Теория меры, тест 2

Определение 1.1. Пусть $S^n \subset \mathbb{R}^{n+1}$ — сфера. Большая полусфера есть подмножество сферы, заданное $\{x \in S^n \mid l(x) > 0\}$, где l есть линейный функционал на \mathbb{R}^{n+1} . Кольцо сферических многогранников есть кольцо подмножеств, порожденное большими полусферами. Большая окружность в S^n есть пересечение S^n с 2-мерной гиперплоскостью, проходящей через 0. Точка сферического многогранника R называетсяа внутренней, если R содержит ее окрестность.

Задача 1.1. Докажите, что множество внутренних точек сферического многогранника – многогранник.

Задача 1.2. Докажите, что замыкание сферического многогранника – многогранник.

Определение 1.2. Многогранник называется приведенным, если он совпадает с замыканием множества его внутренних точек. Вершина приведенного многогранника R есть точка $x \in R$, такая, что для любой большой окружности S, проходящей через x, никакая окрестность x в S не содержится в границе R.

Задача 1.3. Найдите все приведенные сферические многогранники в S^2 , не имеющие вершин.

Задача 1.4. Найдите континуальное семейство неконгруэнтных многогранников в S^3 , не имеющих вершин.

Задача 1.5. Пусть $x \in R$ — точка на границе приведенного многогранника. Докажите, что существует C>0 такой, что пересечение ε -сферы с центром в x и R — многогранник в S^{n-1} для любого $\varepsilon < C$.

Задача 1.6. Приведите пример, когда это неверно для произвольного ε .

Определение 1.3. Функция **объема** на сфере есть конечно аддитивная, неотрицательная мера, инвариантная относительно поворотов.

Определение 1.4. Пусть на многогранниках в S^{n-1} задана функция объема Vol. **Телесный угол** многогранника R в S^n в точке x есть

$$\lim_{\varepsilon \to 0} \frac{\operatorname{Vol}(R \cap S_{\varepsilon}(x))}{\operatorname{Vol}(S_{\varepsilon})},$$

где S_{ε} есть сфера с центром x и радиусом ε .

Задача 1.7. Докажите, что функция

$$\varepsilon \longrightarrow \frac{\operatorname{Vol}(R \cap S_{\varepsilon}(x))}{\operatorname{Vol}(S_{\varepsilon})}$$

постоянна для достаточно малых ε .

Задача 1.8. Пусть на многогранниках в S^{n-1} задана функция объема Vol. Пусть R – приведенный многогранник в S^n с вершинами $r_1,...,r_k$ и телесными углами $\alpha_1,...,\alpha_k$, не равный самой сфере.

- а. Докажите, что функция $R \longrightarrow \frac{1}{2} + \sum_i \alpha_i \frac{1}{2} k$ продолжается до конечно-аддитивной функции на кольце сферических многогранников в S^n для n=2.
- б. Докажите это утверждение для произвольного n, или найдите контрпример.