Locally conformally Kähler manifolds

lecture 14: Oeljeklaus-Toma manifolds

Misha Verbitsky

HSE and IUM, Moscow

June 2, 2014

Local systems (reminder)

DEFINITION: A local system is a locally constant sheaf of vector spaces.

THEOREM: A local system with fiber *B* at $x \in M$ gives a homomorphism $\pi_1(M, x) \longrightarrow \operatorname{Aut}(B)$. This correspondence gives an equivalence of categories.

DEFINITION: A bundle (B, ∇) is called **flat** if its curvature vanishes.

DEFINITION: A section b of (B, ∇) is called **parallel** if $\nabla(b) = 0$.

CLAIM: Let (B, ∇) be a flat bundle on M, and \mathcal{B} be the sheaf of parallel sections. Then \mathcal{B} is a locally constant sheaf.

THEOREM: This correspondence **gives an equivalence of categories** of flat bundles and local systems.

LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, $\dim_{\mathbb{C}} M > 1$. Then M is called **locally conformally Kähler** (LCK) if $d\omega = \omega \wedge \theta$, where θ is a closed 1-form, called **the Lee form**.

DEFINITION: A manifold is locally conformally Kähler iff it admits a Kähler form taking values in a positive, flat vector bundle *L*, called **the weight bundle**.

DEFINITION: Deck transform, or monodromy maps of a covering $\tilde{M} \longrightarrow M$ are elements of the group $\operatorname{Aut}_{M}(\tilde{M})$. When \tilde{M} is a universal cover, one has $\operatorname{Aut}_{M}(\tilde{M}) = \pi_{1}(M)$.

DEFINITION: An LCK manifold is a complex manifold such that its universal cover \tilde{M} is equipped with a Kähler form $\tilde{\omega}$, and the deck transform acts on \tilde{M} by Kähler homotheties.

THEOREM: These three definitions are equivalent.

Lee class of an LCK manifold (reminder)

DEFINITION: Let (M, ω, θ) be an LCK manifold. The cohomology class $[\theta] \in H^1(M, \mathbb{R})$ of its Lee form θ is called **the Lee class** of M.

REMARK: Monodromy group of an LCK manifold (M, ω, θ) is defined as the Galois group of the smallest covering $\pi : \tilde{M} \longrightarrow M$ such that $\pi^* \theta$ is exact. **Rank** of an LCK manifold is rank of its monodromy group.

PROPOSITION: Let (M, ω, θ) be an LCK manifold and $[\theta]$ its Lee class. Consider a smallest rational subspace $V \subset H^1(M, \mathbb{Q})$ such that $V \otimes_{\mathbb{Q}} \mathbb{R}$ contains $[\theta]$. Then dim V is equal to the rank of M.

Proof: The group Γ is identified with an image of $\pi_1(M)$ under the map $[\theta]: \pi_1(M) \longrightarrow \mathbb{R}$, because it is equal to the monodromy of the weight bundle, and the monodromy along a loop γ is equal to $e^{\int_{\gamma} \theta}$.

M. Verbitsky

Solvmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action of solvable Lie group G. Then M is called a solvmanifold. If G is nilpotent, M is called a nilmanifold.

REMARK: All solvmanifolds are obtained as quotient spaces, M = G/H (Mostow). All nilmanifolds are obtained as quotient spaces $M = G/\Gamma$, where Γ is discrete (Maltsev).

DEFINITION: An integrable complex structure on a real Lie algebra \mathfrak{g} is a subalgebra $\mathfrak{g}^{1,0} \subset \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ such that $\mathfrak{g}^{1,0} \oplus \overline{\mathfrak{g}^{1,0}} = \mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$

REMARK: Right-invariant complex structures on a connected real Lie group **are in 1 to 1 correspondence with integrable complex structures** on its Lie algebra.

DEFINITION: A complex solvmanifold is a solvmanifold M = G/H equipped with a complex structure, in such a way that G has a right-invariant complex structure, and the projection $G \longrightarrow M$ is holomorphic.

REMARK: Solvmanifolds are usually non-homogeneous (as complex manifolds).

Normed fields

DEFINITION: An absolute value on a field k is a function $|\cdot|: k \longrightarrow \mathbb{R}^{\geq 0}$, satisfying the following

- **1. Zero:** $|x| = 0 \Leftrightarrow x = 0$.
- **2.** Multiplicativity: |xy| = |x||y|.
- 3. There exists c > 0 such that $|\cdot|^c$ satisfies the triangle inequality.

EXAMPLE: The usual absolute value on \mathbb{Q} , \mathbb{R} , \mathbb{C} .

EXAMPLE: Let p – be a prime number, and $m, n \in \mathbb{Z}$ coprime with p. Define p-adic absolute value on \mathbb{Q} via $|\frac{m}{n}p^k| := p^{-k}$.

REMARK: *p*-adic absolute value satisfies an additional "non-archimedean axiom": $|x+y| \leq \max(|x|, |y|)$. Such absolute values are called **non-archimedean**.

REMARK: Any power of non-archimedean absolute value is again nonarchimedean, and satisfies the triangle inequality. LCK manifolds, lecture 14

M. Verbitsky

Normed fields and topology

DEFINITION: Let $|\cdot|$ be an absolute value on a field F. Consider topology on F with open sets generated by

$$B_{\varepsilon}(x) := \{ y \in k \mid |x - y| < \varepsilon \}.$$

Absolute values are called **equivalent** if they induce the same topology.

THEOREM: Absolute values $|\cdot|_1, |\cdot|_2$ are equivalent if and only if $|\cdot|_1 = |\cdot|_2^c$ for some c > 0.

THEOREM: (Ostrowski) **Every absolute value on** \mathbb{Q} is equivalent to the usual ("archimedean") one or to *p*-adic one.

DEFINITION: A completion of a field k under an absolute value $|\cdot|$ is a completion of k in a metric $|\cdot|^c$, where c > 0 is a constant such that $|\cdot|^c$ satisfies the triangle inequality.

REMARK: A completion of a field is again a field.

EXAMPLE: A completion of \mathbb{Q} under the *p*-adic absolute value is called **a** field of *p*-adic numbers, denoted \mathbb{Q}_p .

M. Verbitsky

Local fields

DEFINITION: A finite extension K:k of fields is a field $K \supset k$ which is finite-dimensional as a vector space over k. A number field is a finite extension of \mathbb{Q} . Functional field is a finite extension of $\mathbb{F}_p(t)$. Global field is a number or functional field. Local field is a completion of a global field under a non-trivial absolute value.

THEOREM: Let \overline{k} be a field which is complete and locally compact under some absolute value. Then \overline{k} is a local field.

DEFINITION: Let K:k be a finite extension, and $x \in K$. Consider the multiplication by x as a k-linear endomorphism of K. Define the norm $N_{K/k}(x)$ as a determinant of this operator.

REMARK: Norm defines a homomorphism of multiplicative groups $K^* \longrightarrow k^*$.

REMARK: For Galois extensions, the norm $N_{K/k}(x)$ is a product of all elements conjugate to x.

THEOREM: Let \overline{K} : \overline{k} be a finite extension of local fields, degree n. Then an absolute value on \overline{k} is uniquely extended to \overline{K} . Moreover, this extension is expressed as $|x| := |N_{K/k}(x)|^{\frac{1}{n}}$.

M. Verbitsky

Absolute values and extensions of global fields

CLAIM: Let A, B be extensions of a field k, char k = 0, where A:k is finite. Consider $A \otimes_k B$ as an k-algebra. Then $A \otimes_k B$ is a direct sum of fields, containing A and B.

THEOREM: Let k be a number field, $|\cdot|$ an absolute value, K:k a finite extension, and \overline{k} – its completion. Consider a decomposition $K \otimes_k \overline{k}$ into a direct sum of fields $K \otimes_k \overline{k} := \bigoplus_i \overline{K}_i$. Then each extension of an absolute value $|\cdot|$ from k to K is induced from some \overline{K}_i , and all such extensions are non-equivalent.

REMARK: When $k = \mathbb{Q}$, and $|\cdot|$ is the usual (archimedean) absolute value, we obtain that all K_i are extensions of \mathbb{R} , that is, isomorphic to \mathbb{R} or \mathbb{C} . This gives

COROLLARY: For each number field K of degree n over \mathbb{Q} , there exists only a finite number of different homomorphisms $K \hookrightarrow \mathbb{C}$, all of them injective. Denote by s the number of embeddings whose image lies in $\mathbb{R} \subset \mathbb{C}$ (such an embedding is called real), and 2t the number of embedding, whose image does not lie in \mathbb{R} ("complex embeddings). Then s + 2t = n.

Dirichlet unit theorem

DEFINITION: Let $K:\mathbb{Q}$ be a number field of degree n. The ring of integers $\mathcal{O}_K \subset K$ is an integral closure of \mathbb{Z} in K, that is, the set of all roots in K of monic polynomials $P(t) = t^n + a_{n-1}t^{n-1} + a_{n-2}t^{n-2} + ... + a_0$ with integer coefficients $a_i \in \mathbb{Z}$.

CLAIM: An additive group \mathcal{O}_K^+ is a finitely generated abelian group of rank n.

DEFINITION: A unit of a ring \mathcal{O}_K is an element $u \in \mathcal{O}_K$, such that u^{-1} also belongs to \mathcal{O}_K .

REMARK: $u \in \mathcal{O}_K$ is a unit if and only if the norm $N_{K/\mathbb{Q}}(x) \in \mathbb{Z}$ is invertible, that is, $N_{K/\mathbb{Q}}(x) = \pm 1$.

Dirichlet's unit theorem: Let K be a number field which has s real embeddings and 2t complex ones. Then **the group of units** \mathcal{O}_K^* **is isomorphic to** $G \times \mathbb{Z}^{t+s-1}$, where G is a finite group of roots of unity contained in K. Moreover, if s > 0, one has $G = \pm 1$.

REMARK: For a quadratic field, the group of units is a group of solutions of Pell's equation.

LCK manifolds, lecture 14

Cubic fields and complex surfaces

Let $K:\mathbb{Q}$ be a cubic extension of \mathbb{Q} which has 2 complex embeddings τ , $\overline{\tau}$ and one real one σ (such an extension is obtained by adding all roots of a cubic polynomial which has exactly one real root).

REMARK: Due to Dirichlet theorem, \mathcal{O}_K^* is isomorphic to $\mathbb{Z} \times \{\pm 1\}$. Let $\mathcal{O}_K^{*,+} := \sigma^{-1}(\mathbb{R}^{>0}) \cap \mathcal{O}_K^*$. Then **the group** $\mathcal{O}_K^{*,+}$ **is isomorphic to** \mathbb{Z} .

Consider the action of $\mathcal{O}_K^+ \cong \mathbb{Z}^3$ on $\mathbb{R}^3 = \mathbb{C} \times \mathbb{R}$

 $\rho^+(x)(z,t) := (z + \tau(x), t + \sigma(x)).$

Let Γ be a semidirect product $\mathcal{O}_{K}^{+} \rtimes \mathcal{O}_{K}^{*,+}$, defined from the natural action of $\mathcal{O}_{K}^{*,+}$ on \mathcal{O}_{K}^{+} . Define an action of Γ on $\mathbb{C} \times \mathbb{H}$, where \mathbb{H} is an upper halfplane, as follows.

The subgroup $\mathcal{O}_{K}^{+} \subset \Gamma$ acts on $\mathbb{C} \times \mathbb{H} = \mathbb{C} \times \mathbb{R} \times \mathbb{R}^{>0}$ by translations as above (trivially on the last argument), and $\mathcal{O}_{K}^{*,+}$ acts multiplicatively as

$$\rho^*(\xi)(z,z') := (\tau(\xi)z,\sigma(\xi)z').$$

Inoue surfaces of type S^0

DEFINITION: The **Inoue surface of type** S^0 is a quotient $(\mathbb{C} \times \mathbb{H})/\Gamma$.

Its properties: 1. It is a compact, complex solvmanifold

2. Inoue surface admits a flat connection preserving the complex structure (by construction).

3. Its cohomology are the same as of $S^3 \times S^1$

THEOREM: The Inoue surface $M := (\mathbb{C} \times \mathbb{H})/\Gamma$ is locally conformally Kähler.

Proof: Let z, u be coordinates on $\mathbb{C} \times \mathbb{H}$, and $\varphi(z, u) := |z|^2 + \operatorname{Im}(u)^{-1}$. Since $dd^c \varphi = \sqrt{-1} dz \wedge d\overline{z} + 2\sqrt{-1} \operatorname{Im}(u)^{-3} du \wedge du\overline{u}$, it is a Kähler form. Clearly, $dd^c \varphi$ is \mathcal{O}_K^+ -invariant. Let $\varepsilon \in \mathbb{Z} = \mathcal{O}_K^{*,+}$ be a unit. Since $N(\varepsilon)$ is integer and invertible, $N(\varepsilon) = 1$. This implies that $\tau(\varepsilon)^2 = \sigma(\varepsilon)^{-1}$. However, $\varepsilon^*(\varphi) = |\tau(\varepsilon)z|^2 + \operatorname{Im}(\sigma(\varepsilon)u)^{-1}$, hence this $\varepsilon^*(\varphi) = \tau(\varepsilon)^2 \varphi = \sigma(\varepsilon)^{-1} \varphi$. We have found an Kähler form on $\mathbb{C} \times \mathbb{H}$.

Curves on Inoue surface

THEOREM: The Inoue surface $M := (\mathbb{C} \times \mathbb{H})/\Gamma$ has no complex curves

Proof. Step 1: Consider on $\mathbb{C} \times \mathbb{H}$ a function $\varphi(z, z') := \log \operatorname{Im}(z')$. Since Γ multiplies $\operatorname{Im}(z')$ by a number, **the form** $d\varphi$ **is** Γ -**invariant**. Let θ be the corresponding 1-form on M.

Step 2: The 2-form $\omega_0 := d(I\theta)$ has Hodge type (1,1) and **is positive** definite on the leaves of the foliation $\{z\} \times \mathbb{H} \subset \mathbb{C} \times \mathbb{H}$. Indeed,

$$\omega_0 = \sqrt{-1} \,\partial\overline{\partial} \log \varphi = \sqrt{-1} \,\frac{dz' \wedge d\overline{z}'}{|\operatorname{im} z'|^2},$$

where ω_0 is the Poincare metric on \mathbb{H} .

Step 3: Let $\Sigma \subset TM$ be the null-space of the form ω_0 . It is a holomorphic, involutive foliation, whose leaves are obtained from $\mathbb{C} \times \{z'\} \subset \mathbb{C} \times \mathbb{H}$

Step 4: For any complex curve *C* on *M*, $\int_C \omega_0 = 0$, because ω_0 is exact. Therefore, *C* is tangent to a leaf of Σ . It remains to show that Σ has no compact leaves.

Curves on Inoue surfaces

Step 3: Let $\Sigma \subset TM$ be the null-space of the form ω_0 . It is a holomorphic, involutive foliation, whose leaves are obtained from $\mathbb{C} \times \{z'\} \subset \mathbb{C} \times \mathbb{H}$

Step 4: For any complex curve *C* on *M*, $\int_C \omega_0 = 0$, because ω_0 is exact. Therefore, *C* is tangent to a leaf of Σ . It remains to show that Σ has no compact leaves.

Step 5: Let Σ_0 be a leaf of Σ . Its preimage in $\mathbb{C} \times \mathbb{H}$ contains the set

$$\tilde{\Sigma}_{0} := \bigcup_{z \in \mathbb{C}, \zeta \in \mathcal{O}_{K}^{+}} \left(z, (z' + \sigma(\zeta)) \right)$$

where $z' \in \mathbb{H}$ is a fixed point. Since the image of σ is dense in \mathbb{R} , the closure $\tilde{\Sigma}_0$ contains $\mathbb{C} \times \mathbb{R} \times \text{Im}(z')$.

Step 6: Therefore, the closure $\Sigma_0 \subset M$ is at least 3-dimensional, hence Σ has no compact leaves.

Oeljeklaus-Toma manifolds

Let *K* be a number field which has 2t complex embedding denoted $\tau_i, \overline{\tau}_i$ and *s* real ones denoted σ_i , s > 0, t > 0.

Let $\mathcal{O}_{K}^{*,+} := \mathcal{O}_{K}^{*} \cap \bigcap_{i} \sigma_{i}^{-1}(\mathbb{R}^{>0})$. Choose in $\mathcal{O}_{K}^{*,+} \cong \mathbb{Z}^{t+1-1}$ a free abelian subgroup $\mathcal{O}_{K}^{*,U} \cong \mathbb{Z}^{s}$ such that the quotient $\mathbb{R}^{s}/\mathcal{O}_{K}^{*,U}$ is compact, where $\mathcal{O}_{K}^{*,U}$ is mapped to \mathbb{R}^{t} as $\xi \longrightarrow \left(\log(\sigma_{1}(\xi)), ..., \log(\sigma_{t}(\xi))\right)$. Let $\Gamma := \mathcal{O}_{K}^{+} \rtimes \mathcal{O}_{K}^{*,U}$.

DEFINITION: An Oeljeklaus-Toma manifold is a quotient $\mathbb{C}^t \times \mathbb{H}^s / \Gamma$, where \mathcal{O}_K^+ acts on $\mathbb{C}^t \times \mathbb{H}^t$ as

$$\zeta(x_1, ..., x_t, y_1, ..., y_s) = \left(x_1 + \tau_1(\zeta), ..., x_t + \tau_t(\zeta), y_1 + \sigma_1(\zeta), ..., y_s + \sigma_s(\zeta)\right),$$

and $\mathcal{O}_{K}^{\ast,U}$ as

$$\xi(x_1, ..., x_t, y_1, ..., y_s) = \left(\tau_1(\xi) x_1, ..., \tau_t(\xi) x_t, \sigma_1(\xi) y_1, ..., \sigma_t(\xi) y_t\right)$$

Oeljeklaus-Toma manifolds are LCK

THEOREM: (Oeljeklaus-Toma) The OT-manifold $M := \mathbb{C}^t \times \mathbb{H}^s / \Gamma$ is a compact complex solvmanifold. When t = 1, it is locally conformally Kähler. When s = 1, t = 1, it is an Inoue surface of class S^0 .

Proof: We write the automorphic Kähler metric on $\mathbb{C} \times \mathbb{H}^s$ as $dd^c \varphi$, where $\varphi(x, \zeta_1, ..., \zeta_s) = |x|^2 + \prod_{i=1}^s \operatorname{Im}(\zeta_i)^{-1}$. The function φ is clearly plurisobharmonic (it is Poincare metric on each \mathbb{H} , and Euclidean on \mathbb{C}), and $dd^c \varphi$ is \mathcal{O}_K^+ -invariant. Any $\xi \in \mathcal{O}_K^{*,+}$ multiplies $|x|^2$ by $A := \tau(\xi)^2$ and $\prod_{i=1}^s \operatorname{Im}(\zeta_i)^{-1}$ by B^{-1} , where $B := \prod_{i=1}^s \sigma_i(\xi)^{-1}$. However, $AB = N(\xi) = 1$, because the norm $N(\xi)$ is integer and invertible.

Complex geometry of Oeljeklaus-Toma manifolds

THEOREM: Let *K* be a number field which has *s* real embeddings and 2t complex ones, t = 1, s > 0. Then the corresponding Oeljeklaus-Toma manifold has no non-trivial complex subvarieties.

Proof. Step 1: Consider on $\mathbb{C} \times \mathbb{H}^t$ a function $\varphi(z, z_1, ..., z_s) := \prod_i \operatorname{Im}(z_i)$. Since Γ multiplies $\operatorname{Im}(z_i)$ by a number, **the form** $d \log \varphi$ is Γ -invariant. Let θ denote the corresponding 1-form on $M = \mathbb{C} \times \mathbb{H}^s / \Gamma$.

Step 2: The 2-form $\omega_0 := d(I\theta) = dd^c \log \varphi$ has Hodge type (1,1) and **positive definite on the leaves of the foliation** $\{z\} \times \mathbb{H}^t \subset \mathbb{C} \times \mathbb{H}^t$

$$\omega_0 = \sqrt{-1} \,\partial \overline{\partial} \log \varphi = \sqrt{-1} \,\sum_i \frac{dz_i \wedge d\overline{z}_i}{|\operatorname{im} z_i|^2}.$$

Also, $\omega_0 \ge 0$.

Step 3: Let $\Sigma \subset TM$ be the null-foliation of ω_0 (the foliation generated by the null eigenspace). It is a holomorphic, involutive, smooth 1-dimensional foliation, with the leaves which are obtained from $\mathbb{C} \times \{(z_1, ..., z_s)\} \subset \mathbb{C} \times \mathbb{H}^s$.

LCK manifolds, lecture 14

Step 4: For any complex k-dimensional subvariety $C \subset M$, the integral $\int_C \omega_0^k = 0$, because ω_0 is exact. Therefore, C is at each point tangent to a leaf of Σ . Since Σ is 1-dimensional, this means that C contains at least one leaf of Σ .

Step 5: It remains to show that any variety which contains a leaf of Σ coincides with M.

Step 6: Let Σ_0 be a leaf of Σ . Its preimage in $\mathbb{C} \times \mathbb{H}^s$ contains a set

$$\tilde{\Sigma}_0(z_1,...,z_s) := \bigcup_{z \in \mathbb{C}, \zeta \in \mathcal{O}_K^+} \left(z, (z_1 + \sigma_1(\zeta),...,z_s + \sigma_s(\zeta)) \right)$$

where $z_1, ..., z_s \in \mathbb{H}^s$ is some fixed point.

Step 7: We reduced the theorem to the following statement

CLAIM: A closure of $\tilde{\Sigma}_0(z_1, ..., z_s)$ contains a set

 $Z_{\alpha_1,...,\alpha_s} := \{(\zeta, \zeta_1, ..., \zeta_s) \mid \text{ im } \zeta_i = \alpha_i, i = 1, ..., s\}$

where $\alpha_i = \operatorname{im} z_i$.

Indeed, the smallest complex subspace containing $T_x Z_{\alpha_1,...,\alpha_s}$ is $T_x M$.

The adele ring

The previous claim is immediately implied by the following statement, applied to the set $\rho_1, ..., \rho_m$ of all real embedings.

Theorem 1 Let $K:\mathbb{Q}$ be a number field with has 2t complex embeddings $\tau_1, \overline{\tau}_1, \ldots$ and s real ones, $\sigma_1, \ldots, \sigma_t, \quad \rho_1, \ldots, \rho_m$ – embeddings K to \mathbb{C} or \mathbb{R} , and each of τ_i and σ_i appears once, except one. Consider the map R: $K \longrightarrow \mathbb{R}^a \times \mathbb{C}^b, R(\xi) := \rho_1(\xi), \ldots, \rho_m(\xi)$. Then the image of \mathcal{O}_K is dense in $\mathbb{R}^a \times \mathbb{C}^b$.

The proof is based on the **strong approximation theorem** (which is a "modern version" of Chinese remainders theorem).

DEFINITION: Adelic group \mathcal{A}_K is a subset of the product $\prod_{\nu} K_{\nu}$ of all completions of K for all equivalence classes ν of absolute value functions, consisting of sequences $(x_{\nu_1}, ..., x_{\nu_n}, ...)$ where $|x_{\nu_i}| \leq 1$ for all i except the finite number.

REMARK: Tikhonov's theorem implies that A_K is locally compact.

The strong approximation theorem

Strong approximation theorem: Consider the natural embedding $K \subset \mathcal{A}_K$. Then its image is a discrete, cocompact subgroup. Moreover, the projection of $\mathcal{A}_K \xrightarrow{P_{\nu_0}} \prod_{\nu \neq \nu_0} K_{\nu}$ to the product of all completions except one maps K to a dense subset of $R_{\nu_0}(\mathcal{A}_K)$.

REMARK: Further on, K is considered as a subring of A_K .

Proof of Theorem 1. Step 1: Let \mathcal{O}_{A_K} be a ring of all integer adeles, that is, such $(x_{\nu_1}, ..., x_{\nu_n}, ...) \in \mathcal{A}_K$, that $|x_{\nu_i}| \leq 1$ for each non-archimedean absolute value. Then $\mathcal{O}_K = K \cap \mathcal{O}_{A_K}$.

Step 2: Let now $P : \mathcal{A}_K \longrightarrow \mathcal{A}_1$ be a projection of \mathcal{A}_K to the product of all completions except one archimedean. Since \mathcal{O}_{A_K} is open in \mathcal{A}_K , its projection to \mathcal{A}_1 is open in \mathcal{A}_1 (the projection is an open map).

Step 3: We obtain that the image $P(K) \cap P(\mathcal{O}_{A_K})$ is dense in $P(\mathcal{O}_{A_K})$. **From Step 1, we obtain that** $P(K) \cap P(\mathcal{O}_{A_K})$ **coinsides with** $P(\mathcal{O}_K)$.

Step 4: We proved that $P(\mathcal{O}_K)$ is dense in $\mathcal{A}_1 \cap P(\mathcal{O}_{A_K})$. Therefore, its projection to the product of all archimedean completions except one is also dense.