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Complex surfaces: Riemann-Roch theorem

DEFINITION: A complex surface is a compact, complex manifold of com-

plex dimension 2. It is called minimal if it does not contain rational curves

with self-intersection -1.

DEFINITION: Holomorphic Euler characteristic of a coherent sheaf F is∑
i(−1)i dimHi(F ).

THEOREM: (Riemann-Roch-Hirzebruch) Let L be a holomorphic line

bundle on a complex surface X, and KX its canonical bundle. Then χ(L) =

χ(OX) + (L−KX ,L)
2 , and χ(OX) = (c1(X)2 − c2(X))/12.

COROLLARY: Let L be a line bundle on a complex surface, (L,L) = d > 0.

Then dimH0(Lk) or dimH0(L−k ⊗KX) grows at least quadratically with k.

Proof: χ(Lk) = dk2 + ak + b, where a, b are independent from k. How-

ever, χ(Lk) = h0(Lk)− h1(Lk) + h2(Lk), hence either h0(Lk) or h2(Lk) grows

quadratically. Finally, h2(Lk) = h0(L−k ⊗KX) by Serre’s duality.
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Douady space

DEFINITION: Let M be a metric space, and S, S′ ⊂ M two subsets. The

Hausdorff distance between S and S′ is an infimum of all ε such that S lies

in ε-neighbourhood of S′ and S′ lies in ε-neighbourhood of S.

DEFINITION: Given a complex subvariety S ⊂ M , the Douady space of

deformations of S in M is the set of all complex subvarieties in the same

cohomology class, equipped with topology induced by the Hausdorff metric

dH(S, S′).

CLAIM: Douady space is a complex analytic variety.
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Base point set of a bundle

DEFINITION: Let L be a holomorphic line bundle. Define base point set

bps(L) as the set of all x ∈M such that any section of L vanishes in x.

DEFINITION: A movable divisor is a divisor with positive-dimensional

Douady set (that is, movable in a family).

CLAIM: Let L be a holomorphic line bundle, t its non-zero section, and D

its zero divisor. Then D = D0 ∪D1, where D0 ⊂ bps(L), and D1 is a union

of movable divisors.

Proof: Let x ∈ D\ bps(L). Then there exists a continuous family of divisors

such that Dt 63 x, hence the component of D containing x is movable.

CLAIM: Let C,C′ be movable divisors without common components on a

surface. Then C ∩ C′ is a finite set.
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Finite correspondences

DEFINITION: Let Z ⊂M ×M ′ be an irreducible subvariety. Denote by π, π′

the corresponding projections. It is called a birationally finite correspon-
dence if π−1(m) and π′−1(m′) is finite for general m,m′.

Proposition 1: Let L be a holomorphic line bundle on a surface, c1(L)2 > 0,
h0(L) > 2. Consider a subvariety Z ⊂M × PH0(L)∗,

Z = {x ∈M, t ∈ H0(L)∗ | Vx ⊂ ker t},

where Vx := {h ∈ H0(L) | h|x = 0} is the space of all sections vanishing in
x. Then Z is a birationally finite correspondence between M and π2(Z),
where π2 : Z −→ PH0(L)∗ is a projection.

Proof. Step 1: Let t ∈ H0(L)\0, and let Zt ⊂ M be the zero divisor of
t, and Ht ⊂ PH0(L)∗ the dual hypersurface. Then π1(π−1

2 (Ht)) = Zt. For
any t1 6= t2 ∈ H0(L)\0, denote by Wt1,t2 the intersection Ht1 ∩ Ht2. Then
π1(π−1

2 (Wt1,t2)) = Zt1 ∩ Zt2.

Step 2: The intersection Zt1 ∩ Zt2 is a union of base point divisors and
intersection of movable divisors. Since it is 0-dimensional outside of bps(L),
the correspondence is finite outside of bps(L).
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Finite correspondences (2)

THEOREM: Let M be a complex surface, admitting a birationally finite

correspondence to M ′. Then M ′ is Kähler (projective) if and only if M is

Kähler (projective).

The proof is based on currents and Hahn-Banach separation theorem.

REMARK: This is true only for surfaces!
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Currents

DEFINITION: Let F be a Hermitian bundle with connection ∇, on a Rie-

mannian manifold M with Levi-Civita connection, and

‖f‖Ck := supx∈M
(
|f |+ |∇f |+ ...+ |∇kf |

)
the corresponding Ck-norm defined on smooth sections with compact sup-

port. The Ck-topology is independent from the choice of connection

and metrics.

DEFINITION: A generalized function is a functional on top forms with

compact support, which is continuous in one of Ci-topologies.

DEFINITION: A k-current is a functional on (dimM − k)-forms with com-

pact support, which is continuous in one of Ci-topologies.

REMARK: Currents are forms with coefficients in generalized functions.
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Currents on complex manifolds

DEFINITION: The space of currents is equipped with weak topology (a

sequence of currents converges if it converges on all forms with compact sup-

port). The space of currents with this topology is a Montel space (barrelled,

locally convex, all bounded subsets are precompact). Montel spaces are re-

flexive (the map to its double dual with strong topology is an isomorphism).

CLAIM: De Rham differential is continuous on currents, and the Poincare

lemma holds. Hence, the cohomology of currents are the same as coho-

mology of smooth forms.

DEFINITION: On an complex manifold, (p, q)-currents are (p, q)-forms with

coefficients in generalized functions

REMARK: In the literature, this is sometimes called (n − p, n − q)-

currents.

CLAIM: The Dolbeault lemma holds on (p, q)-currents, and the ∂-cohomology

are the same as for forms.
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Positive forms and currents

DEFINITION: A weakly positive (p, p)-form is a real (p, p)-form η which

satisfies η(x1, Ix1, x2, Ix2, ...xp, Ixp) > 0 for all x1, ...np ∈ TM . The set of

weakly positive (p, p)-forms is a convex cone.

DEFINITION: A weakly positive (p, p)-current is a current taking non-

negative values in weakly positive compactly supported (n− p, n− p)-forms.

DEFINITION: A positive generalized function is a generalized function

taking non-negative values on all positive volume forms.

REMARK: Positive generalized functions are C0-continuous. A positive gen-

eralized function multiplied by a positive volume form gives a measure on

a manifold, and all measures are obtained this way.

COROLLARY: A weakly positive (p, p)-current is C0-continuous.
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Closed positive currents and psh functions

DEFINITION: Let Z ⊂M be a complex analytic subvariety. The current of

integration [Z] is the current α−→
∫
Z α. It is closed and positive (Lelong).

REMARK: (Poincare-Lelong formula)
√
−1
π ddc log |ϕ| = [Zϕ], where Zϕ is a

divisor of a holomorphic function ϕ.

DEFINITION: A locally integrable function f : M −→ [∞,∞[ is called plurisub-

harmonic (psh) if ddcf is a positive current.

CLAIM: (a local ddc-lemma) Locally, every positive, closed (1,1)-current

is obtained as ddcf, for some psh function f .

EXERCISE: Prove that a locally integrable plurisubharmonic function

on a compact complex manifold is constant.
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Hahn-Banach separation theorem and its applications

THEOREM: (Hahn-Banach separation theorem)

Let V be a locally convex topological vector space, A ⊂ V an open convex

subset, and W ⊂ V a closed subspace. Assume that W ∩ A = ∅. Then there

exists a continuous functional ξ ∈ V ∗ such that ξ(W ) = 0 and ξ(A) > 0.

THEOREM: (Harvey-Lawson)

Let M be a compact non-Kähler complex manifold. Then M admits an

exact 2n− 2-current such that its (n− 1, n− 1)-part is positive.

REMARK: Converse is also true: if M admits such a current, M is non-

Kähler (prove this).

Proof of Harvey-Lawson theorem. Step 1:

Let A ⊂ Λ1,1M be the set of all strictly positive forms, and W the space

of all closed (1,1)-forms. Hahn-Banach separation theorem produces a

current ξ1,1 ∈ Dn−1,n−1(M) such that ξ1,1(A) is positive and ξ1,1(W ) = 0.

Clearly, ξ1,1(A) > 0 ⇔ ξ1,1 is positive.
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Hahn-Banach separation theorem and its applications (2)

THEOREM: (Harvey-Lawson)
Let M be a compact non-Kähler complex manifold. Then M admits an
exact 2n− 2-current such that its (n− 1, n− 1)-part is positive.

Proof of Harvey-Lawson theorem. Step 1:
Let A ⊂ Λ1,1M be the set of all strictly positive forms, and W the space
of all closed (1,1)-forms. Hahn-Banach separation theorem produces a
current ξ1,1 ∈ Dn−1,n−1(M) such that ξ1,1(A) is positive and ξ1,1(W ) = 0.
Clearly, ξ1,1(A) > 0 ⇔ ξ1,1 is positive.

Step 2: Consider the space W1 ⊂ Λ2(M) generated by all closed furms
and all (1,1)-forms. Extend ξ1,1 to W1 by taking ξ1,1(v) = 0 for all closed
v. Since ξ1,1 vanishes on closed (1,1)-forms, it is well defined on W1, and
can be extended to a continuous functional on Λ2 (Hahn-Banach extension
theorem). We obtain a (2n− 2)-current ξ vanishing on closed forms and
with positive (1,1)-part.

Step 3: It remains to prove that ξ is exact. Since 〈ξ, dα〉 = ±〈dξ, α〉 = 0 for
all α, the current ξ is closed. However, a pairing of ξ with any closed form
vanishes, hence ξ is exact by Poincare duality.
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Gauduchon metrics and Hahn-Banach theorem

DEFINITION: A Hermitian metric ω on complex n-manifold is called Gaudu-

chon if ddcωn−1 = 0.

THEOREM: Any compact complex manifold admits a Gauduchon met-

ric.

Step 1: Any strictly positive (n − 1, n − 1)-form is (n − 1)-th power of a

Hermitian form. Therefore, to construct a Gauduchon metric, it suffices to

find a ddc-closed strictly positive (n− 1, n− 1)-form.

Step 2: Let A ⊂ Λn−1,n−1(M) be the cone of strictly positive (n− 1, n− 1)-

forms, and W := ker ddc. If these sets don’t intersect, we can find ξ ∈ Λ1,1(M)

which is positive and satisfies 〈ξ, ker ddc〉 = 0.
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Gauduchon metrics and Hahn-Banach theorem (2)

THEOREM: Any compact complex manifold admits a Gauduchon met-
ric.

Step 2: Let A ⊂ Λn−1,n−1(M) be the cone of strictly positive (n− 1, n− 1)-
forms, and W := ker ddc. If these sets don’t intersect, we can find ξ ∈ Λ1,1(M)
which is positive and satisfies 〈ξ, ker ddc〉 = 0.

Step 3: Since im d ⊂ ker ker ddc, this gives 〈ξ, im d〉 = 0, hence ξ is closed.
Define Aeppli cohomology as

H
p,q
AE(M) :=

ker ddc
∣∣∣Λp,q(M)

im d+ im dc
.

The Poincare pairing H
p,q
AE(M)×Hn−p,n−q

BC (M)−→ C, where H
∗,∗
BC(M) is Bott-

Chern cohomology, is non-degenerate (prove this)! Since ξ is orthogonal to
H
p,q
AE(M) under this pairing, its class in H

1,1
BC(M) vanishes, hence ξ = ddcf > 0.

Step 4: There are no globally plurisubharmonic generalized functions on a
compact manifold (prove it!).

REMARK: In fact, there exists a Gauduchon metric in each conformal
class, and it is unique up to a constant. This is proven using elliptic
equations and E. Hopf’s strict maximum principle.
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Finite correspondences and Kählerness

THEOREM: Let M1 be a complex surface, admitting a birationally finite

correspondence to M2. Then M1 is Kähler if and only if M2 is Kähler.

Proof. Step 1: Let π1, π2 : Z −→Mi be the projection maps, ω2 be a Kähler

form on M2, and ζ := π1∗π∗2ω. Then ζ is a positive, closed (1,1)-current which

is smooth and strictly positive at each point z ∈M1 where the correspondence

Z is finite.

Step 2: Since ζ is infinite only around the points z ∈ M1 where π−1
1 (z) is

positive-dimensional, ζ is smooth outside of a closed, finite set sing(ζ).

Step 3: Let Sε be an epsilon-neighbourhood of sing(ζ). Using the local ddc-

lemma in Sε, we could write ζ = ddcf . Since a maximum of plurisubharmonic

functions is plurisubharmonic, we can replace ζ by a current which is equal to

ζ outside Sε and equal to ddcmax(f,−C) in Sε, where −C < f
∣∣∣∂Sε . The new

ζ is positive, closed, and equal to ddc(ϕ) on Sε.

15



LCK manifolds, lecture 15 M. Verbitsky

Finite correspondences and Kählerness (2)

THEOREM: Let M1 be a complex surface, admitting a birationally finite

correspondence to M2. Then M1 is Kähler if and only if M2 is Kähler.

Step 3: Let Sε be an epsilon-neighbourhood of sing(ζ). Using the local ddc-

lemma in Sε, we could write ζ = ddcf . Since a maximum of plurisubharmonic

functions is plurisubharmonic, we can replace ζ by a current which is equal to

ζ outside Sε and equal to ddcmax(f,−C) in Sε, where −C < f
∣∣∣∂Sε . The new

ζ is positive, closed, and equal to ddc(ϕ) on Sε.

Step 4: Consider a smooth convex function maxε : R2 −→ R equal to

max(x, y) for |x − y| > ε and monotonous in each argument. Using maxε
instead of max in Step 3, we may assume that ζ is actually smooth.

Step 5: Suppose that M1 is non-Kähler. Then Harvey-Lawson bring an exact

current ξ = dα with positive (1,1)-part. The current ζ ∧ ξ is positive; on the

other hand, it is exact, giving 0 =
∫
M ζ ∧ ξ > 0 – a contradiction.

REMARK: In dimension > 2, this theorem is false; it should be clear

where the argument fails.
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Kähler cone and Nakai-Moishezon-Demailly-Paun theorem

THEOREM: (Nakai-Moishezon-Demailly-Paun)
Let M be a Kähler surface, and

K := {α ∈ H1,1(M) | α2 > 0, α
∣∣∣all complex curves > 0}.

Then K is a Kähler cone of M unless M has no complex curves. In the
latter case, Kähler cone of M is one of two connected components of K.

THEOREM: Let M1 be a complex surface, admitting a birationally finite
correspondence to M2. Then M1 is projective if and only if M2 is projec-
tive.

Proof. Step 1: Using the Harvey-Lawson argument such as above, we prove
that M1 is Kähler. Let ω be a rational Kähler form on M2, and ζ := π1∗π∗2ω.
Then ζ2 > 0 by the same argument (with removal of isolated singularities)
as used above.

Step 2: For any curve C ⊂ M1, let CZ be its proper preimage in Z. Then
〈ξ, C〉 =

∫
CZ

π∗2ω > 0. Then by Nakai-Moishezon-Demailly-Paun, [ξ] is a
Kähler class.

Step 3: This class is rational by construction, hence M1 is projective by
Kodaira.
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Non-projective surfaces and the intersection form

THEOREM: Let M be a complex surface, and NS(M) the group of all

integer cohomology classes represented by closed (1,1)-currents. Then M

is non-projective if and only if the intersection form on NS(M) is non-

positive.

Proof. Step 1: Suppose that [ξ] ∈ NS(M) is an integer class with [ξ]2 = 0,

and L the line bundle with its curvature equal to ξ (it exists by ddc-lemma).

Then either h0(Lk) or h0(Lk ⊗KM) grows quadratically with k by Riemann-

Roch.

Step 2: Proposition 1 implies that M admits a birationally finite correspon-

dence with a projective manifold, hence M is projective as shown above.

Step 3: Conversely, if M is projective, it admits a curve with positive self-

intersection, namely, the hyperplane section.

DEFINITION: Elliptic surface is a complex surface M equipped with a

holomorphic map M −→ S, with generic fiber a curve of genus 1.
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Curves on non-projective surfaces

THEOREM: Let M be a non-projective surface. Then either all curves
on M are isolated, or M admits an elliptic fibration π : M −→ S, with all
curves belonging to the fibers of π.

Step 1: Since the intersection form on NS(M) is non-positive, for any two
distinct irreducible curves C,C′ in the same cohomology class, the intersection
C ∩ C′ is empty. Therefore, all non-isolated curves C satisfy C · C = 0.

Step 2: Given a family Ct of non-intersecting curves parametrized by t ∈ D,
consider the corresponding fibration from a subset M0 :=

⋃
t∈DCt ⊂ M to D.

Since NCt = π∗TD
∣∣∣Ct , the normal bundle to each Ct is trivial.

Step 3: Adjunction formula gives TCt ⊗ NCt = Λ2TM
∣∣∣Ct , hence Ω1Ct =

KM

∣∣∣Ct , where KM is a canonical bundle. If (KM , Ct) = l 6= 0, one would have
(KM + tCt,KM + tCt) = (KM ,KM) + 2tl > 0 for appropriate choice of t. Then
M would be projective. Therefore, (KM , Ct) = 0 = deg Ω1Ct. This implies
that all smooth fibers of π are elliptic curves.

Step 5: Existence of elliptic fibration M −→B would follow if we show that
the deformation space of Ct is compact for any curve on a complex surface
(see the next slide).
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Gromov’s compactness theorem

Step 6: The same argument as in Step 4 is used to show that (Ct, v) = 0

for any v ∈ NS(M), hence any irreducible curve belongs to a fiber of π.

THEOREM: (Gromov’s compactness theorem)

Let (M, I, ω) be a compact (almost) complex Hermitian manifold, D the space

of all (pseudo-) holomorphic curves on M , with topology induced by the

Hausdorff metric, p > 0 a real number, and Dp ⊂ D the space of all curves S

with Vol(S) :=
∫
S ω 6 p. Then Dp is compact.
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Moduli of curves on complex surfaces

THEOREM: Let M be a compact complex surface, C ⊂ M a curve, and B

a connected component of its Douady space. Then B is compact.

Proof. Step 1: Fix a Hermitian metric ω on M . By Gromov’s theorem, the

space of curves of bounded volume is compact. It remains to show that the

volume stays bounded on each connected component of the Douady

space, for appropriate choice of ω. Notice that this is vacuously true when

ω is Kähler, because then the volume is a cohomological invariant.

Step 2: Consider the incidence variety Z ⊂ M × B consisting of pairs C ∈
B, x ∈ C ⊂M , and let π1 : Z −→M , π2 : Z −→B be the standard projections.

Denote by Vol : B −→ R>0 the volume function, Vol(C) =
∫
C ω. Then Vol =

π2∗π∗1ω.

Step 3: Choose now ω Gauduchon. Then ddcVol = π2 ∗ π∗1dd
cω = 0. There-

fore, Vol has no local minima or local maxima on B. However, Vol is a proper

function by Gromov’s theorem, hence it has to reach minimum somewhere.

Therefore, Vol = const. Now, B is compact by Gromov’s theorem.
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Class VII surfaces (a survey)

DEFINITION: Define the Kodaira dimension of a manifold M as

κ(M) := lim supn
logh0(Kn

M)
n .

DEFINITION: A Kodaira class VII surface is a surface with κ(M) = −∞
and b1(M) = 1.

EXAMPLE: All Hopf surfaces and all Inoue surfaces are Kodaira class VII.

DEFINITION: Kato surface is a surface M which contains a 3-dimensional

sphere S3 such that M\S3 is connected, and a neighbourhood of S3 is biholo-

morphic to a neighbourhood of standard S3 in C2 (“global spherical shell”).

THEOREM: All Kato surfaces are class VII.
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The rest of classification theorems (a survey)

THEOREM: Let M be a non-projective Kähler minimal surface. Then M is

elliptic, or isomorphic to a K3 or a torus.

THEOREM: Let M be a non-Kähler elliptic minimal surface. Then M is

isotrivial (all fibers are isomorphic) and Vaisman.

THEOREM: Let M be a non-Kähler non-elliptic surface. Then M is class

VII.

THEOREM: (Bogomolov) All class VII surfaces with b2 = 0 are Inoue or

Hopf.

THEOREM: (Andrei Teleman) All class VII surfaces with b2 = 1 are Kato.

CONJECTURE: (GSS conjecture) All minimal class VII surfaces with b2 > 0

are Kato.

THEOREM: (Brunella) All Kato surfaces are LCK.
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