
ANALYSIS 1: SMOOTH MANIFOLDS.

Misha Verbitsky

In order to be approved, you should solve in every sheet either all problems with asterisks or all
problems without asterisks. The problems with two asterisks are optional: k problems with two asterisks
substitute 2k problems with one asterisk. The problems with (!) are obligatory for everybody.

1.1. Topological manifolds

Remark. Manifolds can be smooth (of a given “class of smoothness”), real analytic, or topological
(continuous). These types of manifolds admit different definitions. One may specify a type if necessary,
but usually it is clear from the context.

Definition 1.1. A topological manifold of dimension n is a topological space where every point has
a neighborhood homeomorphic to ℝ

n.

Remark. Let G be a group acting on a setM . The stabilizer of x ∈M is the subgroup of all elements
in G that fix x. An action is free if the stabilizer of every point is trivial.

Remark. Any action of a group on a topological space is continuous by default.

Problem 1.1. Suppose that a finite group G acts freely on a Hausdorff manifold M . Show that the
quotient space M/G is a manifold.

Problem 1.2 (!). Construct an example of a finite group G acting non-freely on a manifold M such
that M/G is not a manifold.

Problem 1.3. Consider the quotient of ℝ2 by the action of {±1} that maps x to −x. Is the quotient
space a manifold?

Problem 1.4 (*). Show that the n-dimensional sphere Sn, the n-dimensional real projective space ℙn
ℝ
,

and the n-dimensional complex projective space ℙ
n
ℂ
are manifolds.

Remark. In the above definition of a manifold, we do not require it to be Hausdorff. Nevertheless,
in many cases, manifolds are assumed to be Hausdorff by default.

Problem 1.5. Construct an example of a non-Hausdorff manifold.

Problem 1.6. Show that ℝ2/ℤ2 is a manifold.

Problem 1.7. Let � be an irrational number. The group ℤ
2 acts on ℝ by the formula t 7→ t+m+n�.

Show that this action is free, but the quotient ℝ/ℤ2 is not a manifold.

Problem 1.8 (**). Construct an example of a manifold of positive dimension such that the closures
of two arbitrary nonempty sets always intersect or show that such a manifold cannot exist.

Problem 1.9 (**). Let G ⊂ GL(n,ℝ) be a compact subgroup. Show that G is a manifold and that
the quotient space GL(n,ℝ)/G is also a manifold.

1.2. Smooth manifolds

Definition 1.2. A cover of a topological space X is a family of open sets {Ui} such that
∪

i Ui = X.
A cover {Vi} is a refinement of a cover {Ui} if every Vi is included in some Ui.
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Problem 1.10. Show that any two cover of a topological space admit a common refinement.

Definition 1.3. A cover {Ui} is an atlas if, for every Ui, we have a map 'i : Ui → ℝ
n that provides a

homeomorphism of Ui with an open subset in ℝ
n. The transition maps

Φij : 'i(Ui ∩ Uj) → 'j(Ui ∩ Uj)

are induced by the above homeomorphisms. An atlas is smooth if all transition maps are smooth
(of class C∞, i.e., infinitely differentiable), smooth of class Ci if they are i times differentiable,
and real analytic if all transition maps are developable in Taylor’s series at every point.

Definition 1.4. A refinement of an atlas is a refinement of the corresponding cover Vi ⊂ Ui equipped
with the maps 'i : Vi → ℝ

n that are the restrictions of 'i : Ui → ℝ
n. Two atlases (Ui, 'i) and (Ui,  i) of

class C∞ or Ci (with the same cover) are equivalent in this class if, for all i, the map  i ∘'
−1
i defined

on the corresponding open subset in ℝ
n belongs to the mentioned class. Two arbitrary atlases are

equivalent if the corresponding cover possess a common refinement and the corresponding refinements
of the atlases are equivalent.

Definition 1.5. A smooth structure on a manifold (of class C∞ or Ci) is an atlas of class C∞ or Ci

considered up to the above equivalence. A smooth manifold is a topological manifold equipped with
a smooth structure.

Remark. Terrible, is not it?

Problem 1.11 (*). Construct an example of two nonequivalent smooth structures on ℝ
n.

Definition 1.6. A smooth function on a manifold M is a function f whose restriction to the chart
(Ui, 'i) provides a smooth map f ∘ '−1

i defined on the open subset 'i(Ui) ⊂ ℝ
n.

Remark. There are several ways to define a smooth manifold. The above way is canonical. It is not
the most convenient one but you should know it. Two other ways (via sheaves of functions and via
Whitney’s theorem) are presented in these sheets.

Definition 1.7. A pre-sheaf of functions on a topological space M is given by the following data.
For every open subset U ⊂ M , it is given a subring ℱ(U) ⊂ F (U) in the ring F (U) of all functions on
U such that the restriction of every  ∈ ℱ(U) to an open subset U1 ⊂ U belongs to ℱ(U1). A pre-sheaf
is called a sheaf if such subrings satisfy the following conditions. Let {Ui} be a cover of an open subset
U ⊂M and let fi ∈ ℱ(Ui) be a family of functions defined on the members of the cover and satisfying
the condition

fi∣Ui∩Uj
= fj ∣Ui∩Uj

for every pair of members of the cover. Then there exists f ∈ ℱ(U) such that fi is the restriction of f
to Ui for all i.

Problem 1.12 (!). Let ℱ be a pre-sheaf of functions. Show that ℱ is a sheaf if and only if, for every
cover {Ui} of an open subset U ⊂M , the sequence

0 → ℱ(U) →
∏

i

ℱ(Ui) →
∏

i∕=j

ℱ(Ui ∩ Uj)

is exact.

Remark. An exact sequence is a sequence of abelian groups and homomorphisms

⋅ ⋅ ⋅ → A1 → A2 → A3 → . . .

such that the kernel of every arrow coincides with the image of the previous one.
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Problem 1.13. Show that the following spaces of functions on ℝ
n are rings and define sheaves of

functions.
a. The space of continuous functions
b. The space of infinitely smooth functions
c. The space of i times differentiable functions
d(*). The space of functions that are pointwise limits of sequences of continuous functions
e. The space of functions vanishing outside a set of measure 0

Problem 1.14. Show that the following spaces of functions on ℝ
n are pre-sheaves but are not sheaves.

a. The space of constant functions
b. The space of limited functions
c. The space of functions vanishing outside a limited subset
d(*). The space of Lebesgue measurable functions with finite measure

Definition 1.8. A ringed space (M,ℱ) is a topological space equipped with a sheaf of functions.

A morphism (M,ℱ)
Ψ
−→ (N,ℱ ′) of ringed spaces is a continuous map M

Ψ
−→ N such that, for every

open subset U ⊂ N and every function f ∈ ℱ ′(U), the function f ∘Ψ belongs to the ring ℱ
(

Ψ−1(U)
)

.

An isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 satisfy the above
condition (i.e., are morphisms of ringed spaces).

Remark. Frequently, the term “ringed space” stands for a more general concept, where the “sheaf of
functions” is an abstract “sheaf of rings,” not necessarily a subsheaf in the sheaf of all functions on M .
The above definition is simpler although not quite standard.

Problem 1.15. Let M,N be open subsets in ℝ
n and let Ψ : M → N be a smooth map. Show that Ψ

defines a morphism of spaces ringed by smooth functions.

Problem 1.16. Let M be a smooth manifold of some class and let ℱ be the space of functions of this
class. Show that ℱ is a sheaf.

Problem 1.17 (!). Let M be a topological manifold and let (Ui, 'i) and (Vj ,  j) be smooth structures
on M . Show that these structures are equivalent if and only if the corresponding sheaves of smooth
functions coincide.

Remark. The above problem implies that the following definition is equivalent to Definition 1.5.

Definition 1.9. Let (M,ℱ) be a topological manifold equipped with a sheaf of functions. It is said
to be a smooth manifold of class C∞ or Ci if every point in (M,ℱ) has an open neighborhood
isomorphic to the ringed space (ℝn,ℱ ′), where ℱ ′ are functions on ℝ

n of the mentioned class.

Definition 1.10. A coordinate system on an open subset U of a manifold (M,ℱ) is an isomorphism
between (U,ℱ) and an open subset in (ℝn,ℱ ′), where ℱ ′ are functions of the same class on ℝ

n.

Remark. In order to avoid a complicated notation, from now on, we assume all manifolds to be
Hausdorff and infinitely smooth. The case of other classes can be considered in the same manner.

Problem 1.18. Let (M,ℱ) and (N,ℱ ′) be manifolds and let Ψ :M → N be a continuous map. Show
that the following conditions are equivalent.

(a) In local coordinates, Ψ is given by a smooth map
(b) Ψ is a morphism of ringed spaces.

Remark. An isomorphism of smooth manifolds is called a diffeomorphism. A diffeomorphism is a
homeomorphism that maps smooth functions onto smooth ones.

Problem 1.19 (*). Let ℱ be a pre-sheaf of functions on ℝ
n. Figure out a minimal sheaf that contains

ℱ in the following cases.
(a) Constant functions
(b) Functions vanishing outside a limited subset
(c) Limited functions
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Problem 1.20 (*). Consider the ringed space (ℝn, Ci) with i times differentiable functions. Describe
all morphisms from (ℝn, Ci+1) to (ℝn, Ci).

1.2. Embedded manifolds

Definition 1.11. A closed embedding N →֒M of topological spaces is a homeomorphism of N with
its image that is closed in M .

Definition 1.12. Let M be a smooth manifold of dimension m and let N ⊂M be a subset. Then N is
called an embedded manifold of dimension n and the map N →֒M is called a smooth embedding if,
for every point x ∈ N , there is a neighborhood U ⊂M diffeomorphic to ℝm such that the diffeomorphism
maps U ∩N onto a linear subspace of dimension n. If the image of N is closed in M , the map N →֒M
is called a closed embedding.

Problem 1.21 (!). Let (M,ℱ) be a smooth manifold and let N ⊂ M be an embedded submanifold.
Consider the space ℱ ′(U) of functions on U ⊂ N that are extendable to functions on M defined on
some neighborhood of U .

a. Show that ℱ ′ is a sheaf.
b. Show that this sheaf defines a smooth structure on N .
c. Show that the natural embedding (N,ℱ ′) → (M,ℱ) is a morphism of manifolds.

Problem 1.22. Let N1, N2 be two manifolds and let 'i : Ni → M be smooth embeddings. Suppose
that the image of N1 coincides with that of N2. Show that N1 and N2 are isomorphic.

Remark. By the above problem, in order to define a smooth structure on N , it suffices to embed
N into ℝ

n. As it will be clear in the next sheet, every manifold is embeddable into ℝ
n (assuming

reasonable conditions). Therefore, in place of a smooth manifold, we can use “manifolds that are
smoothly embedded into ℝ

n.”

Problem 1.23. Construct a smooth embedding of ℝ2/ℤ2 into ℝ
3.

Problem 1.24 (*). Show that ℙn
ℝ
does not admit a smooth embedding into ℝ

n+1 for n > 1.

1.4. Partition of unity

Definition 1.13. A cover {Ui} of a topological space M is called locally finite if every point in M
possesses a neighborhood that intersects only a finite number of members of the cover.

Problem 1.25. Let {Ui} be a locally finite cover of M such that every Ui is homeomorphic to ℝ
n.

Show that the cover possesses a locally finite refinement {Vi} such that the closure of every Vi is compact
in M .

Hint. Cover every Ui = ℝ
n by the balls of radius 1 centered at integer points.

Problem 1.26 (!). Given a locally finite cover {Ui} of a manifold M such that every Ui is equipped

with a homeomorphism Ui
'i
−→ ℝ

n and has compact closure in M , show that there exists a collection of
numbers ri > 0 such that the '−1

i (Bri) form a cover of M , where Bri stands for the open ball of radius
ri centered at 0.

Problem 1.27 (!). LetM be a manifold admitting a locally finite cover by open subsets homeomorphic
to ℝ

n. Show that the cover has a locally finite refinement {Ui} such that every Ui can be equipped with

a homeomorphism Ui
'i
−→ ℝ

n and the inverse images '−1
i (B1) of unit balls cover M as well. Verify that

we can take smooth 'i’s if M is equipped with a smooth structure.

Definition 1.14. LetM be a smooth manifold and let {Ui} be a locally finite cover ofM . A partition
of unity subordinate to the cover {Ui} is a family of smooth functions fi : M → [0, 1] with compact
support indexed by the same indices as the Ui’s and satisfying the following conditions.

(a) Every function fi vanishes outside Ui
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(b)
∑

i fi = 1

Remark. Note that the sum
∑

i fi is well defined because the cover Ui is locally finite.

Problem 1.28. Show that all derivatives of e−
1

x2 at 0 vanish.

Problem 1.29. Define the following function � on ℝ
n

�(x) :=

{

e
1

∣x∣2−1 if ∣x∣ < 1
0 if ∣x∣ ≥ 1

Show that � is smooth and that all its derivatives vanish at the points of the unit sphere.

Problem 1.30. Let {Ui, 'i : Ui → ℝ
n} be an atlas on a smooth manifold M . Consider the following

function �i :M → [0, 1]

�i(m) :=

{

�
(

'i(m)
)

if m ∈ Ui

0 if m /∈ Ui

Show that �i is smooth.

Problem 1.31 (!). Let {Ui, 'i : Ui → ℝ
n} be a locally finite atlas on a manifold M such that

'−1
i (B1) cover M as well (such an atlas was constructed in Problem 1.27). Consider the functions �i’s

constructed in the above problem. Show that
∑

j �j vanishes nowhere and that the family of functions
{

fi :=
�i∑
j
�j

}

provides a partition of unity on M .

Problem 1.32 (!). Show that every manifold with enumerable base of topology admits a partition of
unity.

1.5. Whitney’s theorem for compact manifolds

Definition 1.15. Define ℝ∞ as the union of all ℝi embedded one into the other by the maps (x1, . . . , xn)
→֒ (x1, . . . , xn, 0)

Problem 1.33 (*). Show that ℝ∞ is not locally compact.

Problem 1.34. Show that ℝ
∞ is a topological abelian group (i.e., equipped with a continuous com-

mutative group operation, namely, the addition).

Problem 1.35 (*). Consider the unit sphere S
∞ ⊂ ℝ

∞. Show that it is contractible.

Problem 1.36 (*). Is the corresponding projective space ℙ
∞
ℝ

:= S
∞/{±1} contractible?

Problem 1.37. Let M be a smooth manifold, let {Ui, 'i : Ui → ℝ
n} be a locally finite atlas, and let

{fi} be a partition of unity subordinated to the atlas and such that fi = 0 outside some compact subset
in Ui. Consider the following map Ψi :M → ℝ

n+1

Ψi(m) :=

{(

fi(m)'i(m), fi(m)
)

if m ∈ Ui

(0, . . . , 0) if m /∈ Ui

a. Show that Ψi is injective on the set where fi ∕= 0.
b. Suppose the the atlas {Ui} is finite and contains m charts. Show that

⊕

i Ψi defines a closed

embedding of M into ℝ
(n+1)m.

c(*). Show that
⊕

i Ψi defines a closed embedding of M into ℝ
∞ if the number of charts in the atlas

{Ui} is infinite.

Problem 1.38 (!). Prove Whitney’s theorem (for compact manifolds) : every compact manifold admits
a closed smooth embedding into ℝ

n.

Problem 1.39 (*). Let U ⊂ M be an open subset in a smooth manifold. Suppose that U is homeo-
morphic to ℝ

n and let V ⊂ U correspond to the unit ball. Construct a smooth map from M onto the
unit sphere S

n in ℝ
n+1 which is injective on V and maps into (0, . . . , 0, 1) the complement to Ui.

Problem 1.40 (**). Show that the map constructed in the above problem is necessarily surjective.


