Метрическая геометрия 3: теорема Хопфа-Ринова и кратчайшие

Миша Вербицкий **23 февраля, 2016 НМУ**

Внутренняя метрика (повторение)

ОПРЕДЕЛЕНИЕ: Пусть (M,d) – метрическое пространство, а $\gamma:[a,b]\to M$ – путь. Рассмотрим разбиение отрезка $[a,b]=[a,1]\cup [x_1,x_2]\cup...\cup [x_{n-1},b].$ Обозначим $x_0:=a,x_n:=b$. Положим $L_\gamma(x_1,...x_{n-1})=\sum_{i=0}^{n-1}d(x_i,x_{i+1}).$ Определим длину пути γ формулой

$$L_d(\gamma) := \sup_{a < x_1 < \dots < x_{n-1} < b} L_{\gamma}(x_1, \dots x_{n-1}).$$

где супремум берется по всем разбиениям отрезка. Путь γ называется спрямляемым, если $L_d(\gamma) < \infty$.

ОПРЕДЕЛЕНИЕ: Пусть (M,d) – метрическое пространство, а $\widehat{d}(x,y)$ равно инфимуму длин путей, соединяющих x и y. Она называется внутренней метрикой, индуцированной d.

TEOPEMA: Для любого метрического пространства, $\hat{\hat{d}} = \hat{d}$.

ОПРЕДЕЛЕНИЕ: Метрика d на M называется внутренней, если $\hat{d}=d$.

ЗАМЕЧАНИЕ: Финслеровы и римановы метрики, построенные раньше, **являются внутренними**.

ε -середины

ОПРЕДЕЛЕНИЕ: Точка z называется ε -серединой пары (x,y), если $|d(x,z)-\frac{1}{2}d(x,y)|\leqslant \varepsilon$ и $|d(y,z)-\frac{1}{2}d(x,y)|\leqslant \varepsilon$. Говорится, что в (M,d) существуют ε -середины, если для любых x,y и любого $\varepsilon>0$, существует ε -середина.

УТВЕРЖДЕНИЕ: В любом пространстве с внутренней метрикой существуют ε -середины.

Доказательство. Шаг 1: Пусть γ – путь длины $d(x,y)+\varepsilon$, соединяющий x и y. В силу непрерывности функции $d(x,\gamma(t))$, принимающей значения от 0 до d(x,y), существует точка $z=\gamma(t_0)$ такая, что $d(x,z)=\frac{d(x,y)}{2}$.

Шаг 2: $d(y,z) + d(z,y) \leqslant L_d(\gamma) = d(x,y) + \varepsilon$. Значит, $d(y,z) \leqslant \frac{d(x,y)}{2} + \varepsilon$.

ε -середины и двоично-рациональные дроби

Теорема 1: Пусть M — пространство, где существуют ε -середины, а $x_0, x_1 \in M$. **Тогда для любого** $\lambda \in [0,1]$, найдется $x_\lambda \in M$ такая, что $|d(x_0, x_\lambda) - \lambda d(x_0, x_1)| \leqslant \varepsilon$ и $|d(x_1, x_\lambda) - (1 - \lambda) d(x_0, x_1)| \leqslant \varepsilon$.

Доказательство. Шаг 1: Пусть $\lambda = \frac{2n-1}{2^m}$, $0 < \lambda < 1$. Возьмем за $x_\lambda \in M$ $\frac{\varepsilon}{2^{m+1}}$ -середину между $x_{\frac{n}{2^{m-1}}}$ и $x_{\frac{n-1}{2^{m-1}}}$. Воспользовавшись индукцией по m, построим x_λ для каждого двоично-рационального числа $\lambda = \frac{2n-1}{2^m}$.

Шаг 2: Пусть $P(\lambda)$ переводит $\lambda = \frac{2n-1}{2^m}$ в $\frac{n-1}{2^{m-1}}$. По построению,

$$|d(x_{\lambda}, x_{P(\lambda)}) - \frac{1}{2^m} d(x_0, x_1)| < \frac{\varepsilon}{2^{m+1}} d(x_0, x_1).$$

Суммируя ряд

$$d(x_{\lambda}, x_{P(\lambda)}) + d(x_{P(\lambda)}, x_{P(P(\lambda))}) + \dots$$

получим число, которое отличается от $\lambda d(x_0,x_1)$ на $\sum_{i=0}^m \frac{\varepsilon}{2^{m+1}} \leqslant \varepsilon$. Значит,

$$d(x_0, x_\lambda) \leqslant d(x_\lambda, x_{P(\lambda)}) + d(x_{P(\lambda)}, x_{P(P(\lambda))}) + \dots \leqslant \lambda d(x_0, x_1) + \varepsilon.$$

Аналогично, $d(x_1, x_{\lambda}) \leq (1 - \lambda)d(x_0, x_1) + \varepsilon$.

ε -середины и двоично-рациональные дроби (продолжение)

Шаг 3: Уже доказано:

$$d(x_1, x_\lambda) \leqslant (1 - \lambda)d(x_0, x_1) + \varepsilon$$
 in $d(x_0, x_\lambda) \leqslant \lambda d(x_0, x_1) + \varepsilon$.

Осталось доказать, что $d(x_1,x_\lambda)\geqslant \lambda d(x_0,x_1)-\varepsilon$ и $d(x_1,x_\lambda)\geqslant (1-\lambda)d(x_0,x_1)-\varepsilon$. Но если это неверно, имеем (например) $d(x_1,x_\lambda)\leqslant \lambda d(x_0,x_1)-\varepsilon$, что дает

$$d(x_1, x_\lambda) + d(x_1, x_\lambda) < \lambda d(x_0, x_1) - \varepsilon + (1 - \lambda)d(x_0, x_1) + \varepsilon = d(x_0, x_1)$$

Противоречие с неравенством треугольника! ■

СЛЕДСТВИЕ: ("Условие Хопфа-Ринова") Пусть M — метрическое пространство, в котором существуют ε -середины. Тогда для любых $x,y\in M$, и $r\leqslant d(x,y)$, расстояние от шара $B_r(x)$ до y равно d(x,y)-r.

ДОКАЗАТЕЛЬСТВО: Выберем точку $z = z_{\lambda}$ такую, что $|d(x,z) - (r - \varepsilon)| < \varepsilon$ и $|d(y,z) - d(x,y) - r| < \varepsilon$. Тогда $z \in B_r(x)$ и $d(B_r(x),y) \leqslant d(y,z) \leqslant d(x,y) - r + \varepsilon$.

ε -середины и внутренние метрики

ЗАМЕЧАНИЕ: Из шага 2 предыдущей теоремы следует, что отображение $\lambda \to x_\lambda$ является $(1+\delta)$ -липшицевым, где $\delta = \varepsilon d(x,y)^{-1}$.

УТВЕРЖДЕНИЕ: Пусть X,Y — метрические пространства, а $\varphi: X \to Y$ — C-липшицево отображение. **Тогда** φ **продолжается до** C-липшицева **отображения пополнений** $\bar{\varphi}: \bar{X} \to \bar{Y}$.

TEOPEMA: Пусть M — полное метрическое пространство, в котором существуют ε -середины. **Тогда метрика в** M внутренняя.

ДОКАЗАТЕЛЬСТВО: В силу предыдущего утверждения, отображение $\lambda \to x_\lambda$, построенное в Теореме 1, продолжается до $d(x_0,x_1)(1+\varepsilon)$ -липшицева отображения $[0,1] \stackrel{\gamma}{\to} M$, то есть пути, соединяющего x_0 и x_1 . **Длина сего пути ограничена** $d(x_0,x_1)(1+\varepsilon)$ в силу липшицевости.

СЛЕДСТВИЕ: Существование ε -середин в M равносильно тому, что метрика в его пополнении M_1 внутренняя.

ДОКАЗАТЕЛЬСТВО: Если в M есть ε -середины, то и в M_1 есть ε -середины (докажите это). Поэтому для любого ε существуют $(1 + \varepsilon)$ -липшицевы пути γ : $[0, d(x,y)] \to M_1$, соединяющие x и y. Значит, $\widehat{d}(x,y) < d(x,y)(1+\varepsilon)$.

Локальные метрики

УТВЕРЖДЕНИЕ: Пусть \mathcal{S} — семейство метрик на множестве M, а $d_{\mathcal{S}}(x,y):=\sup_{d_{\alpha}\in\mathcal{S}}d_{\alpha}(x,y)$ — супремум всех метрик в \mathcal{S} . Тогда $d_{\mathcal{S}}$ — тоже метрика.

ДОКАЗАТЕЛЬСТВО: Две из трех аксиом (симметричность, рефлексивность) очевидны. Неравенство треугольника следует из того, что супремум суммы не превосходит сумму супремумов. ■

ОПРЕДЕЛЕНИЕ: Пусть (M,d) — метрическое пространство, $\{U_i\}$ — открытое покрытие M, то есть набор открытых множеств $U_i \subset M$ такой, что $M = \bigcup U_i$, а $\mathcal{S}_{\{U_i\}}$ — множество всех метрик d' на M таких, что $d'|_{U_i} \leqslant d|_{U_i}$ для каждого элемента покрытия. Обозначим за $d(\{U_i\})$ супремум метрик в семействе $\mathcal{S}_{\{U_i\}}$. Метрика d называется локальной, если $d(\{U_i\}) = d$ для любого покрытия $\{U_i\}$.

Внутренние метрики локальны

ОПРЕДЕЛЕНИЕ: Пусть (M,d) — метрическое пространство, $\{U_i\}$ — открытое покрытие M, то есть набор открытых множеств $U_i \subset M$ такой, что $M = \bigcup U_i$, а $\mathcal{S}_{\{U_i\}}$ — множество всех метрик d' на M таких, что $d'|_{U_i} \leqslant d|_{U_i}$ для каждого элемента покрытия. Обозначим за $d(\{U_i\})$ супремум метрик в семействе $\mathcal{S}_{\{U_i\}}$. Метрика d называется локальной, если $d(\{U_i\}) = d$ для любого покрытия $\{U_i\}$.

ТЕОРЕМА: Внутренняя метрика всегда локальна.

Доказательство. Шаг 1: Зафиксируем покрытие $\{U_i\}$. Пусть γ – спрямляемый путь на M. Выберем разбиение γ в отрезки $\gamma([x_l,x_{l+1}])$ таким образом, что каждый из отрезков лежит в своем U_i . Тогда

$$L_{d(\{U_i\})}(\gamma([x_l, x_{l+1}])) \leq L_d(\gamma([x_l, x_{l+1}])).$$

Значит, функционал длины в метрике $d(\{U_i\})$ не больше, чем L_d .

Шаг 2: Возьмем путь γ , соединяющий x и y, и такой, что $L_d(\gamma) \leqslant d(x,y) - \varepsilon$. Такой путь существует, потому что d внутренняя. Тогда

$$d(\lbrace U_i \rbrace)(x,y) \leqslant L_{d(\lbrace U_i \rbrace)}(\gamma) \leqslant L_{d}(\gamma) \leqslant d(x,y) - \varepsilon.$$

Устремляя ε к 0, получаем $d(\{U_i\}) \leqslant d$. Значит, метрика $d \in \mathcal{S}_{\{U_i\}}$ равна супремуму всех метрик в $\mathcal{S}_{\{U_i\}}$.

Локальные метрики допускают ε -середины

Пусть (M,d) — метрическое пространство. Определим $d_{\varepsilon}(x,y)$ как инфимум $\sum d(x_i,x_{i+1})$ взятый по всем последовательностям точек $x_0=x,x_1,...,x_n=y$ таким, что $d(x_i,x_{i+1})<\varepsilon$.

УПРАЖНЕНИЕ: Проверьте, что d_{ε} — тоже метрика, $d_{\varepsilon} \geqslant d$, и она равна d на любом $\varepsilon/2$ -шаре.

СЛЕДСТВИЕ: Если d локальна, то $d_{\varepsilon}=d$ для любого $\varepsilon>0$.

ЛЕММА: Для любых $x,y\in M$, существует $z\in M$ такое, что $d_{\varepsilon}(x,z)-2\varepsilon<\frac{1}{2}d_{\varepsilon}(x,y)$ и $d_{\varepsilon}(y,z)-2\varepsilon<\frac{1}{2}d_{\varepsilon}(x,y)$.

ДОКАЗАТЕЛЬСТВО: Возьмем последовательность $x_0 = x, x_1, ..., x_n = y$ такую, что $d_{\varepsilon}(x,y) \geqslant \sum d(x_i,x_{i+1}) - \varepsilon$, и пусть z — такая точка из x_i , что $d_{\varepsilon}(x,x_i) \leqslant \frac{1}{2} \sum d(x_i,x_{i+1}) + \varepsilon$ и $d_{\varepsilon}(y,x_i) \leqslant \frac{1}{2} \sum d(x_i,x_{i+1}) + \varepsilon$. Такая точка всегда существует, потому что $d(x_i,x_{i+1}) < \varepsilon$.

СЛЕДСТВИЕ: Локальные метрики допускают ε -середины.

СЛЕДСТВИЕ: Полные локальные метрики – внутренние.

Локальная компактность

ОПРЕДЕЛЕНИЕ: ε -сеть в метрическом пространстве M есть такое множество $N\subset M$, что объединение ε -шаров с центрами в N равно M. Метрическое пространство называется вполне ограниченным, если для любого $\varepsilon>0$ в M найдется конечная ε -сеть.

TEOPEMA: Полное метрическое пространство компактно тогда и только тогда, когда оно вполне ограниченно.

ДОКАЗАТЕЛЬСТВО: См. в листочках. ■

ОПРЕДЕЛЕНИЕ: Пусть M — метрическое пространство. Говорят, что M локально компактно, если для любой точки $x \in M$ существует такое число $\varepsilon > 0$, что замкнутый шар $\overline{B}_{\varepsilon}(x)$ компактен.

Теорема Хопфа-Ринова

TEOPEMA: Пусть M — полное, локально компактное пространство с внутренней метрикой. **Тогда каждый замкнутый шар в** M **компактен.**

Доказательство. Шаг 1: В ε -окрестности шара $\bar{B}_r(m)$ содержится шар $\bar{B}_{r+\varepsilon}(m)$ (следует из условия Хопфа-Ринова).

Шаг 2: Пусть $m \in M$ точка, такая, что шары $B_{r-\varepsilon}(m)$ вполне ограниченны для любого $\varepsilon > 0$. **Тогда** $B_r(m)$ **тоже вполне ограниченно.** Действительно, $\frac{1}{2}\varepsilon$ -сеть в $B_{r-\frac{1}{2}\varepsilon}(m)$ будет ε -сетью в $B_r(m)$, в силу предыдущего шага.

Шаг 3: Определим функцию на метрическом пространстве $\rho(m) := \sup_r \{r \in \mathbb{R} \mid \bar{B}_r(m) \text{ компактен } \}.$ **Тогда** ρ **1-липшицева**, в частности, непрерывна.

Шаг 4: Пусть $\bar{B}_r(m)$ – компактный шар в локально компактном пространстве. Тогда существует $\varepsilon > 0$ такое, что каждый замкнутый шар радиуса ε в с центром в $\bar{B}_r(m)$ компактен. Действительно, ρ достигает минимума где-то на $B_r(m)$.

Теорема Хопфа-Ринова (продолжение)

Шаг 3: Определим функцию на метрическом пространстве $\rho(m) := \sup_r \{r \in \mathbb{R} \mid \bar{B}_r(m) \text{ компактен } \}.$ Тогда ρ 1-липшицева, в частности, непрерывна.

Шаг 4: Пусть $\bar{B}_r(m)$ – компактный шар в локально компактном пространстве. Тогда существует $\varepsilon > 0$ такое, что каждый замкнутый шар радиуса ε в с центром в $\bar{B}_r(m)$ компактен. Действительно, ρ достигает минимума где-то на $B_r(m)$.

Шаг 5: Для такого шара, $\bar{B}_{r+\frac{1}{2}\varepsilon}(m)$ **тоже компактен.** Для доказательства, рассмотрим конечную $\frac{1}{4}\varepsilon$ -сеть в $\bar{B}_r(m)$. Объединение V замкнутых ε -шаров с центрами в этой сети компактно (конечное объединение компактов компактно) и содержит $\bar{B}_{r+\frac{1}{2}\varepsilon}(m)$ в силу шага 1. Действительно, любая точка $B_{r+\frac{1}{2}\varepsilon}(m)$ отстоит не больше, чем на $\frac{1}{2}\varepsilon$ от $\bar{B}_r(m)$, значит, отстоит не больше чем на $\frac{3}{4}\varepsilon$ от какого-то узла $\frac{1}{4}\varepsilon$ -сети. Это дает $B_{r+\frac{1}{2}\varepsilon}(m)\subset V$.

Шаг 6: Из сравнение шага 5 и шага 2 заключаем, что $\rho = \infty$.

Метрическая геометрия М. Вербицкий

Stefan Cohn-Vossen, 28 May 1902 - 25 June 1936

Кратчайшие в метрическом прострастве

Определение: Непрерывное отображение $\gamma: [0, \alpha] \to M$ называется кратчайшей, если его длина равна $d(\gamma(0), \gamma(\alpha))$.

ЗАМЕЧАНИЕ: Любой отрезок кратчайшей - снова кратчайшая.

Определение: Если $\varphi: [0,\alpha] \to [0,\alpha]$ — гомеоморфизм, а γ - путь из x в y, композиция $\varphi \circ \gamma$ - тоже путь из x в y. Такой путь называется репараметризацией γ .

Параметризация γ — выбор пути в классе путей, эквивалентных с точностью до репараметризации.

Определение: Пусть $\gamma: [0,\alpha] \to M$ - кратчайшая, соединяющая x и y, причем

$$d(\gamma(x), \gamma(y)) = |x - y|.$$

Такая кратчайшая называется **кратчайшей геодезической**, а соответствующая параметризация - **геодезической параметризацией**.

ЗАМЕЧАНИЕ: Геодезическая кратчайшая задается изометрическим вложением из отрезка в M.

Существование кратчайших

TEOPEMA: Пусть M - локально компактное, полное пространство с внутренней метрикой а $x_0, x_1 \in M$. **Тогда существует кратчайшая гео**дезическая, соединяющая x_0 и x_1 .

Доказательство. Шаг 1: Пусть $d(x_0,x_1)=\alpha$. В силу компактности, **в шаре** $\bar{B}_{\alpha/2}(x_1)$ **есть точка** $x_{1/2}$ **такая, что** $d(x_0,x_{1/2})=d(x_{1/2},x_1)=\alpha/2$. В самом деле, функция $d(\cdot,x_0)$: $\bar{B}_{\alpha/2}(x_1)\to\mathbb{R}$ непрерывная на компакте, значит, достигает минимума, который равен $d(x_0,\bar{B}_{\alpha/2}(x_1))=\alpha/2$ потому, что метрика внутренняя.

Шаг 2: Воспользовавшись индукцией, для каждого двоично-рационального числа $\lambda=\frac{n}{2^k}$ в [0,1] найдем точку x_λ , такую, что $d(x_\lambda,x_\mu)=\alpha|\lambda-\mu|.$

Шаг 3: Мы получили изометрическое вложение множества двоичнорациональных чисел в M. Продолжим на пополнение, получим геодезическую. \blacksquare