Метрическая Геометрия 3: Графы и факторпространства

Правила: Зачеты по листкам бывают двух типов: когда сданы все (или или 2/3) задачи со звездочками, либо все (или 2/3) задачи без звездочек. Задачи с двумя звездочками можно не сдавать. Сдавшим k задач с двумя звездочками разрешается не сдавать 2k задач со звездочками или факториалом из того же листочка. Задачи, обозначенные (!), следует сдавать и тем и другим. Если сданы 2/3 задач со звездочками и (!), студент получает 6t баллов, если все, кроме (максимум) двух -10t баллов. Если сданы 2/3 задач без звездочки и с (!), студент получает 6t баллов, если все, кроме (максимум) трех -10t баллов. Эти виды оценок не складываются, то есть больше 10t за листочек получить нельзя.

Коэффициент t равен 1.5, если задачи сданы не позже, чем через 31 день после выдачи, 1, если между 31 и 50 днями, и 0.7, если позже.

Результаты сдачи записываются на листке ведомости, которая выдается студенту; просьба не терять ее, больше нигде результаты храниться не будут.

3.1. Топология фактора

Замечание 3.1. Все топологические пространства в этом курсе предполагаются по умолчанию хаусдорфовыми. Фактор-пространства с топологией фактора представляют собой исключение: они, за редкими исключениями, нехаусдорфовы.

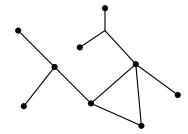
Определение 3.1. Пусть M — топологическое пространство, а \sim — отношение эквивалентности. Множество классов эквивалентности обозначается M/\sim . На M/\sim вводится топология фактора: открытые подмножества M/\sim — такие подмножества, прообраз которых в M открыт. Если на M действует группа G, возникает естественное отношение эквивалентности: $x\sim y$, если существует такое $g\in G$, что $g\cdot x=y$. Фактор M по этому отношению эквивалентности называется факторпространством M по действию G, и обозначается M/G. Классы эквивалентности называются G-орбитами в M.

Задача 3.1. Пусть M – хаусдорфово топологическое пространство, а G – конечная группа, которая действует на M гомеоморфизмами. Рассмотрим факторпространство M/G с топологией фактора. Докажите, что M/G хаусдорфово.

Указание. Пусть x, y — две точки, не принадлежащие одной и той же G-орбите. Найдите у x, y непересекающиеся G-инвариантные окрестности U, U', и возьмите $\bigcap_{q \in G} gU, \bigcap_{q \in G} gU'$.

Задача 3.2. Приведите пример, когда M хаусдорфово, а M/G нехаусдорфово (и группа, соответственно, не конечна).

Определение 3.2. Пусть Γ – некоторый граф, то есть набор данных вида "множество вершин" $\{\mathcal{V}\}$, "множество ребер" $\{\mathcal{R}\}$, и сведений о том, какие вершины являются концами каких ребер.



Более строго, Γ можно определить как пару множеств \mathcal{V} , \mathcal{R} и сюрьективное отображение $\{\mathcal{R}\} \times \{0,1\} \stackrel{\Gamma}{\longrightarrow} \{\mathcal{V}\}$. Введем на $\{\mathcal{R}\} \times [0,1]$, отношение эквивалентности, порожденное следующим: концы двух ребер эквивалентны, если они примыкают к одной и той же вершине. Это отношение эквивалентности склеивает концы ребер, не затрагивая внутренности отрезков. Фактор $\{\mathcal{R}\} \times [0,1]$ по этому отношению эквивалентности называется топологическим пространством графа.

Задача 3.3. Докажите, что топологическое пространство любого графа хаусдорфово.

Задача 3.4 (*). Пусть G – группа, действующая на $M = \mathbb{R}^n$ гомеоморфизмами, с двумя или больше орбитами. Может ли фактор M/G иметь кодискретную топологию (топологию, в которой открыто только само пространство и пустое множество)?

Задача 3.5 (**). Решите предыдущую задачу в предположении, что орбит ровно две.

Задача 3.6. Пусть $\{U_{\alpha}\}$ — открытое покрытие топологического пространства M. Рассмотрим несвязное объединение $M':=\coprod_{\alpha}U_{\alpha}$, и зададим на M' отношение эквивалентности таким образом: $x\sim y$, если их образы в M совпадают. Докажите, что $M'/\!\!\sim$ гомеоморфно M.

3.2. Внутренняя метрика и локальность

Определение 3.3. Пусть (M,d) – метрическое пространство, а $\gamma:[a,b]\to M$ – путь. Рассмотрим разбиение отрезка $[a,b]=[a,x_1]\cup [x_1,x_2]\cup ...\cup [x_{n-1},b]$. Обозначим $x_0:=a,x_n:=b$. Положим

$$L_{\gamma}(x_1, ... x_{n-1}) = \sum_{i=0}^{n-1} d(x_i, x_{i+1}).$$

Определим **длину пути** γ формулой

$$L_d(\gamma) := \sup_{a < x_1 < \dots < x_{n-1} < b} L_{\gamma}(x_1, \dots x_{n-1}).$$

где супремум берется по всем разбиениям отрезка. Путь γ называется **спрямляемым**, если $L_d(\gamma) < \infty$. Метрика d называется **внутренней**, если $d(x,y) = \inf_{\gamma} L_d(\gamma)$, где инфимум берется по всем путям, соединяющим x и y.

Задача 3.7. Пусть M, M' – метрические пространства, а $f: M \longrightarrow M'$ – непрерывная биекция, такая, что у каждой точки $x \in M$ есть окрестность U_x , причем ограничение $f|_{U_x}: U_x \longrightarrow f(U_x)$ – изометрия.

- а. Докажите, что f гомеоморфизм.
- б. Найдите f, удовлетворяющее этим условиям, и такое, что M и M' связные, но f не изометрия.

- в. Пусть метрика в M внутренняя. Докажите, что f 1-липшицева: $d(x,y) \geqslant d(f(x),f(y))$.
- г. Пусть метрика в M' внутренняя. Докажите, что $d(x,y) \leq d(f(x),f(y))$.

Замечание 3.2. Когда говорится "метрика на топологическом пространстве", по умолчанию предполагается, что эта метрика согласована с топологией.

Определение 3.4. Метрика d на топологическом пространстве M называется **локальной**, если для каждого открытого покрытия $\{U_{\alpha}\}$, и для каждой метрики d' на M такой, что $d\Big|_{U_{\alpha}} = d'\Big|_{U_{\alpha}}$, имеем $d \geqslant d'$.

Задача 3.8. Пусть d – внутренняя метрика. Докажите, что d локальна.

Задача 3.9. Постройте метрику на \mathbb{R} , не внутреннюю, но удовлетворяющую d(x,y) = |x-y| для любого $|x-y| \leqslant 1$.

Задача 3.10. Пусть d – метрика, а $d_{\varepsilon}(x,y)=\inf\sum_{i=0}^{n-1}d(p_i,p_{i+1}),$ где $p_0=x,$ $p_n=y,$ а инфимум берется по всем последовательностям p_i таким, что $d(p_i,p_{i+1})<\varepsilon$. Докажите, что $d_{\varepsilon}=d$ на каждом шаре радиуса $\varepsilon/2$.

Задача 3.11 (*). Пусть d – полная метрика, такая, что $d=d_{\varepsilon}$, для любого $\varepsilon>0$. Докажите, что d – внутренняя.

Задача 3.12 (*). Пусть d – полная локальная метрика. Докажите, что d – внутренняя.

3.3. Полуметрики на факторпространстве

Определение 3.5. Полуметрика на X есть функция $d: X \times X \to \mathbb{R}^{\geqslant 0} \cup \infty$, удовлетворяющая неравенству треугольника, $d(x,z) \leqslant d(x,y) + d(y,z)$, d(x,x) = 0 и d(x,y) = d(y,x), но (в отличие от метрики) не обязательно строго положительная при $x \neq y$.

Задача 3.13. Пусть d – полуметрика на X.

- а. Докажите, что соотношение " $x \sim y$, если d(x,y) = 0" отношение эквивалентности.
- б. Докажите, что существует метрика d_0 на $X/\!\!\sim$ такая, что $d(x,y)=d_0(x_0,y_0)$, где $x_0,y_0\in X/\!\!\sim$ точки фактора, соответствующие x,y.

Задача 3.14. Пусть d_{α} – набор полуметрик, а $d(x,y):=\sup_{\alpha}d_{\alpha}(x,y)$. Докажите, что d(x,y) – полуметрика.

Задача 3.15 (!). Пусть \sim – отношение эквивалентности на метрическом пространстве (X,d). Определим функцию $d_{\sim}: X/\sim \times X/\sim \longrightarrow \mathbb{R}^{\geqslant 0}$ на факторе X/\sim по формуле

$$d_{\sim}(x,y) = \inf \sum_{i=0}^{n-1} d(p_i, q_{i+1}),$$

где инфимум берется по всем наборам точек $p_i, q_i \in X$ таким, что $p_0 \sim x, q_n \sim y$, и $p_i \sim q_i$. Докажите, что d_{\sim} – полуметрика на $X/\!\!\sim$.

Определение 3.6. Пусть \sim – отношение эквивалентности на метрическом пространстве (X,d). Определенная выше полуметрика d_{\sim} на $X/\!\!\sim$ называется полуметрикой факторпространства. Метрическое факторпространство получается из $X/\!\!\sim$ дополнительным отождествлением всех точек x,y таких, что $d_{\sim}(x,y)=0$, с метрикой, которая индуцирована с d_{\sim} , как в задаче 3.13.

Задача 3.16 (!). Пусть \sim – отношение эквивалентности на метрическом пространстве (X,d). Докажите, что $d_{\sim}(x,y)=\sup_{\alpha}d_{\alpha}(x,y)$, где $\{d_{\alpha}\}$ – множество всех полуметрик на X/\sim , удовлетворяющих $d_{\alpha}(p_0,q_0)\leqslant d(p,q)$ для любых $p_0,q_0\in X/\sim$, и любых $p,q\in X$ в классах эквивалентности p_0,q_0 .

Задача 3.17. Пусть \sim – отношение эквивалентности на метрическом пространстве (X,d). Рассмотрим $X/\!\!\sim$ как топологическое пространство с топологией фактора, и пусть $(X/\!\!\sim\!,d_\sim)$ – топологическое пространство, с топологией, базой которой являются открытые d_\sim -шары.

- а. Докажите, что тождественное отображение $X/\!\!\sim \longrightarrow (X/\!\!\sim\!\!, d_\sim)$ непрерывно.
- б. Приведите пример, когда это отображение не гомеоморфизм.

Задача 3.18. Пусть M – пространство с внутренней метрикой, а $\{U_{\alpha}\}$ – открытое покрытие M. Рассмотрим пространство $\coprod_{\alpha} U_{\alpha}$, с метрикой на U_{α} , индуцированной с M, и пусть $x \sim y$, если x и y отвечают одной и той же точке на M. Докажите, что M есть метрический фактор $\coprod_{\alpha} U_{\alpha}$ по \sim .

Задача 3.19 (!). Пусть G – группа, действующая на метрическом пространстве (X,d) изометриями, а $x\sim y$, если x и y лежат в одной орбите G. Докажите, что $d_\sim(a,b)$ есть инфимум расстояний между представителями a,b в X.

Задача 3.20 (*). Пусть G – группа, действующая на метрическом пространстве (X,d) изометриями, а d внутренняя. Докажите, что метрика на метрическом факторе – тоже внутренняя.

Задача 3.21 (!). Пусть $\Gamma \cong \mathbb{Z}^2$ свободно действует на $M = \mathbb{R}^2$ параллельными переносами, а (Z, d_Z) – метрический фактор M по действию Γ (т.е. метрический фактор M по соотношению эквивалентности $x \sim y$, если x и y лежат в одной орбите Γ). Докажите, что Z гомеоморфно тору либо изометрично \mathbb{R} .

Задача 3.22 (*). Пусть $\Gamma=\mathbb{Z}$ действует на $M=\mathbb{R}^2$ нетривиальными поворотами бесконечного порядка. Докажите, что метрический фактор M/Γ изометричен $\mathbb{R}^{\geqslant 0}$ с обычной метрикой.

Задача 3.23 (!). Пусть $M = \mathbb{R}^2 \setminus 0$, с обычной метрикой. Рассмотрим отношение эквивалентности на M, полученное склейкой $(x,y) \sim (-y,2x)$.

- а. Докажите, что $d_{\sim} = 0$.
- б. Докажите, что $\mathbb{R}^2 \setminus 0 / \sim c$ топологией фактора это двумерный тор.

3.4. Метрические графы

Задача 3.24. Пусть X = [0,1] отрезок с обычной метрикой, а $x \sim y$, если это концы отрезка или x = y. Докажите, что $d \sim x$ на $x \sim y$ метрика на окружности, где расстояние между точками равно углу между ними умножить на константу.

Определение 3.7. Несвязное объединение метрических пространств (X_{α}, d_{α}) есть $\coprod X_{\alpha}$ с метрикой d(x,y) которая равна $d_{\alpha}(x,y)$, когда x и y лежат в X_{α} , и ∞ в противном случае.

Определение 3.8. Пусть I_{α} – набор отрезков, изометричных $[0, x_{\alpha}]$, а \sim – отношение эквивалентности, полученное склейкой некоторых вершин. Метрический фактор $\coprod_{\alpha} I_{\alpha}$ называется метрическим графом. Он называется локально конечным, если каждая точка отождествляется с конечным числом точек.

Задача 3.25. Пусть I_{α} — набор отрезков, изометричных $[0,x_{\alpha}],$ Γ — полученный из них метрический граф, а I_{α}^0 — их внутренности. Докажите, что естественное отображение $\coprod_{\alpha} I_{\alpha}^0 \longrightarrow \Gamma$ — вложение.

Задача 3.26. Докажите, что метрика на метрическом графе всегда внутренняя.

Задача 3.27. Пусть M – метрический граф, а M_0 – топологический граф, полученный как топологический фактор $\prod_{\alpha} I_{\alpha}$ по тому же соотношению эквивалентности.

- а. Докажите, что тавтологическое отображение $M_0 \stackrel{\tau}{\longrightarrow} M$ непрерывно.
- б. (!) Докажите, что для любого локально конечного графа, τ гомеоморфизм.
- в. (*) Постройте пример графа, для которого τ не биекция.
- г. (*) Постройте пример графа, для которого τ биекция, но не гомеоморфизм.

3.5. Графы Кэли и метрика слов на группе

Определение 3.9. Пусть G – группа. Множество $S \subset G$ называется набором образующих, если все элементы G выражаются через произведения элементов x_i, x_j^{-1} , для каких-то $x_i, x_j \in S$. Каждое такое произведение называется словом от x_i, x_j^{-1} . В дальнейшем, мы будем предполагать по умолчанию, что любой набор образующих S содержит x^{-1} вместе с каждым $x \in S$.

Определение 3.10. Пусть G – группа, а $S \subset G$ – набор образующих. **Граф Кэли** G есть метрический граф, полученный следующим образом. Вершины графа Кэли суть элементы G, а ребра соединяют две вершины g, g', если g' = gs, где $s \in S$. Длины всех ребер графа Кэли равны 1.

Определение 3.11. Группа G называется **свободной**, если это фундаментальная группа букета окружностей.

Задача 3.28. Докажите, что граф Кэли группы односвязен тогда и только тогда, когда эта группа свободна.

Задача 3.29. Докажите, что любая подгруппа свободной группы свободна.

Определение 3.12. Пусть G – группа, а $S \subset G$ – набор образующих. **Метрика слов** d_S на группе есть метрика на G как на множестве вершин графа Кэли.

Задача 3.30. Пусть G – группа, $S \subset G$ – набор образующих, а d_S – метрика слов. Докажите, что $d_S(1,w)$ есть длина самого короткого слова $s_1s_2...s_N, s_i \in S$, представляющего w.

Задача 3.31 (!). Пусть G – группа, а $S_1, S_2 \subset G$ – два конечных набора образующих. Докажите, что тождественное отображение $(G, d_{S_1}) \longrightarrow (G, d_{S_2})$ – липшицево.

Определение 3.13. Метрика d на группе G называется **левоинвариантной**, если d(x,y) = d(gx,gy)

Задача 3.32. Докажите, что метрика слов на группе левоинвариантна.

Определение 3.14. Две метрики d,d' на группе G называются **эквивалентными**, если тождественное отображение $(G,d) \longrightarrow (G,d')$ липшицево, и обратное к нему тоже липшицево.

Задача 3.33 (*). Постройте левоинвариантную метрику на группе \mathbb{Z} , не эквивалентную метрике слов, все шары в которой имеют конечное число элементов.

Задача 3.34 (**). Пусть d – конечная левоинвариантная метрика на \mathbb{Z}^n , такая, что для каких-то констант A,B>0 и любого r, $Ar^n\geqslant |B_r(0)|\geqslant Br^n$. Докажите, что d эквивалентна метрике слов.

Задача 3.35 (**). Пусть d — конечная левоинвариантная метрика на группе G, такая, что все шары имеют конечное число элементов, и задана константа C>0, такая, что для любых $x,y\in G$ существует $z\in G$, удовлетворяющий $d(x,z)\leqslant \frac{d(x,y)}{2}+C$ и $d(y,z)\leqslant \frac{d(x,y)}{2}+C$. Докажите, что d эквивалентна метрике слов.