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Local systems (reminder)

DEFINITION: A local system is a locally constant sheaf of vector spaces.
THEOREM: A local system with fiber B at x € M gives a homomorphism
w1 (M,z) — Aut(B). This correspondence gives an equivalence of cat-
egories.

DEFINITION: A bundle (B,V) is called flat if its curvature vanishes.

DEFINITION: A section b of (B,V) is called parallel if V(b) = 0.

CLAIM: Let (B,V) be a flat bundle on M, and B be the sheaf of parallel
sections. Then B is a locally constant sheaf.

THEOREM: This correspondence gives an equivalence of categories of
flat bundles and local systems.
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LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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LCK manifolds with potential (reminder)

DEFINITION: Let M be an LCK manifold, and (M, &) its Kahler covering.
It is called LCK manifold with potential if M admits an automorphic Kahler
potential ¢ : M —>R>O, dd°p = &, which is proper (preimage of a compact
iS again compact).

THEOREM: The property of being LCK with potential is stable under
small deformations.

THEOREM: Let M be an LCK manifold, I C R>0 the monodromy group,
and (M,&) its Kahler covering, with M/ = M. Assume that & admits a
[-automorphic Kahler potential . The map ¢ is proper if and only if
= Z.

THEOREM: Let M be an LCK manifold with potential, and M its Kahler
Z-covering. Then a metric completion M. admits a structure of a complex
manifold, compatible with the complex structure on M C M.. Moreover, the
monodromy action on M is extended to a holomorphic automorphism of M..

THEOREM: Let M be an LCK manifold with potential, dimgc M > 2. Then
M admits a holomorphic embedding to a linear Hopf manifold.
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Morse-Novikov cohomology (reminder)

DEFINITION: Define the B-valued de Rham differential dy : A (M) ®
B—NANTH{M)®B as dg(n®b) :=dn®b+ (—1)n A Vb. It is easy to check
that d2 = 0 if and only if the curvature of V vanishes.

CLAIM: The cohomology of the complex (A*M ® B,dy) are equal to
the cohomology of the local system B := ker V.

REMARK: Let B be a line bundle equipped with a flat connection, ¢ its
trivialization, and 6 its connection form, V(fp) = df ® ¢ + f0 ® 1v. Then
dv(M®Y) =dn® ¢+ 0 An®yp. This is written as dy = d + 0.

DEFINITION: Cohomology of the complex (A*M,dy := d — 0) are called
Morse-Novikov cohomology, or Lichnerowicz cohomology; the corre-
sponding complex — Morse-Novikov complex. They compute the coho-
mology of the local system L1
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Automorphic forms (reminder)

DEFINITION: Let M be a manifold, M its Galois covering. A form n on M
is called automorphic if for any v € m1(M) acting on M as usual, the form
v*n is proportional to n. The character x,(v) = g is called the character
of automorphy, or weight for n.

DEFINITION: Let L be an oriented real line bundle equipped with a flat
connection (we call L weight bundle), and x : 71(M) — R>9 its monodromy.
Automorphic form of weight )\ is an automorphic form which satisfies
¥ = A"y (~y)n for each ~v € m1(M). We denote the space of such forms by
N (M) .

PROPOSITION: The Morse-Novikov complex with coefficients in L*
Is identified with the de Rham complex of automorphic forms of weight
A on M.



L. CK manifolds, lecture 13 M. Verbitsky

Morse-Novikov Dolbeault complex (reminder)

DEFINITION: Let M be a complex manifold, and (L,V) a flat, oriented,
real line bundle. Identifying sections of L with automorphic forms of weight 1
on M as above, we consider the Hodge decomposition dy = 9y + 9y, where
dg is the de Rham differential on automorphic forms, and 0y, 59 its Hodge
components.

PROPOSITION: Let (L,V) be a weight bundle on a complex manifold, ¢
its trivialization, and 6 a connection form. Denote by M s M the universal
covering, and let ® be a non-zero parallel section of n*L. Consider the
equivalence

(N(M) ® L,dg) = (N(M),,d)

between Morse-Novikov complex and the de Rham complex of automorphic
forms. Then this identification is compatible with Dolbeault decomposi-
tion, and gives an equivalence between 9y, 9y and Dolbeault differentials
on /\*(M))\

COROLLARY: This gives the following commutation relations: {9y, 0y}
{89,(99} = {59,59} =_O = {d@, 5}, and —2+/-—1 (9959 = d@dc, where dg
Idgl 1 = —\/=1(8y — 0y) =d°*— I(9). m

.
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Lee class of an LCK manifold (reminder)

DEFINITION: Let (M,w,0) be an LCK manifold. The cohomology class
[0] € HY(M,R) of its Lee form 6 is called the Lee class of M.

REMARK: Monodromy group of an LCK manifold (M,w,#) is defined as
the Galois group of the smallest covering = : M — M such that #«*0 is exact.
Rank of an LCK manifold is rank of its monodromy group.

PROPOSITION: Let (M,w,0) be an LCK manifold and [0] its Lee class.
Consider a smallest rational subspace V C Hl(M, Q) such that V®@R contains
[0]. Then dimV is equal to the rank of M.

Proof: The group I is identified with an image of n1(M) under the map
[0] . m1(M) — R, because it is equal to the monodromy of the weight bundle,

and the monodromy along a loop ~ is equal to efvg. u
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Morse-Novikov class of an LCK manifold (reminder)

DEFINITION: Let (M, w,0) be an LCK manifold, dw = wAf8. Then dy(w) = 0.
The cohomology class [w]y/n Of w in the Morse-Novikov cohomology is called
Morse-Novikov class of M.

CLAIM: [w]y/n vanishes for LCK manifolds with potential and, hence,
for Vaisman manifolds.

Proof: Indeed, the corresponding automorphic form & = =(w) is a differential
of an automorphic form, and the Morse-Novikov cohomology is cohomology
of the complex of automorphic forms. m

REMARK: [w]y/n IS known to be non-zero for some other LCK mani-
folds. All known examples of compact LCK manifolds with vanishing Morse-
Novikov class admit an LCK metric with potential.
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Bott-Chern cohomology (reminder)

DEFINITION: Let M be a complex manifold, and H}4L(M) the space of
closed (p,q)-forms modulo dd*(AP~14=1(A1)). Then HEL(M) is called the
Bott-Chern cohomology of M.

THEOREM: Let M be a compact complex manifold. Then HZL(M) is
finite-dimensional.

DEFINITION: Let M be a complex manifold, and L a flat vector bundle.
Consider the corresponding differential dy = dy, and let 8y, 9y be its Hodge
components. The weighted Bott-Chern cohomology are defined as

H2I(M, L) := ~
po(M, L) im By

THEOREM: Let M be a compact complex manifold, and L a flat vector
bundle. Then the group H%/ (M, L) is finite-dimensional.
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Bott-Chern class (reminder)

DEFINITION: (M,w,0) be an LCK manifold, and L its weight bundle. The
cohomology class of w in Hé’é(M, L) is called Bott-Chern class of M.

REMARK: It is the best analogue of the Kahler class, and the following
theorem (together with the Hopf embedding result) is an LCK analogue of
Kodaira embedding theorem.

THEOREM: Let (M,w,08) be an LCK manifold. Suppose that its Lee class
[0] is proportional to a rational class in H1(M) and [w]gc = 0. Then (M, w,6)
iIs an LCK manifold with potential.

Proof: Existence of an automorphic potential is precisely vanishing of [w]pgc.
Its properness is equivalent to ' = Z, where I is a monodromy group of M.
Since rank of I' is equal to the dimension of a smallest rational subspace
generated by [0], itisequal 1. m
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Open questions (reminder)

A weighted version of dd°-lemma is known to be wrong, even for Vaisman
manifolds (Goto). However, the following (very weak) version of dydg-lemma
could be true.

PROBLEM: Let M be a compact LCK manifold with its Morse-Novikov
class [w]yn equal zero. Would it follow that M has monodromy Z7
Would it follow that M admits an LCK metric with potential, when its
monodromy is Z7?

PROBLEM: Find an example of locally (but not globally) conformally sym-
plectic manifold of dimension > 3 not admitting LCK structure.

PROBLEM: Prove that a compact torus with non-Kahler complex structure
does not admit an LCK metric, or find one.
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LCK manifolds with Sl-action: main theorem

THEOREM: Let M be a compact complex manifold, equipped with a holo-
morphic Sl_action and an LCK metric (not necessarily compatible). Suppose
that the weight bundle L, restricted to a general orbit of this Sl-action, is
non-trivial as a 1-dimensional local system. Then M admits an LCK metric
with an automorphic potential.

The proof takes the rest of this lecture.

REMARK: The converse statement is also true. Indeed, let M = M /Z be
an LCK manifold with potential, M be its Kdhler covering. As we have already
shown, the Z-action on M admits a logarithm, given by a holomorphic vector
field A € TM. Then ¢ is a holomorphic Sl-action with the required
properties.
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LCK manifolds with Sl-action: Lee form

REMARK: Conformally equivalent metrics are metrics g,q¢' = efg. Con-
formal class of a metric is its class of conformal equivalence.

LEMMA: Let M be a compact complex manifold, equipped with a holomor-
phic Sl-action and an LCK metric (not necessarily compatible). Then there
exists an LCK metric in the same conformal class with Sl-invariant Lee

form.

Proof: Let G be a compact subgroup of Aut(M). Averaging the Lee form
0 on GG, we obtain a closed 1-form 6’ which is Sloinvariant and stays in the
same cohomology class as 0: ¢/ = 0+4df. Then o’ = e Jw is a LCK form with
Lee form 6’ and conformal to w. =
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LCK manifolds with Sl-action: Sl-invariance

Proposition 1: Let (M,w,0) be a compact complex manifold, equipped with
a holomorphic Sl-action and an LCK metric (not necessarily compatible).
Then M admits an Sl-invariant LCK metric.

Proof. Step 1: Using the previous lemma, we chose a metric in the same
conformal class with Sl-invariant Lee form. Therefore, we may assume 6
is Sl-invariant.

Proof. Step 2: For each t € S1, let w; := p(t)*w. Then d(w;) = w; A 0.
Averaging wy with respect to t, we obtain a positive, Sl-invariant form wg,
satisfying d(wgy) = wav A 0. ®

CLAIM: Let (M,w,0) be a compact complex manifold, equipped with a holo-
morphic Sl action by isometries. Then, on a Kihler covering M — M, the
corresponding action of the covering Sl=Ris by holomorphic homo-
theties.

Proof: Indeed, if two Kahler forms are conformally equivalent, they are pro-
portional. m
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Holomorphic homotheties on Kahler manifolds

Proposition 2: Let A be a vector field acting on a Kahler manifold (M, &)
by holomorphic homotheties: Liey w = Aw, with A #= 0. Then

dd°|A]? = \25 + Liege @,
where A¢ = I(A).

Proof. Step 1: Let n = &0JA = I(A)b be the dual form to A¢. Replacing A
by A 1A, we may assume that A = 1. By Cartan’s formula,

w=Lieqo=d(@WisA) = dn.
Step 2: Since A and A€ are holomorphic, Lieye commutes with I. This gives
Liege® = Liege I = I Liege® = IdI Y (&1 A) = d°n.

Step 3: Since Liey commutes with I, one has {d¢ i c} = I Lieg I~! = Liey,
where i,(a) = aav is the contraction operator.
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Holomorphic homotheties on Kahler manifolds (2)

Proposition 2: Let A be a vector field acting on a Kahler manifold (M, &)
by holomorphic homotheties: Liey o = A, with X = 0. Then

dd°|A]? = \25 + Liege @,
where A= I1(A).

Proof. Step 1: Let n:=0JA, and A=1. Then & = Lieqo=d(@01A) = dn.
Step 2: Liege® = Liege I& = I Liege® = IdI 1 (%1 A) = d°.

Step 3: {disc} = ILieyI—1 = Liey, where iy(a) = auv is the contraction
operator.
Step 4:

Liedec & = Liege dn = igeddn + diged’n (%)

(Step 2 and Cartan’s formula). The first summand vanishes because dd‘n =
—ddn = d°w (Step 1). The second summand gives

di gedn = dd*(I(A), I(A)’) — d{d® isc}ln  (x%)

Finally, d{d® ijc}n = dLiegn = Liegdn = & (Step 3 and Step 1). Therefore,
(*) and (**) give Lied.o = dd°|A]? —w, for A\=1. m
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LCK manifolds with S!-action: main theorem (proof)

THEOREM: Let M be a compact complex manifold, equipped with a holo-
morphic Sl-action p and an LCK metric (not necessarily compatible). Sup-
pose that the weight bundle L, restricted to a general orbit of this Sl_action,
IS non-trivial as a l1l-dimensional local system. Then M admits an LCK
metric with an automorphic potential.

Proof. Step 1: Using Proposition 1, we may assume that the metric w
on M is Sl-invariant. Denote the corresponding Kiahler metric on M by @,
and let 5 be the lift of Sl-action to M. Since conformally equivalent Kihler
metrics are proportional, p acts by homotheties.

Step 2: Restriction of the flat connection in the weight bundle L to a loop
has trivial monodromy whenever this loop lifts to a homeomorphic loop in M.
Since L is non-trivial on orbits of p, the lift p is an R-action, not reducible to
Sl-action. Denote the kernel of the natural map impg— imp by . Since M
is a minimal Kahler covering, I acts on M non-isometrically, hence p acts by
non-trivial homotheties. Rescaling, we may assume that the vector field
A tangent to p satisfies Lieyw = @.
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LCK manifolds with Sl-action: main theorem (proof, part 2)

Step 3: Proposition 2 gives
O =dd|A|? — Liege®, (% %)

where A is the homothety vector field tangent to p, and A¢ = I(A). Let
pe = p¢(t)*[w]gc be the Bott-Chern class of etA°(w). By (¥**), u; satisfies
the differential equation uy = —pu¢, hence py = asin(t) + bcos(t), for some
a,b € Hys(M,L).

Step 4: From Step 3 it follows that [£7 ¢!4°[@]dt = 0. Consider the Kihler
form @y = JETe!A(@)dt = 0 on NM. This form is an average of auto-
morphic forms of the same character of automorphicity, because etA° com-
mutes with ¢4, The Bott-Chern class of wyy vanishes, because f@” sin(t)dt =
J&™ cos(t)dt = 0. Therefore, &y, admits an automorphic potential.

Step 5: To finish the proof, it remains to show that the monodromy of
M is Z. This is implied by the theorem proven in Lecture 5.

THEOREM: Let (M,w,0) be a compact LCK manifold, and X a vector field
acting on M by isometries and on M by non-isometric homotheties. Then
Mon(M) =7Z. m
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