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Local systems (reminder)

DEFINITION: A local system is a locally constant sheaf of vector spaces.
THEOREM: A local system with fiber B at x € M gives a homomorphism
w1 (M,z) — Aut(B). This correspondence gives an equivalence of cat-
egories.

DEFINITION: A bundle (B,V) is called flat if its curvature vanishes.

DEFINITION: A section b of (B,V) is called parallel if V(b) = 0.

CLAIM: Let (B,V) be a flat bundle on M, and B be the sheaf of parallel
sections. Then B is a locally constant sheaf.

THEOREM: This correspondence gives an equivalence of categories of
flat bundles and local systems.
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LCK manifolds (reminder)

DEFINITION: Let (M, I,w) be a Hermitian manifold, dim¢ M > 1. Then M
is called locally conformally Kahler (LCK) if dw = w A8, where 6 is a closed
1-form, called the Lee form.

DEFINITION: A manifold is locally conformally Kahler iff it admits a
Kahler form taking values in a positive, flat vector bundle L, called the weight
bundle.

DEFINITION: Deck transform, or monodromy maps of a covering M — M
are elements of the group Auty/(M). When M is a universal cover, one
has Aut,;(M) = 1 (M).

DEFINITION: An LCK manifold is a complex manifold such that its uni-
versal cover M is equipped with a Kidhler form &, and the deck transform acts
on M by Kihler homotheties.

THEOREM: These three definitions are equivalent.
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Lee class of an LCK manifold (reminder)

DEFINITION: Let (M,w,0) be an LCK manifold. The cohomology class
[0] € HY(M,R) of its Lee form 6 is called the Lee class of M.

REMARK: Monodromy group of an LCK manifold (M,w,#) is defined as
the Galois group of the smallest covering = : M — M such that #«*0 is exact.
Rank of an LCK manifold is rank of its monodromy group.

PROPOSITION: Let (M,w,0) be an LCK manifold and [0] its Lee class.
Consider a smallest rational subspace V C Hl(M, Q) such that V®@R contains
[0]. Then dimV is equal to the rank of M.

Proof: The group I is identified with an image of n1(M) under the map
[0] . m1(M) — R, because it is equal to the monodromy of the weight bundle,

and the monodromy along a loop ~ is equal to efvg. u



L. CK manifolds, lecture 14 M. Verbitsky

Solvmanifolds

DEFINITION: Let M be a smooth manifold equipped with a transitive action
of solvable Lie group G. Then M is called a solvmanifold. If G is nilpotent,
M is called a nilmanifold.

REMARK: All solvmanifolds are obtained as quotient spaces, M = G/H
(Mostow). All nilmanifolds are obtained as quotient spaces M = G/I', where
[ is discrete (Maltsev).

DEFINITION: An integrable complex structure on a real Lie algebra g is
a subalgebra g1 ¢ g ®p C such that g1 9@ gl0 =g C

REMARK: Right-invariant complex structures on a connected real Lie group
are in 1 to 1 correspondence with integrable complex structures on its
Lie algebra.

DEFINITION: A complex solvmanifold is a solvmanifold M = G/H equipped
with a complex structure, in such a way that G has a right-invariant complex
structure, and the projection G — M is holomorphic.

REMARK: Solvmanifolds are usually non-homogeneous (as complex
manifolds).
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Normed fields

DEFINITION: An absolute value on a field k is a function |-|: k — R>9,
satisfying the following

1. Zero: |z| =0 & = =0.

2. Multiplicativity: |zy| = |z||y|.

3. There exists ¢ > 0 such that |- | satisfies the triangle inequality.
EXAMPLE: The usual absolute value on Q, R, C.

EXAMPLE: Let p — be a prime number, and m,n € Z coprime with p. Define
p-adic absolute value on Q via |Zp*| ;= p~*.

REMARK: p-adic absolute value satisfies an additional “non-archimedean ax-
iom”: |z+y| < max(|z|, |y|). Such absolute values are called non-archimedean.

REMARK: Any power of non-archimedean absolute value is again non-
archimedean, and satisfies the triangle inequality.
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Normed fields and topology

DEFINITION: Let |-| be an absolute value on a field F. Consider topology
on F' with open sets generated by

Be(z) :={y €k | |z—y|<e}

Absolute values are called equivalent if they induce the same topology.

THEOREM: Absolute values |- |1,| - |» are equivalent if and only if
|-]1 =|-|5 for some c > 0.

THEOREM: (Ostrowski) Every absolute value on Q is equivalent to the
usual (” archimedean” ) one or to p-adic one.

DEFINITION: A completion of a field k£ under an absolute value |- | is a
completion of k in a metric |- |% where ¢ > 0 is a constant such that |- |¢
satisfies the triangle inequality.

REMARK: A completion of a field is again a field.

EXAMPLE: A completion of Q under the p-adic absolute value is called a
field of p-adic numbers, denoted Qy.

-
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Local fields

DEFINITION: A finite extension K :k of fields is a field K D k which
is finite-dimensional as a vector space over k. A number field is a finite
extension of Q. Functional field is a finite extension of Fp(¢). Global field
IS @ number or functional field. Local field is a completion of a global field
under a non-trivial absolute value.

THEOREM: Let k£ be a field which is complete and locally compact under
some absolute value. Then k is a local field.

DEFINITION: Let K:k be a finite extension, and x € K. Consider the mul-
tiplication by x as a k-linear endomorphism of K. Define the norm NK/k(a:)
as a determinant of this operator.

REMARK: Norm defines a homomorphism of multiplicative groups K* — k*.

REMARK: For Galois extensions, the norm NK/k(a;) iIs a product of all
elements conjugate to =x.

THEOREM: Let K :k be a finite extension of local fields, degree n. Then an
absolute value on k£ is uniquely extended to K. Moreover, this extension

1
IS expressed as |z| ;= ‘NK/k(l’)‘"-
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Absolute values and extensions of global fields

CLAIM: Let A, B be extensions of a field k, chark = 0, where A:k is finite.
Consider A ®; B as an k-algebra. Then A ®; B is a direct sum of fields,
containing A and B.

THEOREM: Let k£ be a number field, |- | an absolute value, K:k a finite
extension, and k — its completion. Consider a decomposition K ® k into a
direct sum of fields K @ k := @; K;. Then each extension of an absolute
value |-| from k to K is induced from some K;, and all such extensions
are non-equivalent.

REMARK: When k= Q, and |- | is the usual (archimedean) absolute value,
we obtain that all K; are extensions of R, that is, isomorphic to R or C. This
gives

COROLLARY: For each number field K of degree n over Q, there
exists only a finite number of different homomorphisms K — C, all of
them injective. Denote by s the number of embeddings whose image lies in
R C C (such an embedding is called real), and 2t the number of embedding,
whose image does not lie in R (“complex embeddings). Then s 4 2t = n.
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Dirichlet unit theorem

DEFINITION: Let K:Q be a number field of degree n. The ring of integers
O C K is an integral closure of Z in K, that is, the set of all roots in K
of monic polynomials P(t) = t" 4 a,,_1t" 1 4+ a,,_-t" 2 4+ ... + ag with integer
coefficients a; € Z.

CLAIM: An additive group (’)} IS a finitely generated abelian group of
rank n.

DEFINITION: A unit of a ring O is an element u € O, such that v 1
also belongs to O.

REMARK: u € Oy is a unit if and only if the norm NK/@(:B) € 7 is invertible,
that is, NK/Q(a;) = +1.

Dirichlet’s unit theorem: Let K be a number field which has s real em-
beddings and 2t complex ones. Then the group of units O}( IS iIsomorphic
to G x ztTs5—1, where G is a finite group of roots of unity contained in K.
Moreover, if s > 0, one has G = +1.

REMARK: For a quadratic field, the group of units is a group of solutions
of Pell's equation.
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Cubic fields and complex surfaces

Let K:Q be a cubic extension of Q which has 2 complex embeddings r, 7 and
one real one o (such an extension is obtained by adding all roots of a cubic
polynomial which has exactly one real root).

REMARK: Due to Dirichlet theorem, O3 is isomorphic to Z x {£1}. Let
O}”L = o 1(R”Y) N O%. Then the group (’)}}”L is isomorphic to Z.

Consider the action of (’)} ~2730onR3=CxR

pT(2)(2,t) = (z + 7(x),t + o(x)).
Let ' be a semidirect product O?E X O}{", defined from the natural action

of (’)}"" on (’)[Jg. Define an action of T on C x H, where H is an upper
halfplane, as follows.

The subgroup O}'g CTlactson CxH=C xR x R>9 by translations as above

(trivially on the last argument), and (’)}QL acts multiplicatively as

p (&) (2, 2") == (1(&)z,0(£)7).
11
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Inoue surfaces of type S°
DEFINITION: The Inoue surface of type S° is a quotient (C x H)/T.
Its properties: 1. It is a compact, complex solvmanifold

2. Inoue surface admits a flat connection preserving the complex struc-
ture (by construction).

3. Its cohomology are the same as of S3 x S1

THEOREM: The Inoue surface M := (C x H)/I' is locally conformally
Kahler.

Proof: Let z,u be coordinates on C x H, and ¢(z,u) := |2|2 4+Im(u)~1. Since
dd¢p = /=1 dz A dz 4+ 2+/—1 Im(uw)3du A dum, it is a Kahler form. Clearly,
dd°p is OFf-invariant. Let e € Z = O be a unit. Since N(e) is integer and
invertible, N(¢) = 1. This implies that 7(¢)2 = o(¢)~1. However, *(p) =
I7(e)z|2 +Im(o(e)u) L, hence this e*(p) = 7(e)2¢p = () “1p. We have found
an Kahler form on C x H. =
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Curves on Inoue surface
THEOREM: The Inoue surface M := (C x H)/I' has no complex curves

Proof. Step 1: Consider on C x H a function ¢(z,2") := logIm(z’). Since
[ multiplies Im(z’) by a number, the form dy is N-invariant. Let 0 be the
corresponding 1-form on M.

Step 2: The 2-form wg := d(I0) has Hodge type (1,1) and is positive
definite on the leaves of the foliation {z} x H C C x H. Indeed,

dz' A dZ’

[im 2/|2°

wo=+V—-100logyp =+v—1

where wq is the Poincare metric on H.

Step 3: Let > CTM be the null-space of the form wg. It is a holomorphic,
involutive foliation, whose leaves are obtained from C x {2’} C C x H

Step 4: For any complex curve C on M, [rwg = 0O, because wqg is exact.
Therefore, C' is tangent to a leaf of >. It remains to show that > has no
compact leaves.

13
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Curves on Inoue surfaces

Step 3: Let > CTM be the null-space of the form wg. It is a holomorphic,
involutive foliation, whose leaves are obtained from C x {2’} C C x H

Step 4: For any complex curve C on M, [rwg = 0O, because wqg is exact.
Therefore, C' is tangent to a leaf of >.. It remains to show that > has no
compact leaves.

Step 5: Let 2o be a leaf of 2. Its preimage in C x H contains the set

>oi= U (Z, (Z’-I-J(C)))

2€C,CeOf

where 2/ € H is a fixed point. Since the image of ¢ is dense in R, the closure
> o contains C x R x Im(2/).

Step 6: Therefore, the closure 2o C M is at least 3-dimensional, hence
2. has no compact leaves.
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Oeljeklaus-Toma manifolds

Let K be a number field which has 2t complex embedding denoted 7;,7; and
s real ones denoted o;, s > 0, t > 0.

Let O}+ = 0% NN;o; L(R>%). Choose in O}"’ >~ 7t+1-1 3 free abelian

subgroup 0%V 22 75 such that the quotient RS/0%Y is compact, where ©%V
K K K

is mapped to Rt as & — <Iog(al(§)), - Iog(at(g))). Let [T := O; X C’)}'}U.

DEFINITION: An Oeljeklaus-Toma manifold is a quotient C! x HS/I,
where O?; acts on C! x H as

C(xla ey Lty Y1 "'7y8) — (CB]_ + Tl(C)a ey Lt + Tt(C)7y1 + Ul(C)? ey Ys + US(C)))

and O}?U as

E(x1, s Tt Y15 s Us) = <T1(€)901,---,Tt(ﬁ)xt,al(f)yl,-.-,at(f)yt>
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Oeljeklaus-Toma manifolds are LCK

THEOREM: (Oeljeklaus-Toma) The OT-manifold M := C! x H5/I is a
compact complex solvmanifold. When t = 1, it is locally conformally
Kahler. When s=1,t=1, it is an Inoue surface of class S0,

Proof: We write the automorphic Kahler metric on C x H® as dd‘p, where
o(z,C1, ., Cs) = |22 + [Ti_;Im(¢) ™. The function ¢ is clearly plurisobhar-
monic (it is Poincare metric on each H, and Euclidean on C), and ddp is
(’);—invariant. Any £ € (’);’fF multiplies |z|? by A := 7(£)? and [[5_;Im(¢) 1
by B71, where B :=[[{_;0;(¢)"!. However, AB = N(¢) = 1, because the
norm N (&) is integer and invertible. =
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Complex geometry of Oeljeklaus-Toma manifolds

THEOREM: Let K be a number field which has s real embeddings and 2t
complex ones, t = 1, s > 0. Then the corresponding Oeljeklaus-Toma
manifold has no non-trivial complex subvarieties.

Proof. Step 1: Consider on C x H! a function ¢(z, 21, ..., 2s) = [I;Im(z2;).
Since ' multiplies Im(z;) by a number, the form dlogy is N-invariant. Let
6 denote the corresponding 1-form on M = C x H®/T".

Step 2: The 2-form wg = d(I0) = dd°logy has Hodge type (1,1) and
positive definite on the leaves of the foliation {2z} x H C C x H

wo =+V—1080logp =+v—1 Z

1

dz; N\ dz;
| im Zz'|2 .

Also, wg = 0.

Step 3: Let > C T'M be the null-foliation of wg (the foliation generated by the
null eigenspace). It is a holomorphic, involutive, smooth 1-dimensional
foliation, with the leaves which are obtained from C x {(z1,...,2s)} C C x HS.

17



L. CK manifolds, lecture 14 M. Verbitsky

Step 4: For any complex k-dimensional subvariety C C M, the integral
walg = 0, because wg is exact. Therefore, C is at each point tangent to
a leaf of 2. Since X is 1-dimensional, this means that C' contains at
least one leaf of ..

Step 5: It remains to show that any variety which contains a leaf of >
coincides with M.

Step 6: Let 2o be a leaf of 2. Its preimage in C x H® contains a set

iO(Zla'”azS) L= U <Z7 (Z]_ +01(C)7‘°'7ZS+JS(C))>

2€C,CeOf
where zq, ...,zs € H® is some fixed point.

Step 7: We reduced the theorem to the following statement

CLAIM: A closure of >g(z1,...,2s) contains a set

Zal,---,a’s L= {(C7C17 "'7C8) | im C’L — Oéi,’l: — 17 ”'78}
where a; = im z;.

Indeed, the smallest complex subspace containing 7y Zq.....as 1S TzM.
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The adele ring

T he previous claim is immediately implied by the following statement, applied
to the set pq,..., pm Of all real embedings.

Theorem 1 Let K:Q be a number field with has 2t complex embeddings
m,71,... and s real ones, o1,...,0¢, p1,...,pm — embeddings K to C or R,
and each of 7; and o; appears once, except one. Consider the map R :
K —R*x Cb, R(&) := p1(9),...,pm(£). Then the image of Oy is dense in
R% x CP.

The proof is based on the strong approximation theorem (which is a “mod-
ern version” of Chinese remainders theorem).

DEFINITION: Adelic group Ay is a subset of the product [][, K, of all
completions of K for all equivalence classes v of absolute value functions,
consisting of sequences (:vyl,...,;c,,n,...) where |a:,/2.| < 1 for all 7 except the
finite number.

REMARK: Tikhonov's theorem implies that A is locally compact.
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The strong approximation theorem

Strong approximation theorem: Consider the natural embedding K C Ay
Then its image is a discrete, cocompact subgroup. Moreover, the pro-

Py
jection of Ay -9 H,,#,/O K, to the product of all completions except one
maps K to a dense subset of R, (Ak).

REMARK: Further on, K is considered as a subring of Ay.

Proof of Theorem 1. Step 1: Let OAK be a ring of all integer adeles,
that is, such (zuq,...,Zu,,...) € Ak, that |z,,| < 1 for each non-archimedean
absolute value. Then O = KNOy,..

Step 2: Let now P : Ax — Ay be a projection of Aj to the product of
all completions except one archimedean. Since Oy, is open in A, its
projection to A; is open in A; (the projection is an open map).

Step 3: We obtain that the image P(K)NP(Oy4,) is dense in P(O4,.). From
Step 1, we obtain that P(K) N P(Oy4, ) coinsides with P(Ok).

Step 4: We proved that P(Ok) is dense in A; N P(Oy,. ). Therefore, its
projection to the product of all archimedean completions except one
IS also dense.
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