Гиперболические группы 9: лемма Морса

Правила: Зачеты по листкам бывают двух типов: когда сданы все (или или 2/3) задачи со звездочками, либо все (или 2/3) задачи без звездочек. Задачи с двумя звездочками можно не сдавать. Сдавшим k задач с двумя звездочками разрешается не сдавать 2k задач со звездочками или факториалом из того же листочка. Задачи, обозначенные (!), следует сдавать и тем и другим. Если сданы 2/3 задач со звездочками и (!), студент получает 6t баллов, если все, кроме (максимум) двух – 10t баллов. Если сданы 2/3 задач без звездочки и с (!), студент получает 6t баллов, если все, кроме (максимум) трех – 10t баллов. Эти виды оценок не складываются, то есть больше 10t за листочек получить нельзя.

Коэффициент t равен 1.5, если задачи сданы не позже, чем через 31 день после выдачи, 1, если между 31 и 50 лнями. и 0.7, если позже.

Результаты сдачи записываются на листке ведомости, которая выдается студенту; просьба не терять ее, больше нигде результаты храниться не будут.

9.1. Квазиизометрии

Определение 9.1. Отображение $f: X \longrightarrow Y$ называется билипшицевым с константой C, или просто билипшицевым, если это биекция, причем f и f^{-1} C-липшицевы (то есть удовлетворяют $d(f(x), f(y)) \leq Cd(x, y)$).

Определение 9.2. ε -сеть в метрическом пространстве M есть такое множество $N \subset M$, что объединение ε -шаров с центрами в N равно M. ε -сеть N называется δ -разделенной, если для любых $a \neq b \in N$, имеем $d(a,b) \geqslant \delta$.

Определение 9.3. Пространства X и Y квазиизометричны, если в X и в Y существуют ε -сети X_{ε} и Y_{ε} , между которыми есть билипшицево отображение.

Определение 9.4. Отображение $f: X \longrightarrow Y$ метрических пространств называется **квазиметрическим**, если для каких-то констант $C, \ \varepsilon > 0$, имеем $d(f(x), f(y)) \leqslant Cd(x,y) + \delta$.

Замечание 9.1. Квазиметрическое отображение не обязательно непрерывно.

Задача 9.1. Пусть $f: M \longrightarrow M'$ – квазиметрическое отображение с константами C, ε . Докажите, что существует B>0 такое, что для любой B-разделенной 2B-сети $N\subset M$, ограничение $f\big|_{N} 2C$ -липшицево.

Задача 9.2. Пусть $f: M \longrightarrow M'$ – отображение метрических пространств, а $N \subset M$ – ε -сеть такая, что $f|_{M}$ липшицево. Докажите, что f – квазиметрическое отображение.

Задача 9.3. Пусть $f: X \longrightarrow Y, g: Y \longrightarrow X$ – квазиметрические отображения, причем $gf = \operatorname{Id}_Y.$

- а. Докажите, что X и Y квазиизометричны.
- б. Пусть заданы квазиизометричные пространства X, Y. Всегда ли найдутся квазиметрические f и g, удовлетворяющие $gf = \operatorname{Id} u fg = \operatorname{Id}_Y$?

Задача 9.4. Пусть $N \subset M - \varepsilon$ -сеть. Докажите, что существует отображение $M \stackrel{\phi}{\longrightarrow} N$, удовлетворяющее $d(x,\phi(x)) \leqslant \varepsilon$.

Задача 9.5 (!). Пусть X, Y – квазиизометрические пространства. Докажите, что найдутся квазиметрические отображения $f: X \longrightarrow Y, g: Y \longrightarrow X$, и константа C > 0 такая, что d(fg(x), x) < C и d(gf(y), y) < C для любых $x \in X, y \in Y$.

Указание. Воспользуйтесь предыдущей задачей.

Задача 9.6. Пусть $f: X \longrightarrow Y, g: Y \longrightarrow X$ — квазиметрические отображения, удовлетворяющие d(gf(x),x) < C и d(fg(y),y) < C для какого-то C > 0.

- а. Докажите, что для любой B-сети N в X, gf(N) B'-сеть, для B' > C + B.
- б. Докажите, что существуют такие константы $C_1, C_2 > 0$, что $d(g(a), g(b)) \geqslant C_1 d(a, b) C_2$.
- в. Докажите, что f(N) B''-сеть, для какого-то B''.

Задача 9.7 (!). Пусть X,Y – метрические пространства, а $f: X \longrightarrow Y, g: Y \longrightarrow X$ – квазиметрические отображения. Предположим, что существует константа C>0 такая, что d(gf(x),x) < C и d(fg(y),y) < C для любых $x \in X, y \in Y$. Докажите, что X,Y квазиизометричны.

Указание. Воспользуйтесь предыдущей задачей и задачей 9.1.

Задача 9.8 (!). Докажите, что квазиизометрия – отношение эквивалентности.

Указание. Воспользуйтесь интерпретацией квазиизометричности в терминах пары квазиметрических отображений f,g с d(fg(x),x) < C и d(gf(y),y) < C.

Задача 9.9 (!). Пусть Γ – группа, S_1, S_2 – наборы образующих, а d_1, d_2 – соответствующие метрики слов на Γ . Докажите, что (Γ, d_1) квазизометрично (Γ, d_1) .

Задача 9.10. Пусть Γ, S – группа с конечным набором образующих, d_w метрика слов, а d_1 – метрика, которая удовлетворяет $d_w - d_1 < C$, для какой-то константы. Докажите, что d_w билипшицево с d_1 .

Определение 9.5. Пусть (M,p) – метрическое пространство с отмеченной точкой, (\tilde{M},\tilde{p}) – его универсальное накрытие, а $\Gamma = \pi_1(M)$ – группа монодромии накрытия. Метрика орбит на Γ есть метрика вида $d(\gamma_1,\gamma_2) = d(\gamma_1\tilde{p},\gamma_2\tilde{p})$.

Задача 9.11. Докажите, что метрика орбит левоинвариантна.

Задача 9.12 (*). Реализуйте метрику слов на группе как метрику орбит для какого-то метрического пространства с геодезической метрикой.

Задача 9.13 (!). Пусть d_w – метрика слов на группе, а d_o – метрика орбит. Докажите, что найдется C>0 такое, что $d_0\leqslant Cd_w$.

Указание. Оцените C через длину геодезических, представляющих s_i в $\pi_1(M,p)$.

Определение 9.6. Метрическое пространство называется **геодезическим**, если его метрика строго внутренняя, то есть любые две точки соединяются кратчайшими.

Определение 9.7. Метрическое пространство X называется **ограниченным**, если его диаметр $\mathsf{diam}(X)$ конечен.

Задача 9.14. Пусть M — универсальное накрытие ограниченного геодезического пространства $M,\ D=\mathsf{diam}(M),\ a\ \Gamma=\pi_1(M)$ — его группа монодромии. Докажите, что $\Gamma z\subset \tilde{M}$ есть D-сеть.

Задача 9.15. Пусть (\tilde{M}, \tilde{p}) — универсальное накрытие ограниченного геодезического пространства (M,p) диаметра $D, \Gamma = \pi_1(M)$ — его группа монодромии, а $z = \gamma \tilde{p}$ — точка на орбите $\Gamma \tilde{p}$. Рассмотрим кратчайшую $[\tilde{p}, z],$ длины $n \leq |\tilde{p}, z| \leq n+1$ и точки $\tilde{p} = z_1, z_2, ..., z_n = z \in [\tilde{p}, z]$ на ней, разбивающие $[\tilde{p}, z]$ на отрезки длины ≤ 1 .

- а. Докажите, что существует последовательность $y_1,...,y_n \in \Gamma \tilde{p}, y_i = \gamma_i \tilde{p},$ такие, что $|z_i,y_i| \leqslant D$.
- б. Докажите, что $|y_i, y_{i+1}| \leq 2D + 1$.
- в. Докажите, что множество всех $\gamma \in \Gamma$ таких, что $|\tilde{p}, \gamma(\tilde{p})| < 2D + 1$, порождает Γ .
- г. Обозначим этот набор за S, и пусть d_w соответствующая метрика слов. Докажите, что $d_w(1,\gamma)\leqslant n$.

Указание. Представьте γ в виде произведения $\gamma = g_0 g_1 ... g_n$, где $g_i = \gamma_{i+1} \gamma_i^{-1}$, и убедитесь, что $g_i \in S$.

Задача 9.16 (!). Пусть (\tilde{M}, \tilde{p}) – универсальное накрытие ограниченного геодезического пространства $(M, p), d_o$ – соответствующая метрика орбит, а d_w – какая-то метрика слов. Докажите, что метрика d_o билипшицева d_w .

Указание. Воспользуйтесь предыдущей задачей.

Задача 9.17 (!). Пусть M – ограниченное геодезическое пространство. Докажите, что \tilde{M} квазиизометрично $\pi_1(M)$ с какой-то метрикой слов на нем.

Указание. Воспользуйтесь предыдущей задачей.

9.2. Теорема Арцела-Асколи

Определение 9.8. Пусть X, Y – метрические пространства, а $\mathrm{Map}(X,Y)$ – множество всех отображений. Для точки $x \in X$ и открытого подмножества $W \subset Y$, рассмотрим подмножество $U_{x,W} \subset \mathrm{Map}(X,Y)$, состоящее из всех отображений, переводящих x в W. Топология поточечной сходимости, или же слабая топология на $\mathrm{Map}(X,Y)$ задается предбазой вида $U_{x,W}, x \in X, W \subset Y$ для всех точек $x \in X$ и всех открытых подмножеств $W \subset Y$. Топология равномерной сходимости, обозначенная C^0 , задается базой вида $U_{f,\delta}$, где $f \in \mathrm{Map}(X,Y), \delta > 0$, а $U_{f,\delta}$ – множество всех отображений $g \in \mathrm{Map}(X,Y)$, таких, что $d(f(x),g(x)) < \delta$ для всех $x \in X$.

Задача 9.18. Пусть $\{f_i\}$ – последовательность точек в $\mathrm{Map}(X,Y)$.

- а. Докажите, что f_i сходится к f в C_0 титтк $^1 \lim_i \sup_{x \in X} d(f_i(x), f(x)) = 0$
- б. Докажите, что f_i сходится к f поточечно титтк для каждого $x \in X$, имеем $\lim_i f_i(x) = f(x)$.

Задача 9.19. Докажите, что в C^0 предел последовательности непрерывных отображений непрерывен, а предел C-липшицевых C-липшицев.

Задача 9.20. Докажите, что в слабой топологии, предел последовательности непрерывных отображений не всегда непрерывен, а предел C-липшицевых все же C-липшицев.

 $^{^{1}}$ Тогда и только тогда, когда

Задача 9.21 (!). Пусть X счетно, а Y компактно. Докажите, что $\mathrm{Map}(X,Y)$ компактно в топологии поточечной сходимости.

Замечание 9.2. Это утверждение - весьма слабая форма теоремы Тихонова, которая говорит, что $\mathrm{Map}(X,Y)$ компактно в топологии поточечной сходимости для любого X и любого компактного Y.

Задача 9.22. Пусть $X_0\subset X$ — счетное, полное подмножество, Y компактен, а $\{f_i\in \mathrm{Map}(X,Y)\}$ — последовательность C-липшицевых отображений, где Y компактен. Предположим, что $f_i|_{X=0}$ поточечно сходится. Докажите, что f_i сходится в C^0 -топологии, и предел $\{f_i\}$ тоже C-липшицев.

Определение 9.9. Метрическое пространство **сепарабельно**, если оно содержит всюду плотное, счетное множество.

Задача 9.23 (!). (теорема Арцела-Асколи для липшицевых отображений) Пусть X сепарабельное, а Y компактное метрическое пространство, а $L_C(X,Y) \subset \operatorname{Map}(X,Y)$ – пространство C-липшицевых отображений.

- а. Докажите, что $L_C(X,Y)$ компактно в топологии поточечной сходимости.
- б. Докажите, что $L_C(X,Y)$ компактно в топологии равномерной сходимости.

Определение 9.10. C-квазигеодезическая метрика на отрезке [0,1] есть метрика d, которая удовлетворяет $|x-y| \le d(x,y) \le C|x-y|$.

Задача 9.24. Рассмотрим C-квазигеодезическую метрику на [0,1] как отображение $[0,1] \times [0,1] \stackrel{d}{\longrightarrow} \mathbb{R}$. Докажите, что d(x,y) C-липшицева.

Определение 9.11. Рассмотрим пространство метрик на Z как метрическое пространство с метрикой

$$d(d_1, d_2) := \sup_{(x,y) \in Z^2} |d_1(x,y) - d_2(x,y)|.$$

Задача 9.25. Докажите, что предел C-квазигеодических метрик – C-квазигеодическая метрика.

Задача 9.26 (!). Докажите, что пространство C-квазигеодических метрик компактно.

Указание. Воспользуйтесь теоремой Арцела-Асколи.

9.3. Квазигеодезические и лемма Морса

Определение 9.12. C-квазигеодезическая в метрическом пространстве M есть отображение $\gamma:\ [0,a]\longrightarrow M$, которое удовлетворяет $d(x,y)\leqslant C|x-y|$

Замечание 9.3. "Лемма Морса" (в классической формулировке) есть утверждение о геометрии плоскости (или пространства) Лобачевского H. Для каждого C > 1 найдется R такое, что любая C-квазигеодезическая, соединяющая a и b, лежит в R-окрестности отрезка [a,b].

 $^{^{2}}$ В топологии есть и другая лемма Морса. Эти две "леммы Морса" не имеют отношения друг к другу.

Задача 9.27. Пусть $\gamma: [0,a] \longrightarrow M$ – квазигеодезическая, соединяющая a и b.

- а. Докажите, что метрика на отрезке [0,1] $d(x,y):=\frac{|\gamma(ax),\gamma(ay)|}{a}$ является C-квазигеодезической.
- б. Предположим, что к тому же δ -гиперболично. Докажите, что ([0,1],d) δ/a -гиперболично.

Определение 9.13. Пусть $\gamma_i: [0,a_i] \longrightarrow M$ – последовательность C-квазигеодезических. Предельная метрика есть (любой из) пределов последовательности $d(x,y):=\frac{|\gamma_i(a_ix),\gamma_i(a_iy)|}{a_i}$ в смысле Определения 9.11.

Задача 9.28 (!). Пусть $\gamma_i:[0,a_i]\longrightarrow M$ — последовательность C-квазигеодезических, причем $\lim_i a_i=\infty$, а ([0,1],d) — соответствующая предельная метрика. Докажите, что пространство ([0,1],d) 0-гиперболично.

Указание. Воспользуйтесь предыдущей задачей.

Задача 9.29. Пусть X — 0-гиперболическое пространство, которое геодезично а [0,1]: $\stackrel{\gamma}{\longrightarrow} X$ — C-квазигеодезическая. Докажите, что γ инъективно и осуществляет гомеоморфизм отрезка [0,1] на его образ.

Указание. Убедитесь, что X – дерево, и воспользуйтесь этим.

Задача 9.30 (!). Пусть X — 0-гиперболическое пространство, не обязательно геодезическое, а $[0,1]: \stackrel{\gamma}{\longrightarrow} X$ — C-квазигеодезическая. Докажите, что γ инъективно и осуществляет гомеоморфизм отрезка [0,1] на его образ.

Указание. Вложите X в его аппроксимационное дерево X_{tr} , и примените предыдущую задачу.

Определение 9.14. Пусть γ — C-квазигеодезическая в геодезическом пространстве, а $R(\gamma)$ есть максимум расстояния от точек γ до любой из кратчайших, соединяющих концы γ . Лемма Морсе утверждает, что $R(\gamma)$ ограничено константой, которая зависит только от M и C, для любой C-квазигеодезической в гиперболическом пространстве.

Задача 9.31 (!). Пусть $\gamma_i:[0,a_i] \longrightarrow M$ – последовательность C-квазигеодезических в гиперболическом пространстве, причем $\lim_i a_i = \infty$, Обозначим за X_i объединение образа γ_i и отрезка, соединяющего концы γ_i . Рассмотрим метрику d_i на графе-«двуугольнике» \triangle из двух вершин и двух ребер, полученную из $d\Big|_{X_i}$ делением на a_i .

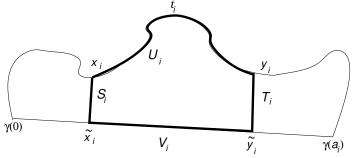
- а. Докажите, что у d_i есть подпоследовательность, равномерно сходящаяся к какойто полуметрике \tilde{d} в смысле Определения 9.11.
- б. Докажите, что в полуметрическом пространстве (Δ, \tilde{d}) выполнено 0-неравенство Громова.
- в. Докажите, что $\lim_i \frac{R(\gamma_i)}{a_i} = 0$.

Указание. Сходимость d_i доказывается так же, как аналогичное условие для геодезических, а $\lim_i \frac{R(\gamma_i)}{a_i} = 0$ следует из того, что \triangle – дерево (докажите это).

Задача 9.32. Пусть $\gamma:[0,a]\longrightarrow M$ — квазигеодезическая. Докажите, что существует точка $t\in[0,a]$, где реализуется максимум расстояния между $\gamma(t)$ и отрезком кратчайшей, соединяющим концы γ .

Замечание 9.4. Предыдущая задача нетривиальна, ибо отрезков кратчайшей может быть бесконечно много.

Задача 9.33 (!). Пусть $\gamma_i:[0,a_i]\longrightarrow M$ — последовательность C-квазигеодезических в гиперболическом пространстве, причем $\lim_i a_i = \infty$ и $\lim_i R(\gamma_i) = \infty$, но $R(\gamma_i) < \frac{a_i}{2C}$. Обозначим за $t_i \in [0,a_i]$ точку, где реализуется максимум расстояния между $\gamma(t_i)$ и отрезком кратчайшей, соединяющим концы γ_i . Возьмем точки x_i,y_i на $\gamma_i([0,a_i])$, такие что $d(x_i,y_i) = R(\gamma_i)$, а t лежит в отрезке γ_i , соединяющим x_i,y_i . Рассмотрим четырехугольник Π_i , с одной криволинейной стороной, представляющей из себя отрезок γ_i от x_i до y_i , три другие стороны которого — отрезки геодезических $[x_i,\tilde{x}_i], [\tilde{x}_i,\tilde{y}_i], [\tilde{y}_i,y_i]$, где \tilde{x}_i,\tilde{y}_i — ближайшие к x_i,y_i точки кратчайшей $[\gamma_i(0),\gamma_i(a_i)]$.



Как и двуугольник $\triangle \cong X_i$ двумя задачами выше, четырехугольник Π_i естественно отождествляется с графом \square , у которого 4 стороны и 4 вершины, соединенные последовательно. Обозначим за d_i метрику на \square , индуцированную из $(\Pi_i, \frac{d}{R(\gamma_i)})$.

- а. Докажите, что точки x_i, y_i можно выбрать вышеописанным образом.
- б. Докажите, что одна из сторон (\square , d_i) есть C-квазигеодезическая, расстояние между концов которой равно 1, две прилежащие к ней стороны имеют длину ≤ 1 , а противолежащая сторона геодезическая, которая не длиннее C+2.
- в. Докажите, что у $\{d_i\}$ есть подпоследовательность, которая равномерно сходится к полуметрике \tilde{d} на \square , в смысле Определения 9.11.
- г. Докажите, что \tilde{d} гиперболична.
- д. Обозначим за $U\subset (\square,\tilde{d})$ предел криволинейной стороны $U_i\in \Pi_i,\ V$ предел противолежащей ей стороны $V_i,$ а S,T оставшиеся две стороны. Докажите, что $|U|=1,\ |V|\leqslant 3,\ |S|,|T|\leqslant 1,\ \mathrm{a}\ \square,\tilde{d}$ дерево.
- е. Выведите из этого, что $U \subset V$.
- ж. Придите к противоречию с тем, что $\sup_{x \in V_i} d_i(x, U_i) = 1$.

Задача 9.34 (!). (Лемма Морса) Пусть M – гиперболическое геодезическое пространство, а C>0. Докажите, что существует R>0 такое, что каждая C-квазигеодезическая лежит в R-окрестности любой кратчайшей, соединяющей ее концы.

Указание. Если такого R не существует, можно найти последовательность C-квазигеодезических $\gamma_i: [0,a_i] \longrightarrow M$ такую, что $R(\gamma_i) \longrightarrow \infty$. Если при этом $\lim \frac{R(\gamma_i)}{t_i} = 0$, воспользуйтесь предыдущей задачей, в противном случае воспользуйтесь задачей 9.31.

Замечание 9.5. Существует доказательство леммы Морса для δ -геодезических пространств, где оценка ма R получается как функция от C и δ (в доказательстве из этого листочка, R зависит от C и от пространства M).