohomology class as θ : $\theta' = \theta + df$. Then $\omega' = e^{-f}\omega$ is a LCK form with Lee form θ' and conformal to ω .

LCK manifolds, lecture 13

LCK manifolds with S^1 -action: S^1 -invariance

Proposition 1: Let (M, ω, θ) be a compact complex manifold, equipped with a holomorphic S^1 -action and an LCK metric (not necessarily compatible). **Then** M admits an S^1 -invariant LCK metric.

Proof. Step 1: Using the previous lemma, we chose a metric in the same conformal class with S^1 -invariant Lee form. Therefore, we may assume θ is S^1 -invariant.

Proof. Step 2: For each $t \in S^1$, let $\omega_t := \rho(t)^* \omega$. Then $d(\omega_t) = \omega_t \wedge \theta$. Averaging ω_t with respect to t, we obtain a positive, S^1 -invariant form ω_{av} satisfying $d(\omega_{av}) = \omega_{av} \wedge \theta$.

CLAIM: Let (M, ω, θ) be a compact complex manifold, equipped with a holomorphic S^1 -action by isometries. Then, on a Kähler covering $\tilde{M} \longrightarrow M$, the corresponding action of the covering $\tilde{S}^1 = \mathbb{R}$ is by holomorphic homotheties.

Proof: Indeed, if two Kähler forms are conformally equivalent, they are proportional. ■

Holomorphic homotheties on Kähler manifolds

Proposition 2: Let A be a vector field acting on a Kähler manifold $(\tilde{M}, \tilde{\omega})$ by holomorphic homotheties: Lie_A $\tilde{\omega} = \lambda \tilde{\omega}$, with $\lambda \neq 0$. Then

$$dd^c |A|^2 = \lambda^2 \tilde{\omega} + \operatorname{Lie}_{A^c}^2 \tilde{\omega},$$

where $A^c = I(A)$.

Proof. Step 1: Let $\eta := \tilde{\omega} \lrcorner A = I(A)^{\flat}$ be the dual form to A^c . Replacing A by $\lambda^{-1}A$, we may assume that $\lambda = 1$. By Cartan's formula,

$$\tilde{\omega} = \operatorname{Lie}_A \tilde{\omega} = d(\tilde{\omega} \,\lrcorner\, A) = d\eta.$$

Step 2: Since A and A^c are holomorphic, Lie_{A^c} commutes with I. This gives

$$\operatorname{Lie}_{A^c} \tilde{\omega} = \operatorname{Lie}_{A^c} I \tilde{\omega} = I \operatorname{Lie}_{A^c} \tilde{\omega} = I dI^{-1} (\tilde{\omega} \,\lrcorner\, A) = d^c \eta.$$

Step 3: Since Lie_A commutes with *I*, **one has** $\{d^c, i_{A^c}\} = I \operatorname{Lie}_A I^{-1} = \operatorname{Lie}_A$, where $i_v(\alpha) = \alpha \lrcorner v$ is the contraction operator.

M. Verbitsky

Holomorphic homotheties on Kähler manifolds (2)

Proposition 2: Let A be a vector field acting on a Kähler manifold $(\tilde{M}, \tilde{\omega})$ by holomorphic homotheties: Lie_A $\tilde{\omega} = \lambda \tilde{\omega}$, with $\lambda \neq 0$. Then

 $dd^c |A|^2 = \lambda^2 \tilde{\omega} + \operatorname{Lie}_{A^c}^2 \tilde{\omega},$

where $A^c = I(A)$.

Proof. Step 1: Let $\eta := \tilde{\omega} \, \lrcorner A$, and $\lambda = 1$. Then $\tilde{\omega} = \text{Lie}_A \tilde{\omega} = d(\tilde{\omega} \, \lrcorner A) = d\eta$.

Step 2:
$$\operatorname{Lie}_{A^c} \tilde{\omega} = \operatorname{Lie}_{A^c} I \tilde{\omega} = I \operatorname{Lie}_{A^c} \tilde{\omega} = I dI^{-1} (\tilde{\omega} \lrcorner A) = d^c \eta.$$

Step 3: $\{d^c, i_{A^c}\} = I \operatorname{Lie}_A I^{-1} = \operatorname{Lie}_A$, where $i_v(\alpha) = \alpha \lrcorner v$ is the contraction operator.

Step 4:

$$\operatorname{Lie}_{A^c}^2 \tilde{\omega} = \operatorname{Lie}_{A^c} d^c \eta = i_{A^c} dd^c \eta + di_{A^c} d^c \eta \quad (*)$$

(Step 2 and Cartan's formula). The first summand vanishes because $dd^c\eta = -d^c d\eta = d^c \tilde{\omega}$ (Step 1). The second summand gives

$$di_{A^c}d^c\eta = dd^c \langle I(A), I(A)^{\flat} \rangle - d\{d^c, i_{A^c}\}\eta \quad (**)$$

Finally, $d\{d^c, i_{A^c}\}\eta = d\operatorname{Lie}_A \eta = \operatorname{Lie}_A d\eta = \tilde{\omega}$ (Step 3 and Step 1). Therefore, (*) and (**) give $\operatorname{Lie}_{A^c}^2 \tilde{\omega} = dd^c |A|^2 - \omega$, for $\lambda = 1$.

LCK manifolds, lecture 13

M. Verbitsky

LCK manifolds with S^1 -action: main theorem (proof)

THEOREM: Let M be a compact complex manifold, equipped with a holomorphic S^1 -action ρ and an LCK metric (not necessarily compatible). Suppose that the weight bundle L, restricted to a general orbit of this S^1 -action, is non-trivial as a 1-dimensional local system. Then M admits an LCK metric with an automorphic potential.

Proof. Step 1: Using Proposition 1, we may assume that the metric ω on M is S^1 -invariant. Denote the corresponding Kähler metric on \tilde{M} by $\tilde{\omega}$, and let $\tilde{\rho}$ be the lift of S^1 -action to \tilde{M} . Since conformally equivalent Kähler metrics are proportional, $\tilde{\rho}$ acts by homotheties.

Step 2: Restriction of the flat connection in the weight bundle L to a loop has trivial monodromy whenever this loop lifts to a homeomorphic loop in \tilde{M} . Since L is non-trivial on orbits of ρ , the lift $\tilde{\rho}$ is an \mathbb{R} -action, not reducible to S^1 -action. Denote the kernel of the natural map im $\tilde{\rho} \longrightarrow \text{im } \rho$ by Γ . Since \tilde{M} is a minimal Kähler covering, Γ acts on \tilde{M} non-isometrically, hence $\tilde{\rho}$ acts by non-trivial homotheties. Rescaling, we may assume that the vector field A tangent to $\tilde{\rho}$ satisfies $\text{Lie}_A \tilde{\omega} = \tilde{\omega}$.

LCK manifolds with S^1 -action: main theorem (proof, part 2)

Step 3: Proposition 2 gives

$$\tilde{\omega} = dd^c |A|^2 - \operatorname{Lie}_{A^c}^2 \tilde{\omega}, \quad (***)$$

where A is the homothety vector field tangent to $\tilde{\rho}$, and $A^c = I(A)$. Let $\mu_t := \rho^c(t)^*[\omega]_{BC}$ be the Bott-Chern class of $e^{tA^c}(\omega)$. By (***), μ_t satisfies the differential equation $\mu''_t = -\mu_t$, hence $\mu_t = a\sin(t) + b\cos(t)$, for some $a, b \in H^{1,1}_{BC}(M,L)$.

Step 4: From Step 3 it follows that $\int_0^{2\pi} e^{tA^c}[\tilde{\omega}]dt = 0$. Consider the Kähler form $\tilde{\omega}_W := \int_0^{2\pi} e^{tA^c}(\tilde{\omega})dt = 0$ on \tilde{M} . This form is an average of automorphic forms of the same character of automorphicity, because e^{tA^c} commutes with $e^{t'A}$. The Bott-Chern class of ω_W vanishes, because $\int_0^{2\pi} \sin(t)dt = \int_0^{2\pi} \cos(t)dt = 0$. Therefore, $\tilde{\omega}_W$ admits an automorphic potential.

Step 5: To finish the proof, **it remains to show that the monodromy of** M is \mathbb{Z} . This is implied by the theorem proven in Lecture 5.

THEOREM: Let (M, ω, θ) be a compact LCK manifold, and X a vector field acting on M by isometries and on \tilde{M} by non-isometric homotheties. Then $Mon(M) = \mathbb{Z}$.

M. Verbitsky