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Local systems (reminder)

DEFINITION: A local system is a locally constant sheaf of vector spaces.

THEOREM: A local system with fiber B at x ∈ M gives a homomorphism

π1(M,x)−→ Aut(B). This correspondence gives an equivalence of cat-

egories.

DEFINITION: A bundle (B,∇) is called flat if its curvature vanishes.

DEFINITION: A section b of (B,∇) is called parallel if ∇(b) = 0.

CLAIM: Let (B,∇) be a flat bundle on M , and B be the sheaf of parallel

sections. Then B is a locally constant sheaf.

THEOREM: This correspondence gives an equivalence of categories of

flat bundles and local systems.
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LCK manifolds (reminder)

DEFINITION: Let (M, I, ω) be a Hermitian manifold, dimCM > 1. Then M

is called locally conformally Kähler (LCK) if dω = ω∧ θ, where θ is a closed

1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kähler iff it admits a

Kähler form taking values in a positive, flat vector bundle L, called the weight

bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M̃ −→M

are elements of the group AutM(M̃). When M̃ is a universal cover, one

has AutM(M̃) = π1(M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-

versal cover M̃ is equipped with a Kähler form ω̃, and the deck transform acts

on M̃ by Kähler homotheties.

THEOREM: These three definitions are equivalent.
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Lee class of an LCK manifold (reminder)

DEFINITION: Let (M,ω, θ) be an LCK manifold. The cohomology class

[θ] ∈ H1(M,R) of its Lee form θ is called the Lee class of M .

REMARK: Monodromy group of an LCK manifold (M,ω, θ) is defined as

the Galois group of the smallest covering π : M̃ −→M such that π∗θ is exact.

Rank of an LCK manifold is rank of its monodromy group.

PROPOSITION: Let (M,ω, θ) be an LCK manifold and [θ] its Lee class.

Consider a smallest rational subspace V ⊂ H1(M,Q) such that V ⊗QR contains

[θ]. Then dimV is equal to the rank of M.

Proof: The group Γ is identified with an image of π1(M) under the map

[θ] : π1(M)−→ R, because it is equal to the monodromy of the weight bundle,

and the monodromy along a loop γ is equal to e

∫
γ θ.
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Solvmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action
of solvable Lie group G. Then M is called a solvmanifold. If G is nilpotent,
M is called a nilmanifold.

REMARK: All solvmanifolds are obtained as quotient spaces, M = G/H

(Mostow). All nilmanifolds are obtained as quotient spaces M = G/Γ, where
Γ is discrete (Maltsev).

DEFINITION: An integrable complex structure on a real Lie algebra g is
a subalgebra g1,0 ⊂ g⊗R C such that g1,0 ⊕ g1,0 = g⊗R C

REMARK: Right-invariant complex structures on a connected real Lie group
are in 1 to 1 correspondence with integrable complex structures on its
Lie algebra.

DEFINITION: A complex solvmanifold is a solvmanifold M = G/H equipped
with a complex structure, in such a way that G has a right-invariant complex
structure, and the projection G−→M is holomorphic.

REMARK: Solvmanifolds are usually non-homogeneous (as complex
manifolds).
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Normed fields

DEFINITION: An absolute value on a field k is a function | · | : k −→ R>0,

satisfying the following

1. Zero: |x| = 0 ⇔ x = 0.

2. Multiplicativity: |xy| = |x||y|.

3. There exists c > 0 such that | · |c satisfies the triangle inequality.

EXAMPLE: The usual absolute value on Q, R, C.

EXAMPLE: Let p – be a prime number, and m,n ∈ Z coprime with p. Define

p-adic absolute value on Q via |mn p
k| := p−k.

REMARK: p-adic absolute value satisfies an additional “non-archimedean ax-

iom”: |x+y| 6 max(|x|, |y|). Such absolute values are called non-archimedean.

REMARK: Any power of non-archimedean absolute value is again non-

archimedean, and satisfies the triangle inequality.
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Normed fields and topology

DEFINITION: Let | · | be an absolute value on a field F . Consider topology
on F with open sets generated by

Bε(x) := {y ∈ k | |x− y| < ε}.

Absolute values are called equivalent if they induce the same topology.

THEOREM: Absolute values | · |1, | · |2 are equivalent if and only if
| · |1 = | · |c2 for some c > 0.

THEOREM: (Ostrowski) Every absolute value on Q is equivalent to the
usual (”archimedean”) one or to p-adic one.

DEFINITION: A completion of a field k under an absolute value | · | is a
completion of k in a metric | · |c, where c > 0 is a constant such that | · |c
satisfies the triangle inequality.

REMARK: A completion of a field is again a field.

EXAMPLE: A completion of Q under the p-adic absolute value is called a
field of p-adic numbers, denoted Qp.
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Local fields

DEFINITION: A finite extension K : k of fields is a field K ⊃ k which
is finite-dimensional as a vector space over k. A number field is a finite
extension of Q. Functional field is a finite extension of Fp(t). Global field
is a number or functional field. Local field is a completion of a global field
under a non-trivial absolute value.

THEOREM: Let k be a field which is complete and locally compact under
some absolute value. Then k is a local field.

DEFINITION: Let K:k be a finite extension, and x ∈ K. Consider the mul-
tiplication by x as a k-linear endomorphism of K. Define the norm NK/k(x)
as a determinant of this operator.

REMARK: Norm defines a homomorphism of multiplicative groups K∗ −→ k∗.

REMARK: For Galois extensions, the norm NK/k(x) is a product of all
elements conjugate to x.

THEOREM: Let K :k be a finite extension of local fields, degree n. Then an
absolute value on k is uniquely extended to K. Moreover, this extension

is expressed as |x| :=
∣∣∣NK/k(x)

∣∣∣1n.
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Absolute values and extensions of global fields

CLAIM: Let A,B be extensions of a field k, char k = 0, where A:k is finite.

Consider A ⊗k B as an k-algebra. Then A ⊗k B is a direct sum of fields,

containing A and B.

THEOREM: Let k be a number field, | · | an absolute value, K :k a finite

extension, and k – its completion. Consider a decomposition K ⊗k k into a

direct sum of fields K ⊗k k :=
⊕
iKi. Then each extension of an absolute

value | · | from k to K is induced from some Ki, and all such extensions

are non-equivalent.

REMARK: When k = Q, and | · | is the usual (archimedean) absolute value,

we obtain that all Ki are extensions of R, that is, isomorphic to R or C. This

gives

COROLLARY: For each number field K of degree n over Q, there

exists only a finite number of different homomorphisms K ↪→ C, all of

them injective. Denote by s the number of embeddings whose image lies in

R ⊂ C (such an embedding is called real), and 2t the number of embedding,

whose image does not lie in R (“complex embeddings). Then s+ 2t = n.
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Dirichlet unit theorem

DEFINITION: Let K :Q be a number field of degree n. The ring of integers
OK ⊂ K is an integral closure of Z in K, that is, the set of all roots in K

of monic polynomials P (t) = tn + an−1t
n−1 + an−2t

n−2 + ...+ a0 with integer
coefficients ai ∈ Z.

CLAIM: An additive group O+
K is a finitely generated abelian group of

rank n.

DEFINITION: A unit of a ring OK is an element u ∈ OK, such that u−1

also belongs to OK.

REMARK: u ∈ OK is a unit if and only if the norm NK/Q(x) ∈ Z is invertible,
that is, NK/Q(x) = ±1.

Dirichlet’s unit theorem: Let K be a number field which has s real em-
beddings and 2t complex ones. Then the group of units O∗K is isomorphic
to G × Zt+s−1, where G is a finite group of roots of unity contained in K.
Moreover, if s > 0, one has G = ±1.

REMARK: For a quadratic field, the group of units is a group of solutions
of Pell’s equation.
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Cubic fields and complex surfaces

Let K :Q be a cubic extension of Q which has 2 complex embeddings τ , τ and

one real one σ (such an extension is obtained by adding all roots of a cubic

polynomial which has exactly one real root).

REMARK: Due to Dirichlet theorem, O∗K is isomorphic to Z × {±1}. Let

O∗,+K := σ−1(R>0) ∩ O∗K. Then the group O∗,+K is isomorphic to Z.

Consider the action of O+
K
∼= Z3 on R3 = C× R

ρ+(x)(z, t) := (z + τ(x), t+ σ(x)).

Let Γ be a semidirect product O+
K o O∗,+K , defined from the natural action

of O∗,+K on O+
K . Define an action of Γ on C × H, where H is an upper

halfplane, as follows.

The subgroup O+
K ⊂ Γ acts on C× H = C× R× R>0 by translations as above

(trivially on the last argument), and O∗,+K acts multiplicatively as

ρ∗(ξ)(z, z′) := (τ(ξ)z, σ(ξ)z′).
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Inoue surfaces of type S0

DEFINITION: The Inoue surface of type S0 is a quotient (C× H)/Γ.

Its properties: 1. It is a compact, complex solvmanifold

2. Inoue surface admits a flat connection preserving the complex struc-

ture (by construction).

3. Its cohomology are the same as of S3 × S1

THEOREM: The Inoue surface M := (C × H)/Γ is locally conformally

Kähler.

Proof: Let z, u be coordinates on C×H, and ϕ(z, u) := |z|2 + Im(u)−1. Since

ddcϕ =
√
−1 dz ∧ dz + 2

√
−1 Im(u)−3du ∧ duu, it is a Kähler form. Clearly,

ddcϕ is O+
K-invariant. Let ε ∈ Z = O∗,+K be a unit. Since N(ε) is integer and

invertible, N(ε) = 1. This implies that τ(ε)2 = σ(ε)−1. However, ε∗(ϕ) =

|τ(ε)z|2 + Im(σ(ε)u)−1, hence this ε∗(ϕ) = τ(ε)2ϕ = σ(ε)−1ϕ. We have found

an Kähler form on C× H.
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Curves on Inoue surface

THEOREM: The Inoue surface M := (C× H)/Γ has no complex curves

Proof. Step 1: Consider on C × H a function ϕ(z, z′) := log Im(z′). Since

Γ multiplies Im(z′) by a number, the form dϕ is Γ-invariant. Let θ be the

corresponding 1-form on M .

Step 2: The 2-form ω0 := d(Iθ) has Hodge type (1,1) and is positive

definite on the leaves of the foliation {z} × H ⊂ C× H. Indeed,

ω0 =
√
−1 ∂∂ logϕ =

√
−1

dz′ ∧ dz′

| im z′|2
,

where ω0 is the Poincare metric on H.

Step 3: Let Σ ⊂ TM be the null-space of the form ω0. It is a holomorphic,

involutive foliation, whose leaves are obtained from C× {z′} ⊂ C× H

Step 4: For any complex curve C on M ,
∫
C ω0 = 0, because ω0 is exact.

Therefore, C is tangent to a leaf of Σ. It remains to show that Σ has no

compact leaves.
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Curves on Inoue surfaces

Step 3: Let Σ ⊂ TM be the null-space of the form ω0. It is a holomorphic,

involutive foliation, whose leaves are obtained from C× {z′} ⊂ C× H

Step 4: For any complex curve C on M ,
∫
C ω0 = 0, because ω0 is exact.

Therefore, C is tangent to a leaf of Σ. It remains to show that Σ has no

compact leaves.

Step 5: Let Σ0 be a leaf of Σ. Its preimage in C× H contains the set

Σ̃0 :=
⋃

z∈C,ζ∈O+
K

(
z, (z′+ σ(ζ))

)

where z′ ∈ H is a fixed point. Since the image of σ is dense in R, the closure

Σ̃0 contains C× R× Im(z′).

Step 6: Therefore, the closure Σ0 ⊂ M is at least 3-dimensional, hence

Σ has no compact leaves.
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Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted τi, τ i and

s real ones denoted σi, s > 0, t > 0.

Let O∗,+K := O∗K ∩
⋂
i σ
−1
i (R>0). Choose in O∗,+K

∼= Zt+1−1 a free abelian

subgroup O∗,UK
∼= Zs such that the quotient Rs/O∗,UK is compact, where O∗,UK

is mapped to Rt as ξ −→
(

log(σ1(ξ)), ..., log(σt(ξ))
)
. Let Γ := O+

K oO∗,UK .

DEFINITION: An Oeljeklaus-Toma manifold is a quotient Ct × Hs/Γ,

where O+
K acts on Ct × Ht as

ζ(x1, ..., xt, y1, ..., ys) =

(
x1 + τ1(ζ), ..., xt + τt(ζ), y1 + σ1(ζ), ..., ys + σs(ζ)

)
,

and O∗,UK as

ξ(x1, ..., xt, y1, ..., ys) =

(
τ1(ξ)x1, ..., τt(ξ)xt, σ1(ξ)y1, ..., σt(ξ)yt

)
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Oeljeklaus-Toma manifolds are LCK

THEOREM: (Oeljeklaus-Toma) The OT-manifold M := Ct × Hs/Γ is a

compact complex solvmanifold. When t = 1, it is locally conformally

Kähler. When s = 1, t = 1, it is an Inoue surface of class S0.

Proof: We write the automorphic Kähler metric on C × Hs as ddcϕ, where

ϕ(x, ζ1, ..., ζs) = |x|2 +
∏s
i=1 Im(ζi)

−1. The function ϕ is clearly plurisobhar-

monic (it is Poincare metric on each H, and Euclidean on C), and ddcϕ is

O+
K-invariant. Any ξ ∈ O∗,+K multiplies |x|2 by A := τ(ξ)2 and

∏s
i=1 Im(ζi)

−1

by B−1, where B :=
∏s
i=1 σi(ξ)

−1. However, AB = N(ξ) = 1, because the

norm N(ξ) is integer and invertible.
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Complex geometry of Oeljeklaus-Toma manifolds

THEOREM: Let K be a number field which has s real embeddings and 2t

complex ones, t = 1, s > 0. Then the corresponding Oeljeklaus-Toma

manifold has no non-trivial complex subvarieties.

Proof. Step 1: Consider on C × Ht a function ϕ(z, z1, ..., zs) :=
∏
i Im(zi).

Since Γ multiplies Im(zi) by a number, the form d logϕ is Γ-invariant. Let

θ denote the corresponding 1-form on M = C× Hs/Γ.

Step 2: The 2-form ω0 := d(Iθ) = ddc logϕ has Hodge type (1,1) and

positive definite on the leaves of the foliation {z} × Ht ⊂ C× Ht

ω0 =
√
−1 ∂∂ logϕ =

√
−1

∑
i

dzi ∧ dzi
| im zi|2

.

Also, ω0 > 0.

Step 3: Let Σ ⊂ TM be the null-foliation of ω0 (the foliation generated by the

null eigenspace). It is a holomorphic, involutive, smooth 1-dimensional

foliation, with the leaves which are obtained from C× {(z1, ..., zs)} ⊂ C× Hs.
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Step 4: For any complex k-dimensional subvariety C ⊂ M , the integral∫
C ω

k
0 = 0, because ω0 is exact. Therefore, C is at each point tangent to

a leaf of Σ. Since Σ is 1-dimensional, this means that C contains at
least one leaf of Σ.

Step 5: It remains to show that any variety which contains a leaf of Σ
coincides with M.

Step 6: Let Σ0 be a leaf of Σ. Its preimage in C× Hs contains a set

Σ̃0(z1, ..., zs) :=
⋃

z∈C,ζ∈O+
K

(
z, (z1 + σ1(ζ), ..., zs + σs(ζ))

)

where z1, ..., zs ∈ Hs is some fixed point.

Step 7: We reduced the theorem to the following statement

CLAIM: A closure of Σ̃0(z1, ..., zs) contains a set

Zα1,...,αs := {(ζ, ζ1, ..., ζs) | im ζi = αi, i = 1, ..., s}

where αi = im zi.

Indeed, the smallest complex subspace containing TxZα1,...,αs is TxM.
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The adele ring

The previous claim is immediately implied by the following statement, applied

to the set ρ1, ..., ρm of all real embedings.

Theorem 1 Let K :Q be a number field with has 2t complex embeddings

τ1, τ1, ... and s real ones, σ1, ..., σt, ρ1, ..., ρm – embeddings K to C or R,

and each of τi and σi appears once, except one. Consider the map R :

K −→ Ra × Cb, R(ξ) := ρ1(ξ), ..., ρm(ξ). Then the image of OK is dense in

Ra × Cb.

The proof is based on the strong approximation theorem (which is a “mod-

ern version” of Chinese remainders theorem).

DEFINITION: Adelic group AK is a subset of the product
∏
νKν of all

completions of K for all equivalence classes ν of absolute value functions,

consisting of sequences (xν1, ..., xνn, ...) where |xνi| 6 1 for all i except the

finite number.

REMARK: Tikhonov’s theorem implies that AK is locally compact.
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The strong approximation theorem

Strong approximation theorem: Consider the natural embedding K ⊂ AK.
Then its image is a discrete, cocompact subgroup. Moreover, the pro-

jection of AK
Pν0−→

∏
ν 6=ν0

Kν to the product of all completions except one
maps K to a dense subset of Rν0(AK).

REMARK: Further on, K is considered as a subring of AK.

Proof of Theorem 1. Step 1: Let OAK be a ring of all integer adeles,
that is, such (xν1, ..., xνn, ...) ∈ AK, that |xνi| 6 1 for each non-archimedean
absolute value. Then OK = K ∩ OAK.

Step 2: Let now P : AK −→A1 be a projection of AK to the product of
all completions except one archimedean. Since OAK is open in AK, its
projection to A1 is open in A1 (the projection is an open map).

Step 3: We obtain that the image P (K)∩P (OAK) is dense in P (OAK). From
Step 1, we obtain that P (K) ∩ P (OAK) coinsides with P (OK).

Step 4: We proved that P (OK) is dense in A1 ∩ P (OAK). Therefore, its
projection to the product of all archimedean completions except one
is also dense.
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