LCK manifolds 6: Orbifolds

Definition 6.1. Orbipoints are points of an orbispace with Mor(x, x) non-trivial. An order of an orbipoint is |Mor(x, x)|. The group Mor(x, x) is called **the monodromy** group of an orbipoint.

Exercise 6.1. Prove that a 1-dimensional complex orbifold is uniquely defined by the following data: a smooth complex curve M, some orbipoints x_i marked on M, and order $p_i \in \mathbb{Z}^{>1}$ of monodromy at each x_i .

Exercise 6.2. Let S be a quasiregular Sasakian manifold, and X := S/Reeb the corresponding orbifold. Prove that monodromy group of each orbipoint is a cyclic group.

Exercise 6.3. Let \tilde{M} : $\mathbb{C}^2 \setminus 0$, and \mathbb{C}^* act on \tilde{M} as $h_t(x, y) = (tx, t^2y)$. Find a Vaisman metric on \tilde{M}/h_{λ} , where $\lambda > 1$ is a fixed number. Prove that \tilde{M}/\mathbb{C}^* is $\mathbb{C}P^1$ with one orbipoint of order 2.

Exercise 6.4. Let $X = \mathbb{C}P^1$ with two orbipoints of order p and q. Find a quasiregular Sasakian manifold S with $S/\mathsf{Reeb} = X$.

Exercise 6.5. Define a covering in the orbifold category, and prove existence of a universal covering.

Definition 6.2. An orbifold fundamental group $\pi_1^{orb}(M)$ is a group of automorphisms of the universal covering compatible with the projection to M. The **topologi-cal fundamental group** $\pi_1^{top}(M)$ is the fundamental group of M as of the topological space.

Exercise 6.6. Construct a monomorphism $\pi_1^{\mathsf{top}}(M) \longrightarrow \pi_1^{\mathsf{orb}}(M)$. Find an orbifold M such that $\pi_1^{\mathsf{top}}(M)$ is trivial, and $\pi_1^{\mathsf{orb}}(M)$ is non-trivial.

Exercise 6.7. Let M be a 1-dimensional complex orbifold with a complete Hermitian metric of constant negative curvature, and $\pi_1^{\text{orb}}(M) = 0$. Prove that M is equivalent to a Poincare disk Δ and has no orbipoints.

Exercise 6.8. Let M be a complex curve of genus 1 with at least one orbipoint. Prove that the universal covering of M (in the orbifold category) is the Poincare disc Δ .

Exercise 6.9. Let M be $\mathbb{C}P^1$ with two orbipoints of order p and q. Find $\pi_1^{\text{orb}}(M)$.

LCK manifolds: classroom assignment.