Теория меры, лекция 7: мера Каратеодори

Миша Вербицкий **18 апреля 2015 НМУ**

Объем на борелевских множествах

ОПРЕДЕЛЕНИЕ: Пусть M — хаусдорфово топологическое пространство. **Алгебра борелевских множеств** есть сигма-алгебра, порожденная компактными подмножествами M.

ОПРЕДЕЛЕНИЕ: Пусть C — множество компактных подмножеств M. **Объем** есть функция λ : $C \to [0, \infty]$ которая удовлетворяет следующим условиям.

[Монотонность:] $\lambda(A) \leqslant \lambda(B)$ для $A \subset B$.

[Аддитивность:] $\lambda(A \coprod B) = \lambda(A) + \lambda(B)$

[Полуаддитивность:] $\lambda(A \cup B) \leqslant \lambda(A) + \lambda(B)$.

Внешняя мера

ПРИМЕР: Пусть $\lambda(C)$ есть число целых точек во внутренности компактного подмножества $C \subset \mathbb{R}^n$. Это объем.

ОПРЕДЕЛЕНИЕ: Пусть на топологическом пространстве M задан объем λ . Определим **внутреннюю меру** открытого множества U как $\lambda_*(U) := \sup_{K \subset U} \lambda(K)$, где супремум берется по всем компактам в U. Определим **внешнюю меру** множества A как $\lambda^*(A) := \inf_{U \supset A} \lambda_*(U)$, где инфимум берется по всем открытым окрестностям A.

Объем и мера Лебега

ЛЕММА: Пусть λ есть мера Лебега на \mathbb{R}^n . Тогда $\lambda^*(K) = \lambda(K)$ для любого компакта $X \subset \mathbb{R}^n$.

Доказательство. Шаг 1: Неравенство $\lambda^*(K) \geqslant \lambda(K)$ очевидно.

Шаг 2: Из хаусдорфовости легко получить, что $K = \bigcap_{U \supset K} U$ (проверьте это). Тогда $\lambda^*(K) = \lim_i \lambda(K_i)$, где $U_1 \supset U_2 \supset U_3 \supset ...$ – последовательность окрестностей K, удовлетворяющих $\bigcap_i U_i = K$, а $K_i \subset U_i$ – подходящая последовательность компактных подмножеств. Заменив K_n на $K \cup \bigcap_{i=1}^n K_i$, можно считать, что каждый K_i содержит K и $\bigcap_{i=1}^n K_i$. Тогда $\lim_i \lambda(K_i) = \lambda(K)$ в силу σ -аддитивности меры Лебега.

Основной результат этой лекции есть теорема Каратеодори о продолжении внешней меры ("Caratheodory extension theorem"). Я докажу ее в конце лекции.

ТЕОРЕМА: (теорема Каратеодори о продолжении меры)

Пусть M — хаусдорфово топологическое пространство, а λ — объем на нем. Тогда внешнюю меру λ^* можно продолжить до счетно-аддитивной меры на борелевских множествах.

Непересекающиеся окрестности компактов

Лемма 1: Пусть M — хаусдорфово топологическое пространство, а A, B — непересекающиеся компактные множества. **Тогда у** A и B есть непересекающиеся открытые окрестности.

Доказательство. Шаг 1: Достаточно доказать, что у A есть окрестность, замыкание которой не пересекается с B (докажите это).

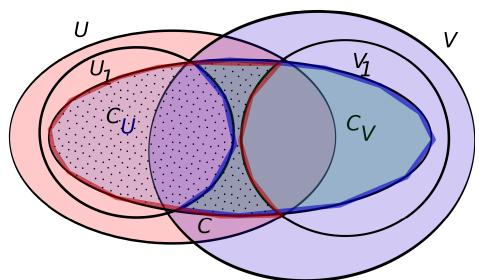
Шаг 2: Пусть $x \in B$. Для каждого $z \in A$, выберем окрестность $U_z \ni z$, замыкание которой $\overline{U_z}$ не содержит x (такая окрестность существует в силу хаусдорфовости — докажите). Поскольку A компактно, а U_z — открытое покрытие A, из него можно выбрать конечное подпокрытие $U_1,...,U_n$. Замыкание множества $\bigcup U_i$ не содержит x, потому что $\overline{\bigcup_{i=1}^n U_i} = \bigcup_{i=1}^n \overline{U_i}$. Мы получили, что у A есть окрестность, замыкание которой не содержит $x \in B$.

Шаг 3: Из этого следует, что у любого $x \in B$ есть окрестность V_x , которая не пересекает открытую окрестность $U_x \supset A$. Множества V_x покрывают B; в силу компактности, можно выбрать конечное подпокрытие $\{V_i\}$. Обозначим соответствующие открытые окрестности A за U_i . **Тогда** $\bigcup V_i$ есть открытая окрестность B, которая не пересекает $\bigcap U_i$.

Разбиение компакта в объединение компактов

ЛЕММА: Пусть $C \subset U \cup V$ компактное подмножество объединения двух открытых множеств. **Тогда существуют компактные подмножества** $C_U \subset U$ и $C_V \subset V$, такие, что $C_U \cup C_V = C$.

Доказательство: $C \setminus U$ и $C \setminus V$ — замкнутые подмножества компакта, значит, они компактны. Поскольку они не пересекаются, у них есть непересекающиеся окрестности, V_1 и U_1 . Множества $C_U := C \setminus V_1$ и $C_V := C \setminus U_1$ также компактны и лежат в U и V, соответственно, их объединение дает все C, как видно из приведенной иллюстрации.



Разбиение компакта C в объединение компактов C_U и C_V .

Полуадитивность внешней меры

УТВЕРЖДЕНИЕ: Внешняя мера полуаддитивна: $\lambda^*(A \cup B) \leq \lambda^*(A) + \lambda^*(B)$, для любых A, B.

Доказательство. Шаг 1: Докажем полуаддитивность, когда A, B открыты. В этой ситуации имеем имеем $\lambda^*(U \cup V) = \sup_{C \subset U \cup V} \lambda(C) \leqslant \lambda(C_U) + \lambda(C_V)$, где C_U , C_V — компактные множества, построенные в предыдущей лемме. С другой стороны, $\lambda(C_U) \leqslant \lambda^*(U)$ и $\lambda(C_V) \leqslant \lambda^*(V)$ по определению внешней меры.

Шаг 2: Для произвольных A,B, и любого $\varepsilon > 0$, имеем $\lambda^*(A) + \lambda^*(B) \geqslant \lambda^*(U) + \lambda^*(V) - \varepsilon$ для подходящих окрестностей $U \supset A$ и $V \supset B$. Воспользовавшись предыдущим шагом, получаем

$$\lambda^*(A) + \lambda^*(B) \geqslant \lambda^*(U) + \lambda^*(V) - \varepsilon \geqslant \lambda^*(U \cup V) - \varepsilon \geqslant \lambda^*(A \cup B) - \varepsilon.$$

Поскольку ε произвольный, это дает $\lambda^*(A \cup B) \leqslant \lambda^*(A) + \lambda^*(B)$.

σ -полуадитивность внешней меры

УТВЕРЖДЕНИЕ: Внешняя мера σ -полуаддитивна:

$$\lambda^*(\bigcup A_i) \leqslant \sum_{i=1}^{\infty} \lambda^*(A_i)$$
.

Доказательство. Шаг 1: Обозначим объединение $\bigcup A_i$ за A. Пусть все A_i открыты. Тогда $\lambda^*(A) = \sup_{K \subset A} \lambda(K)$, где супремум берется по всем компактам, содержащимся в A. Каждый такой компакт имеет конечное подпокрытие, $K \subset \bigcup_{i=1}^N A_i$, что дает $\lambda(K) \leqslant \lambda^*(K) \leqslant \sum_{i=1}^N \lambda^*(A_i)$ в силу полуаддитивности. Получаем:

$$\lambda^*(A) = \sup_{K \subset A} \lambda(K) \leqslant \sum_{i=1}^{\infty} \lambda^*(A_i).$$

Шаг 2: Для произвольных A_i , и любого $\varepsilon > 0$, имеем $\sum_{i=1}^{\infty} \lambda^*(A_i) \geqslant \sum_{i=1}^{\infty} \lambda^*(U_i) - \varepsilon$ для подходящих окрестностей $U_i \supset A_i$ (проверьте это). Воспользовавшись предыдущим шагом, получаем

$$\sum_{i=1}^{\infty} \lambda^*(A_i) \geqslant \sum_{i=1}^{\infty} \lambda^*(U_i) - \varepsilon \geqslant \lambda^*\left(\bigcup U_i\right) - \varepsilon \geqslant \lambda^*(A) - \varepsilon.$$

Измеримость по Каратеодори

ОПРЕДЕЛЕНИЕ: Пусть M — топологическое пространство, λ — объем, а λ^* — соответствующая ему внешняя мера. Подмножество $A \subset M$ называется измеримым по Каратеодори, если для любого $X \subset M$, имеем $\lambda^*(X \backslash A) + \lambda^*(X \cap A) = \lambda^*(X)$.

ЗАМЕЧАНИЕ: Условие $\lambda^*(X \backslash A) + \lambda^*(X \cap A) = \lambda^*(X)$ достаточно проверять для открытых X. Действительно, пусть $U \supset X$ — открыто, и для всех таких U, имеем $\lambda^*(U \backslash A) + \lambda^*(U \cap A) = \lambda^*(U)$. Тогда

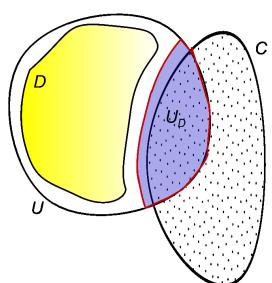
$$\lambda^*(X) = \inf_{U \supset X} \lambda^*(U) = \inf_{U \supset X} \left[\lambda^*(U \backslash A) + \lambda^*(U \cap A) \right] \geqslant \lambda^*(X \backslash A) + \lambda^*(X \cap A).$$

Это дает $\lambda^*(X\backslash A) + \lambda^*(X\cap A) \leqslant \lambda^*(X)$. Противоположное неравенство следует из полуаддитивности внешней меры.

Компакты измеримы по Каратеодори

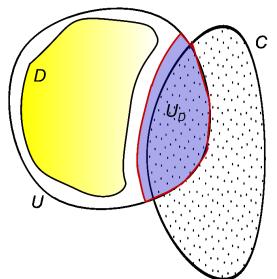
УТВЕРЖДЕНИЕ: Любое компактное множество измеримо по Каратеодори.

Доказательство: Пусть C — компактное, а U открыто. В силу предыдущего замечания, достаточно проверить, что $\lambda^*(U\backslash C) + \lambda^*(U\cap C) = \lambda^*(U)$. Возьмем компактное подмножество $D \subset U\backslash C$, и пусть $V_D \supset C$ — открытая окрестность, замыкание которой не пересекает D (она существует в силу Леммы 1)



Вычисление $\lambda^*(U \setminus C) + \lambda^*(U \cap C)$, где C – компакт, U – открытое множество.

Компакты измеримы по Каратеодори (продолжение)



Вычисление $\lambda^*(U \setminus C) + \lambda^*(U \cap C)$, где C – компакт, U – открытое множество.

Тогда $\lambda^*(U\cap C)\leqslant \lambda^*(U\cap V_D)=\sup_{E\subset U\cap V_D}\lambda(E),$ где E – компакт, лежащий в $U_D:=U\cap V_D.$ Это дает

$$\lambda^*(U \cap C) + \lambda^*(U \setminus C) \leqslant \sup_{D \subset U \setminus C} \lambda(D) + \sup_{E \subset U_D} \lambda(E). \quad (*)$$

Поскольку E и D — непересекающиеся компакты, лежащие в U, имеем

$$\lambda(D) + \lambda(E) = \lambda(E \cup D) \leqslant \lambda^*(U).$$

Вместе с (*) это дает $\lambda^*(U \cap C) + \lambda^*(U \setminus C) \leqslant \lambda^*(U)$. Обратное неравенство следует из полуаддитивности внешней меры.

Пересечение множеств, измеримых по Каратеодори

УТВЕРЖДЕНИЕ: Пересечение, объединение, дополнение множеств, измеримых по Каратеодори, снова измеримо по Каратеодори.

Доказательство. Шаг 1: Для дополнения $A_1 := M \backslash A$ это особенно очевидно, потому что $X \backslash A = X \cap A_1$, а $X \cap A = X \backslash A_1$.

Шаг 2: Докажем, что $A \cap B$ измеримо, если A и B измеримы.

Пересечение измеримых по Каратеодори (продолжение)

Шаг 2: Чтобы доказать, что $A \cap B$ измеримо, отметим, что

$$X = \Big((X \backslash A) \backslash B \Big) \coprod \Big((X \backslash A) \cap B \Big) \coprod \Big((X \cap A) \backslash B \Big) \coprod \Big((X \cap A) \cap B \Big),$$
 и в силу измеримости A и B это дает

$$\lambda^*(X) = \lambda^*((X \setminus A) \setminus B) + \lambda^*((X \setminus A) \cap B) + \lambda^*((X \cap A) \setminus B) + \lambda^*((X \cap A) \cap B). \quad (**)$$

Поскольку $X\backslash (A\cap B)=\Big((X\backslash A)\backslash B\Big)\coprod\Big((X\backslash A)\cap B\Big)\coprod\Big((X\cap A)\backslash B\Big)$, из полуадитивности следует

$$\lambda^*(X\backslash(A\cap B))\leqslant \lambda^*((X\backslash A)\backslash B)+\lambda^*((X\backslash A)\cap B)+\lambda^*((X\cap A)\backslash B).$$

Сравнивая это с (**) получаем

$$\lambda^*(X) = \lambda^*(X \setminus (A \cap B)) + \lambda^*((X \setminus A) \cap B) + \lambda^*((X \cap A) \setminus B) + \lambda^*((X \cap A) \cap B)$$

$$\geq \lambda^*(X \setminus (A \cap B)) + \lambda^*(X \cap (A \cap B)).$$

Противоположное неравенство следует из полуаддитивности внешей меры. Доказательство для $A \cup B$ аналогично. \blacksquare

Счетное объединение множеств, измеримых по Каратеодори

УТВЕРЖДЕНИЕ: Счетное объединение множеств, измеримых по Каратеодори, снова измеримо по Каратеодори.

Доказательство. Шаг 1: Пусть $\{A_i, i=1,2,3,...\}$ – счетный набор множеств, измеримых по Каратеодори. Заменив каждый A_i на дополнение ко всем предыдущим, можно считать, что они попарно не пересекаются.

Шаг 2: Пусть X произвольное множеством U — окрестность $A\cap X$, где $A:=\bigcup A_i$, а $U_i\supset A_i\cap X$ окрестности, содержащиеся в U. Для любого компакта $K\subset A\cap X$, K содержится в конечном объединении U_i , что дает

$$\lambda^*(A \cap X) \geqslant \lim_{N} \lambda^* \left(\bigcup_{i=0}^{N} U_i \right) \geqslant \lim_{N} \lambda^* \left(\bigcup_{i=0}^{N} A_i \cap X \right) = \lim_{N} \sum_{i=1}^{N} \lambda^*(A_i \cap X)$$

(последнее равенство вытекает из измеримости A_i). Из этого следует $\lambda^*(A\cap X)\geqslant \sum_{i=1}^\infty \lambda^*(A_i\cap X)$; противоположное неравенство вытекает из σ -аддитивности внешней меры, что дает

$$\lambda^* \left(\left(\coprod A_i \right) \cap X \right) = \sum_{i=1}^{\infty} \lambda^* (A_i \cap X).$$

Счетное объединение множеств, измеримых по Каратеодори (2)

УТВЕРЖДЕНИЕ: Счетное объединение множеств, измеримых по Каратеодори, снова измеримо по Каратеодори.

Шаг 2 (заключение): A_i — счетный набор попарно непересекающихся множеств, измеримых по Каратеодоры; для любого X получаем

$$\lambda^* \left(\left(\coprod A_i \right) \cap X \right) = \sum_{i=1}^{\infty} \lambda^* (A_i \cap X).$$

Шаг 3: Из этого следует

$$\lambda^*(A \cap X) = \sum_{i=1}^{\infty} \lambda^*(A_i \cap X) = \lambda^*(X) - \lim_{N} \lambda^* \left(X \setminus \left(\coprod_{i=1}^{N} A_i \right) \right) \leqslant \lambda^*(X) - \lambda^*(X \setminus A)$$

(последнее неравенство следует из монотонности внешней меры). Получаем $\lambda^*(A\cap X)+\lambda^*(X\backslash A)\leqslant \lambda^*(X)$; противоположное неравенство следует из полуаддитивности, что дает $\lambda^*(A\cap X)+\lambda^*(X\backslash A)=\lambda^*(X)$.

Множества меры нуль измеримы по Каратеодори

ЛЕММА: Пусть A – множество внешней меры 0. **Тогда** $\lambda^*(X \cup A) = \lambda^*(X)$ и $\lambda^*(X \setminus A) = \lambda^*(X)$ для любого X.

ДОКАЗАТЕЛЬСТВО: $\lambda^*(X \cup A) = \lambda^*(X)$ следует из полуаддитивности. Чтобы убедиться в том, что $\lambda^*(X \setminus A) = \lambda^*(X)$, возьмем у A окрестность U внешней меры $\leq \varepsilon$, а в X впишем компакт K объема $\lambda^*(X) - \varepsilon$. В силу измеримости U по Каратеодори, $K \setminus U$ удовлетворяет $\lambda^*(K \setminus U) \geqslant \lambda^*(X) - 2\varepsilon$, значит,

$$\lambda^*(X\backslash A)\geqslant \lambda^*(K\backslash U)\geqslant \lambda^*(X)-2\varepsilon,$$

для любого $\varepsilon > 0$.

СЛЕДСТВИЕ: Пусть A — множество внешней меры 0. Тогда A измеримо по Каратеодори.

Мера Каратеодори и мера Лебега

УТВЕРЖДЕНИЕ: Измеримое по Лебегу множество измеримо по Каратеодори.

ДОКАЗАТЕЛЬСТВО: Компакты измеримы по Каратеодори, а также их объединения, дополнения, пересечения, значит, **все борелевские множества измеримы по Каратеодори.** В силу предыдущей леммы, все множества меры нуль тоже измеримы по Каратеодори. σ -алгебра множеств, измеримых по Лебегу, порождена борелевскими и меры нуль.

TEOPEMA: Пусть μ – объем компакта по Лебегу, а μ^* – связанная с этим объемом внешняя мера. **Тогда для каждого измеримого по Лебегу множества,** $\mu^*(X)$ есть мера Лебега множества X.

ДОКАЗАТЕЛЬСТВО: На измеримых по Каратеодори множествах, μ^* σ -аддитивна и равна μ на компактах и на множествах меры 0. С другой стороны, σ -аддитивная мера однозначно задается своими значениями на любом наборе образующих. \blacksquare