Комплексные поверхности,

лекция 10: теорема Хана-Банаха и потоки на многообразиях

Миша Вербицкий

НМУ/матфак ВШЭ, Москва

16 апреля 2012

Пространства Фреше (повторение)

ОПРЕДЕЛЕНИЕ: Локально выпуклое топологическое векторное пространство это топологическое векторное пространство, базу топологии которого составляют выпуклые множества.

ОПРЕДЕЛЕНИЕ: Рассмотрим векторное пространство, снабженное набором полунорм $|\cdot|_i$, i=0,1,2,... и топологией, которая задана метрикой вида $d(x,y) = \sum_{i=0}^{\infty} \max(|x-y|_i,2^{-i})$. Такое пространство называется пространством **Фреше**, если эта метрика полна (т.е. любая последовательность Коши в этой метрике сходится).

ЗАМЕЧАНИЕ: Последовательность точек сходится в топологии Фреше тогда и только тогда, когда она сходится во всех нормах $|\cdot|_i$, а базой топологии Фреше будут бесконечные пересечения ε -шаров вида $\bigcap_{i=0}^{\infty} B_x(\varepsilon_i, |\cdot|_i)$, во всех нормах $|\cdot|_i$ (докажите это).

Потоки на многообразиях (повторение)

ЗАМЕЧАНИЕ: Пусть M - многообразие, B - расслоение. Введем метрику на M и связность с метрикой на B. Формула $|\varphi|_{C^k}:=\sup_M\sum_{i=0}^k|\nabla^i\varphi|$ задает норму C^i на пространствах сечений B с компактным носителем.

ОПРЕДЕЛЕНИЕ: (p,q)-потоком на комплексном n-мерном многообразии называется функционал на пространстве $\Lambda_c^{n-p,n-q}(M)$ (n-p,n-q)-форм с компактным носителем, непрерывный в одной из C^i -топологий.

ОПРЕДЕЛЕНИЕ: Пространство тест-форм типа (p,q) на комплексном многообразии это пространство (p,q)-форм с компактным носителем, снабженное структурой пространства Фреше, определенной по нормам C^i .

ЗАМЕЧАНИЕ: Потоки суть функционалы на $\Lambda_c^{n-p,n-q}(M)$, непрерывные в топологии тест-форм.

ЗАМЕЧАНИЕ: Также потоки можно рассматривать как (p,q)-формы с коэффициентами в обобщенных функциях.

Положительные (1,1)-формы и потоки

ОПРЕДЕЛЕНИЕ: Положительная (1,1)-форма — это вещественная (1,1)-форма α , удовлетворяющая $\alpha(x,Ix)\geqslant 0$, для любого вещественного векторного поля x.

ОПРЕДЕЛЕНИЕ: Пусть M - комплексное, n-мерное многообразие. (n-1,n-1)-поток η называется положительным если $\int_M \eta \wedge \alpha \geqslant 0$ для любой положительной (1,1)-формы,

ПРИМЕР: Пусть C — неособая комплексная кривая на комплексном многообразии. Поток интегрирования $\alpha \to \int_C \alpha$ задает функционал $\Lambda_c^{1,1}(M) \to \mathbb{R}$, непрерывный в C^0 -топологии (проверьте это).

УТВЕРЖДЕНИЕ: Это положительный, замкнутый поток.

ДОКАЗАТЕЛЬСТВО: Проверьте это самостоятельно. ■

ЗАМЕЧАНИЕ: То же верно и для особых кривых (докажите).

Теорема Хана-Банаха

TEOPEMA: (Теорема Хана-Банаха) Пусть V — локально выпуклое топологическое векторное пространство, $A \subset V$ - открытый выпуклый конус, не содержащий 0, $W \subset V$ - замкнутое подпространство, а θ_W - непрерывный линейный функционал на W, положительный на $W \cap A$. Тогда на V существует непрерывный линейный функционал θ , такой, что $\theta|_A > 0$, а $\theta|_W = \theta_W$.

Доказательство. Шаг 1: Обозначим за $W_0 \subset W$ ядро θ_W . Для доказательства Хана-Банаха, достаточно проверить, что существует гиперплоскость $H \subset V$, содержащая W_0 и не пересекающая A.

Шаг 2: Если $\dim V=2$, теорема Хана-Банаха доказывается явно. В самом деле, пересечение A и единичной окружности составляет открытый сегмент, длиной не больше π (проверьте это), а такой сегмент всегда лежит по одну сторону от какой-то прямой, проходящей через 0.

Теорема Хана-Банаха (продолжение)

Шаг 3: Пусть $V' \subset V$ — подпространство. Скажем, что "V' удовлетворяет ХБ", если существует гиперплоскость $H' \subset V'$, не пересекающая $A \cap V'$, и содержащая $W_0 \cap V'$. Для возрастающего набора V_α подпространств в V, удовлетворяющих ХБ, их объединение тоже удовлетворяет ХБ (берем объединение всех H_α , оно не пересекает A и содержит $\bigcup_{\alpha} (V_\alpha \cap W_0)$).

Шаг 4: Замыкание подпространства, удовлетворяющего ХБ, тоже удовлетворяет ХБ (проверьте это).

Шаг 5: Пусть $R' \subset R$, $R \subset V$ — замкнутое подпространство коразмерности 1. Предположим, что R' удовлетворяет ХБ. Тогда в R' есть гиперплоскость H', не пересекающая $A \cap R'$, и содержащая $W_0 \cap R'$. Проекция $\pi: R \to R/H'$ переводит A в открытый конус в \mathbb{R}^2 , не содержащий 0 (проверьте это). Если $\pi(W_0 \cap R)$ имеет коразмерность 1 в R/H', возьмем $H^\circ := \pi(W_0 \cap R)$. Если $\pi(W_0 \cap R) = 0$, применив шаг 2, мы найдем гиперплоскость H° коразмерности 1 в R/H', не пересекающую $\pi(A)$. Тогда $\pi^{-1}(H^\circ)$ не пересекает A и содержит $W_0 \cap R$, то есть R удовлетворяет ХБ.

Теорема Хана-Банаха (окончание)

Шаг 5: Пусть $R' \subset R$, $R \subset V$ — замкнутое подпространство коразмерности 1. Предположим, что R' удовлетворяет ХБ. Тогда в R' есть гиперплоскость H', не пересекающая $A \cap R'$, и содержащая $W_0 \cap R'$. Проекция $\pi: R \to R/H'$ переводит A в открытый конус в \mathbb{R}^2 , не содержащий 0 (проверьте это). Если $\pi(W_0)$ имеет коразмерность 1 в R/H', возьмем $H^\circ := \pi(W_0)$. Если $\pi(W_0) = 0$, применив шаг 2, мы найдем гиперплоскость H° коразмерности 1 в R/H', не пересекающую $\pi(A)$. Тогда $\pi^{-1}(H^\circ)$ не пересекает A и содержит W_0 , то есть R удовлетворяет ХБ.

Шаг 6: Применив лемму Цорна, мы найдем максимальное подпространство $R'\subset V$, удовлетворяющее ХБ. В силу шага 4, R' замкнуто. Если есть вектор $v\notin R'$, положим $R:=R'+\mathbb{R}\cdot v$. В силу шага 5, ХБ верно для R, значит, R' не максимально. Мы доказали, что R'=V, значит, ХБ выполнено в V.

Кэлеровы многообразия (повторение)

ОПРЕДЕЛЕНИЕ: Строго положительная (1,1)-форма — форма, лежащая во внутренности положительного конуса.

ЗАМЕЧАНИЕ: Многообразие называется кэлеровым, если на нем существует строго положительная, замкнутая форма. Это одно из определений.

ЗАМЕЧАНИЕ: Иначе говоря, кэлеровость равносильна тому, что открытый конус A строго положительных форм пересекается с линейным пространством W замкнутых форм.

Замкнутые потоки (повторение)

УТВЕРЖДЕНИЕ: Если поток θ , заданный на компактном многообразии, зануляется на замкнутых формах, то он точен.

Доказательство. Шаг 1: Действительно,

$$0 = \int_{M} \theta \wedge d\alpha = (-1)^{\deg \theta} \int_{M} d\theta \wedge \alpha,$$

значит, $d\theta$ зануляется на любой тест-форме, значит, он равен нулю.

Шаг 2: Класс когомологий θ равен нулю, потому что для ненулевого класса когомологий существует замкнутая форма α с $\int_M \theta \wedge \alpha \neq 0$ (в силу двойственности Пуанкаре).

Потоки, зануляющиеся на замкнутых (1,1)-формах (повторение)

ЛЕММА: Пусть M — компактное комплексное n-мерное многообразие, а $\theta-(n-1,n-1)$ -поток, который зануляется на замкнутых (1,1)-формах. Тогда $\theta-(n-1,n-1)$ -часть точного потока $\tilde{\theta}$.

Доказательство. Шаг 1: Пусть V — пространство 2-форм, с топологией Фреше. Пространство (1,1)-форм замкнуто в V, пространство замкнутых форм тоже замкнуто. Пусть W — подпространство в V, порожденное замкнутыми формами и (1,1)-формами. Оно замкнуто. Определим функционал θ_1 на W так: на (1,1)-формах $\theta_1=\theta$, на замкнутых формах $\theta_1=0$.

Шаг 2: Применим теорему Хана-Банаха к W, построенному выше, и пустому A. Тогда θ_1 продолжается до функционала $\tilde{\theta}$ на V. По построению $\tilde{\theta}$ зануляется на замкнутых 2-формах, значит, в силу предыдущего утверждения он точен. \blacksquare

Теорема Харви-Лоусона (повторение)

ТЕОРЕМА: (Харви-Лоусон, 1983)

Пусть M — компактное комплексное многообразие. Тогда следующие утверждения равносильны. (а) M не допускает кэлеровой метрики. (б) На M существует ненулевой положительный (n-1,n-1)-поток, который является (n-1,n-1)-частью точного.

Доказательство. Шаг 1: Пусть V - пространство вещественных (1,1)-форм на M, с топологией пространства Фреше, $A\subset V$ — строго положительные (1,1)-формы, а $W\subset V$ — пространство замкнутых (1,1)-форм. Если M не кэлерово, то $A\cap W=\emptyset$. По теореме Хана-Банаха существует непрерывный функционал θ на V, зануляющийся на W, и положительный на A.

Шаг 2: Непрерывные функционалы на V — это (n-1,n-1)-потоки. В силу предыдущей леммы, θ есть (n-1,n-1)-часть точного потока.

Шаг 3: Если положительный поток θ на кэлеровом многообразии (M,ω) является (n-1,n-1)-частью точного потока, то $\int_M \theta \wedge \omega = 0$, но в этом случае $\theta = 0$ (проверьте это).

Прямой образ потока

ОПРЕДЕЛЕНИЕ: Пусть $M \stackrel{\pi}{\to} X$ - голоморфное отображение комплексных многообразий с компактными слоями, $\nu := \dim_{\mathbb{C}} M - \dim_{\mathbb{C}} X$, а $\eta \in D^{p,q}(M)$ — поток. Определим **прямой образ потока** $\pi_* \eta \in D^{p-\nu,q-\nu}(X)$ формулой $\int_X \pi_* \eta \wedge \alpha := \int_M \eta \wedge \pi^* \alpha$, где $\alpha \in \Lambda^{n-p,n-q}(X)$ есть тест-форма, $n = \dim_{\mathbb{C}} M$.

ЗАМЕЧАНИЕ: Обратный образ потока, вообще говоря, не определен.

ОПРЕДЕЛЕНИЕ: Для гладкого отображения с компактными слоями, **прямой образ гладкой формы - гладкая форма (проверьте)**. В такой ситуации определен **обратный образ потока,** по формуле $\int_M \pi^* \eta \wedge \alpha := \int_X \eta \wedge \pi_* \alpha$.

ЗАМЕЧАНИЕ: Отображение прямого образа переводит положительные потоки в положительные, и коммутирует с дифференциалом де Рама (проверьте это).

Положительные потоки на многообразии, расслоенном на кривые

ТЕОРЕМА 1: Пусть $M \stackrel{\pi}{\to} X$ - гладкое голоморфное отображение комплексных многообразий, с компактными слоями размерности 1, а $\eta \in D^{n-1,n-1}(M)$ — поток, такой, что $\pi_* \eta = 0$. Тогда существует обобщенная функция ψ на M такая, что $\eta = \psi \pi^* \operatorname{Vol}_X$, где Vol_X — форма объема на X.

Доказательство. Шаг 1: В силу определения для любой (1,1)-формы α на X, имеем $\int_M \eta \wedge \pi^* \alpha = 0$. Для положительного α , мера $\eta \wedge \pi^* \alpha$ положительна, значит, $\int_M \eta \wedge \pi^* \alpha = 0$ влечет $\eta \wedge \pi^* \alpha = 0$, для любой положительной (1,1)-формы α на X. Поскольку любая форма может быть представлена в виде линейной комбинации положительных, из этого следует, что $\eta \wedge \pi^* \alpha = 0$ для любой $\alpha \in \Lambda^{1,1}(X)$.

Шаг 2: Пусть $x\in M$ а $z_1,...,z_{n-1},z$ система координат в окрестности x, где $z_1,...,z_{n-1}$ постоянны вдоль слоев π . Запишем $\eta:=\sum \psi_{\alpha}dz_{\alpha}$, где dz_{α} – мономы от dz_i,dz , а ψ_{α} обобщенные функции. Мономы dz_{α} получены из $dz_1\wedge d\overline{z}_1\wedge dz_2\wedge d\overline{z}_2\wedge...\wedge dz_{n-1}\wedge d\overline{z}_{n-1}\wedge dz\wedge d\overline{z}$ выкидыванием $dz_i\wedge d\overline{z}_i$ либо $dz\wedge d\overline{z}$.

Шаг 3: В силу шага 1, для всех i, $\eta \wedge dz_i \wedge d\overline{z}_i = 0$, то есть $\eta = \psi dz_1 \wedge d\overline{z}_1 \wedge dz_2 \wedge d\overline{z}_2 \wedge ... \wedge dz_{n-1} \wedge d\overline{z}_{n-1}$.

Отображения с одномерными слоями

ЗАМЕЧАНИЕ: Пусть M — многообразие, Vol_M — невырожденная форма объема. Тогда существует биективное соответствие между неотрицательными обобщенными функциями и мерами, $\psi \to \psi \, \mathsf{Vol}_M$.

УПРАЖНЕНИЕ 1: Пусть $M \stackrel{\pi}{\to} X$ - гладкое голоморфное отображение комплексных многообразий, $x \in X$, а δ – дельта-функция в x. Докажите, что $\pi^* \delta_x \, \text{Vol}_X$ есть поток интегрирования по слою $\pi^{-1}(x)$.

TEOPEMA: Пусть $M \stackrel{\pi}{\to} X$ - гладкое голоморфное отображение комплексных многообразий с одномерными слоями, X кэлерово, а M некэлерово. **Тогда любой слой** π **гомологичен** (n-1,n-1)-части точного потока.

Доказательство. Шаг 1: По теореме Харви-Лоусона, найдется точный поток $\tilde{\theta}$ с положительной (n-1,n-1)-частью θ .

Шаг 2: На кэлеровом n-1-многообразии не может быть точного потока с положительной (n-2,n-2)-частью. **Поэтому** $\pi_*\theta=0$.

Шаг 3: В силу Теоремы 1, $\theta = \psi \pi^* \operatorname{Vol}_X$, для какой-то неотрицательной обобщенной функции (то есть меры) ψ на M.

Отображения с одномерными слоями (продолжение)

Шаг 3: В силу Теоремы 1, $\theta = \psi \pi^* \operatorname{Vol}_X$, для какой-то неотрицательной обобщенной функции (то есть меры) ψ на M.

Шаг 4: Поскольку ψ неотрицательна, это мера. Значит, вне какого-то подмножества меры нуль в X, ограничение $\psi|_{\pi}^{-1}(x)$ корректно определено (теорема Фубини).

Шаг 5: $dd^c\tilde{\theta}=dd^c\theta=0$, то есть $dd^c\psi\wedge\pi^*\operatorname{Vol}_X=0$. Мы получили, что $dd^c\psi|_C=0$ для каждой кривой C, на которую ограничение $\psi|_C$ определено. Значит, ψ постоянно вдоль слоев π , и $\theta=\pi^*\psi_0\operatorname{Vol}_X$, для какой-то обобщенной функции ψ_0 .

Шаг 6: На X, поток $\psi_0 \operatorname{Vol}_X$ гомологичен любому (n-1,n-1)-потоку ν с $\int_X \psi_0 \operatorname{Vol}_X = \int_X \nu$. Возьмем в качестве ν поток $\delta_x \operatorname{Vol}_X$, где δ_x есть δ -функция, сосредоточенная в x. Тогда $\pi^*\delta_x \operatorname{Vol}_X$ гомологичен θ . **Но этот поток гомологичен потоку интегрирования вдоль слоя, в силу Упражнения 1.**

Некэлеровы поверхности, расслоенные над кривой

СЛЕДСТВИЕ: Пусть M - некэлерова поверхность, голоморфно расслоенная над кривой: $M \stackrel{\pi}{\to} X$ Тогда общий слой π гомологичен нулю.

Доказательство. Шаг 1: Разрешив особенности, можно считать, что π гладко. В силу Упражнения 1, фундаментальный класс общего слоя π пропорционален $\omega_0 := \pi^* \operatorname{Vol}_X$, где $\operatorname{Vol}_X -$ кэлерова форма на X.

Шаг 2: Из доказанной выше теоремы следует, что ω_0 есть (1,1)-часть точного потока.

Шаг 3: Поэтому класс когомологий ω_0 в $H^1(\Omega^1 M)$ равен нулю. Значит, $\omega_0 = (d\theta)^{1,1}$, для гладкой формы θ .

Шаг 4: Заменив θ на Re θ и воспользовавшись Re $\omega_0=\omega_0$, мы можем считать, что θ вещественно и $\omega_0=(d\theta)^{1,1}$.

Шаг 5: Тогда $(d\theta)^{2,0} = \overline{(d\theta)^{0,2}}$, что дает

$$0 = \int_{M} d\theta \wedge d\theta = 2 \int_{M} (d\theta)^{2,0} \wedge (d\theta)^{0,2} = \int_{M} \left| (d\theta)^{2,0} \right|^{2},$$

Мы получили $(d\theta)^{2,0} = 0$, значит $\omega_0 = d\theta$.