
ANALYSIS 2: HAUSDORFF DIMENSION AND WHITNEY’S THEOREM.

Misha Verbitsky

In order to be approved, you should solve in every sheet either all problems with asterisks or all
problems without asterisks. The problems with two asterisks are optional: k problems with two asterisks
substitute 2k problems with one asterisk. The problems with (!) are obligatory for everybody.

2.1. Hausdorff dimension

Definition 2.1. Let M be a metric space. The diameter diamM ∈ [0,∞] is the number sup
x,y∈M

d(x, y).

Definition 2.2. In a metric space, the ball of radius " centered at x is defined as the set of all points
y satisfying d(x, y) < ".

Problem 2.1. Describe all possible values of the diameter of the ball of radius " in a metric space.

Problem 2.2. Let M be a metric space and let " > 0. Show that M possesses a cover by balls of
diameter ≤ ".

Definition 2.3. Let {Si} be a cover of a metric space M formed by balls of radius r with r < ". Define
�d," ∈ [0,∞] as

�d,"M := inf
{Si}

∑

i

(diamSi)
d,

where the infimum is taken with respect to all covers as above. The limit

�dM := sup lim
"→0

�d,"M

is called d-dimensional Hausdorff measure of M .

Problem 2.3. Suppose that a metric in M = ℝ
n is given by the norm

∣

∣(x1, . . . , xn)
∣

∣ := max ∣xi∣. Show
that the n-dimensional Hausdorff measure of a polyhedron equals its volume (in the usual sense).

Problem 2.4 (*). Suppose that a metric in M = ℝ
n is given by the norm

∣

∣(x1, . . . , xn)
∣

∣ :=
∑

∣xi∣.
Show that the n-dimensional Hausdorff measure of a polyhedron is proportional to its volume. Calculate
the coefficient of proportionality.

Problem 2.5 (*). Let M = ℝ
n be equipped with the euclidean metric. Show that the n-dimensional

Hausdorff measure of a polyhedron is proportional to its volume. Calculate the coefficient of propor-
tionality.

Definition 2.4. A map f : M → N of metric spaces is called lipschitz with constant C ≥ 0 if
d(x, y) ≥ C ⋅ d

(

f(x), f(y)
)

for all x, y ∈ M . A map is called bilipschitz if it is bijective and the inverse
map is also lipschitz (with some constant).

Problem 2.6. Show that every lipschitz map is continuous.

Problem 2.7 (*). Construct an example of a continuous map of metric spaces that is not lipschitz.

Problem 2.8. Let d1, d2 be two norms on a vector space V . Denote by the same letters the corre-
sponding metrics. Show that the identity map IdV : (V, d1) → (V, d2) is lipschitz if and only if the unit
ball B1(r, d1) is limited in terms of the norm d2.
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Problem 2.9 (*). Let M = ℝ
n and let d1, d2 be some norms on M . Show that IdM : (M,d1) → (M,d2)

is bilipschitz.

Problem 2.10 (!). Let U ⊂ ℝ
n be a limited open subset and let Φ : U → ℝ

n be a smooth map
smoothly extendable to the boundary ∂U . Show that Φ is lipschitz.

Problem 2.11. Let M
f

−→ N be a lipschitz map of metric spaces with constant C. Show that
�dM ≥ Cd�df(M), where �d stands for the d-dimensional Hausdorff measure.

Problem 2.12 (!). Suppose that �dM < ∞. Show that �d′M = 0 for every d′ > d.

Hint. Deduce from diamSi < " the inequality

�d′,"M = inf
{Si}

∑

i

(diamSi)
d′

≤ "d
′−d inf

{Si}

∑

i

(diamSi)
d = "d

′−d�d,"M (1)

and pass to the limit " → 0.

Problem 2.13 (!). Suppose that �d′M = ∞. Show that �dM = 0 for every d < d′.

Hint. Use the inequality (1) and pass to the limit " → 0.

Definition 2.5. Let M be a metric space. The Hausdorff dimension dimH M ∈ [0,∞] is the
supremum of all d such that �dM = ∞.

Problem 2.14. Find the Hausdorff dimension of a finite set.

Problem 2.15. Let f : M → N be a lipschitz map. Show that f does not increase the Hausdorff
dimension: dimH M ≥ dimH f(M).

Problem 2.16. Show that every bilipschitz map preserve Hausdorff dimension (“Hausdorff dimension
is a bilipschitz invariant”).

Problem 2.17 (*). Find the Hausdorff dimension of the Cantor set K ⊂ [0, 1].

Definition 2.6. A subset Z ⊂ ℝ
n has measure zero if, for every " > 0, there exists a countable cover

of Z by balls Ui such that
∑

i VolUi < ".

Problem 2.18. Show that the countable union of subsets of zero measure has measure zero.

Problem 2.19. Show that the image of a subset of zero measure under a lipschitz map ℝ
n → ℝ

n has
measure zero.

Problem 2.20 (!). Show that the image of a subset of zero measure under a smooth map ℝ
n → ℝ

n

has measure zero.

Problem 2.21 (!). Construct an example of a continuous map from ℝ
n to ℝ

n that sends a subset of
zero measure onto a subset of nonzero measure.

Problem 2.22 (!). Let M ⊂ ℝ
d be a subset such that dimH M < d. Show that M has measure zero.

Definition 2.7. Let M be a smooth manifold with an atlas {Ui, 'i : Ui → ℝ
n}. A subset Z ⊂ M has

measure zero if the image '(Z ∩ Ui) has measure zero in ℝ
n for every i.

Problem 2.23. Show that this definition does not depend on the choice of an atlas on M .

Problem 2.24. Let M
f

−→ ℝ
n be a smooth map of manifolds and let M be a union of compact subsets.

Show that dimH f(M) ≤ dimM .

Hint. Show first that f is lipschitz on compact subsets. Then use the fact that lipschitz maps satisfy
dimH f(M) ≤ dimM .

Problem 2.25 (!). Let M
f

−→ N be a smooth map of manifolds such that dimM < dimN . Show
that the image of M has measure zero.

Hint. Use the previous problem.
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Remark. This theorem is a particular case of Sard’s theorem that claims that the set of critical values
of a smooth map has measure zero.

Problem 2.26 (**). Deduce Sard’s theorem from the above problem.

2.2. Whitney’s theorem (with a bound on dimension)

Definition 2.8. A smooth map of manifolds M
f

−→ N is called immersion if the differential Df is an
embedding in local coordinates.

Definition 2.9. The Klein bottle is the quotient of the two-dimensional torus T 2 := S
1 × S

1 by the
action of the group ℤ/2ℤ mapping (t1, t2) to (t1 + �,−t2).

Problem 2.27. Show that the indicated action is free and that the quotient is a manifold.

Problem 2.28. Construct an immersion of the Klein bottle into ℝ
3.

Problem 2.29 (!). Let M
f

−→ N be a smooth map of manifolds. Show that f is a smooth embedding
if and only if it is an injective immersion.

Hint. Use the inverse function theorem.

Definition 2.10. Let M →֒ ℝ
n be a smooth m-submanifold. The tangent plane at p ∈ M is the

plane in ℝ
n tangent to M (i.e, the plane lying in the image of the differential given in local coordinates).

A tangent vector is an arbitrary vector in this plane with the origin at p. The space of all tangent
vectors at p is denoted by Tp M . When a metric on ℝ

n is given, we can define the space of unit tangent
vectors S

m−1M as the set of all pairs (p, v), where p ∈ M , v ∈ Tp M , and ∣v∣ = 1.

Problem 2.30. Show that S
m−1M is a manifold and that the natural projection S

m−1M → M is a
smooth map with fibers Sm−1.

Remark. S
m−1M is called the unit sphere bundle over M .

Problem 2.31 (*). Show that Sm−1M is independent of an embedding M →֒ ℝ
n, i.e., for two different

embeddings of M into ℝ
n and into ℝ

n′

, the corresponding manifolds Sm−1M are diffeomorphic.

Problem 2.32 (!). Let M
'
→֒ ℝ

n be a manifold of dimension m embedded into ℝ
n, let � ∈ ℙ

n−1

ℝ
be a

straight line in ℝ
n, and let P� : ℝn → ℝ

n−1 denote the projection onto the quotient ℝn/� ∼= ℝ
n−1.

a. Let Δ ⊂ M ×M stand for the diagonal. Define the map M ×M ∖Δ
B
−→ ℙ

n−1

ℝ
by sending the pair

of points (x, y) ∈ M×M to the straight line passing through '(x)−'(y). Show that P�∘' : M → ℝ
n−1

is an injection if and only if � does not lie in the image of B.

b. Define the map S
m−1M

B0−→ ℙ
n−1

ℝ
by sending a tangent vector to the corresponding straight line.

Show that P� ∘ ' : M → ℝ
n−1 is an immersion if and only if � does not lie in the image of B0.

Problem 2.33 (!). Let M
'
→֒ ℝ

n be an embedded manifold of dimension m with n > 2m + 2. Show

that there exists a projection ℝ
n P
−→ ℝ

2m+2 such that P ∘ ' : M → ℝ
2m+2 is an immersion.

Hint. Use the fact that the images of the maps B0 and B in the previous problem have measure zero
and apply induction on n.

Problem 2.34. Under the conditions of the previous problem, show that there exists a projection

ℝ
n P
−→ ℝ

2m+1 such that P ∘ ' : M → ℝ
2m+1 is an immersion.

Problem 2.35. Is any n-dimensional manifold embeddable in ℝ
2n−1 ?

Problem 2.36 (**). Is it possible to construct an immersion of the projective space ℙ
2
ℂ
into ℝ

5 ?

Problem 2.37. Let M be a compact Hausdorff manifold of dimension n. Show that M admits a
smooth closed embedding into ℝ

2n+2.

Remark. Whitney showed that any Hausdorff m-dimensional manifold with a countable basis of
topology admits a closed embedding into ℝ

2m. This statement is called the “strong Whitney theorem.”
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2.3. Whitney’s theorem (for noncompact manifolds)

Problem 2.38. Let P denote the space of embeddings ℝ
m → ℝ

2m+2 equipped with the natural
topology. Show that P is a manifold. Construct a smooth structure on P.

Problem 2.39. Let M be a manifold with a countable basis.
a. Show that M is a union of an ascending countable chain of compact subsets.
b. Show that M admits a partition of unity.

Problem 2.40. Let M be an n-dimensional manifold, let {Ui, 'i : Ui → ℝ
n} be a locally finite atlas,

and let fi : Ui → [0, 1] be a corresponding partition of unity. Consider the map Ψi : M → ℝ
n+1

constructed as in the previous sheet

Ψi(m) :=

{(

fi(m)'i(m), fi(m)
)

if m ∈ Ui

(0, . . . , 0) if m /∈ Ui.

Let Ai ∈ P be a family of embeddings ℝ
n → ℝ

2n+2 with the same set of indices. Consider the map
ΨA : M → ℝ

2n+2, ΨA(m) :=
∑

Ai

(

Ψi(m)
)

. Show that this map is well defined. Show that it can be

obtained as a composition of the embedding
⊕

i Ψi : M → ℝ
∞ and a linear projection ℝ

∞ → ℝ
2n+2.

Problem 2.41 (*). Under the conditions of the previous problem, let M0 ⊂ M be a compact subset
and let

∪

i∈I Ui ⊃ M0 be a corresponding finite subcover in {Ui} of k members. Show that there exists

a subset ZI ⊂ Pk of zero measure such that, for all collections {Ai, i ∈ I} ∈ Pk not belonging to ZI ,
the corresponding map ΨA : M0 → ℝ

2n+2 is a smooth embedding.

Hint. Use the proof of the Whitney theorem for compact M given in the previous section.

Problem 2.42 (*). Denote by P∞ the product of P with respect to the same set of indices as the one
used in the atlas {Ui}. Consider P

∞ equipped with the product Lebesgue measure. Show that the set
Z of all {Ai} ∈ P such that ΨA is not an embedding has measure zero in P∞.

Hint. By construction, Z is the union of all inverse images of the sets ZI ⊂ Pk constructed in

Problem 2.41 under the standard projection P∞ ΠI−→ Pk. Every such inverse image has measure zero,
hence, Z, being a union of subsets of zero measure, has measure zero.


