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Symplectic handout 1: Non-degenerate 2-forms

Definition 1.1. Let V be a vector space. A complex structure on V is an
operator I ∈ End(V ) which satisfies I2 = − Id.

Exercise 1.1. Let V be a real vector space, and X the set of complex subspaces
W ⊂ V ⊗R C which satisfy W ∩ W̄ = 0, W + W̄ = V ⊗R C. Construct a
GL(V )-invariant bijective correspondence between X and the space of complex
structures on V .

Definition 1.2. Let M be a manifold. An endomorphism I ∈ End(TM), I2 =
− IdTM is called an almost complex structure. An I-invariant Riemannian
metric is called an Hermitian metric.

Exercise 1.2. Let (M, I) be an almost complex manifold, dimCM = n. Prove
that (M, I) always admits a Hermitian metric g. Consider the orientation form
ωn, obtained as the top exterior power of the corresponding Hermitian form ω.
Prove that the orientation defined by ωn is independent from the choice of g.

Exercise 1.3. Let g be a positive definite scalar product on a vector space V .

a. Construct a bijection between bilinear symmetric forms on V and oper-
ators A ∈ End(V ) satisfying g(A(x), y) = g(x,A(y)) (such operators are
called symmetric, or self-adjoint).

b. Construct a bijection between bilinear anti-symmetric forms on V and
operators A ∈ End(V ) satisfying g(A(x), y) = −g(x,A(y)) (such operators
are called anti-symmetric).

c. A symmetric matrix A is called positive if the bilinear symmetric form
x, y −→ g(A(x), y) is positive definite. Construct a bijection between pos-
itive symmetric matrices and positive definite bilinear symmetric forms.

d. Let A be a non-degenerate anti-symmetric operator. Prove that −A2 is
positive symmetric.

Exercise 1.4. Let g, g1 be bilinear symmetric forms on V , with g positive def-
inite and Sg ⊂ V the sphere {v ∈ V | g(v, v) = 1}.

a. Denote by x ∈ Sg an extremum of the function x−→ g1(x, x) on Sg. Prove
that the 1-forms g(x, ·) and g1(x, ·) are proportional.

b. (“Simultaneous diagonalization theorem”) Prove that there exists an or-
thonormal basis x1, ..., xn in V such that g1(xi, xj) = 0 for i 6= j.

Hint. Take for x1 the point of Sg where x−→ g1(x, x) reaches maximum, pass
to x⊥ and apply induction on dimV .
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Exercise 1.5. Let A be a positive symmetric operator, and A1 a positive sym-
metric operator satisfying A2

1 = A. Prove that A1 is unique.

Hint. Use the simultaneous diagonalization theorem.

Exercise 1.6. Let ω be an antisymmetric 2-form on a vector space V = R2n,
and g a positive definite scalar product. Prove that there exists a basis x1, ..., x2n,
orthonormal with respect to g, such that ω is written in this basis as

0 a1 0 0 ... 0 0
−a1 0 0 0 ... 0 0
0 0 0 a2 ... 0 0
0 0 −a2 0 ... 0 0
...
0 0 0 0 ... 0 an

0 0 0 0 ... −an 0


where a1, ..., an are non-negative real numbers.

Hint. Apply the simultaneous diagonalization theorem to g,−A2, where A is
the anti-symmetric operator corresponding to ω.

Exercise 1.7. Let (M, g) be a Riemannian manifold, and A ∈ End(TM) a
positive symmetric operator, smooth in M . Prove that there exists a positive
symmetric operator A1 ∈ End(TM) such that A2

1 = A. Prove that A1 is smooth.

Hint. Use the uniqueness of A1.

Exercise 1.8. Let g be a positive definite form on a manifold, ω a non-degenerate
2-form, and A ∈ End(TM) the corresponding anti-symmetric operator.

a. Prove that there exists a positive symmetric operator A1 ∈ End(TM),
smooth in M , such that A2

1 = −A2.

b. Consider the symmetric form g1(x, y) := g(A1(x), y), and let I be an
operator which satisfies g1(I(x), y) = ω(x, y). Prove that I2 = − Id.

c. Let M be a manifold admitting a non-degenerate 2-form. Prove that M
admits an almost complex structure.

Exercise 1.9 (*). Prove that the space of almost complex structures on M is
homotopy equivalent to the space of non-degenerate 2-forms on M .

Exercise 1.10 (*). Let Ω be a non-degenerate complex linear 3-form on C3,

and ρ := Re(Ω) the corresponding form on R6. Let S̃L(3,C) be the group
generated by SL(2,C) and the complex conjugation. Prove that the group of

all A ∈ GL(6,R) such that A(ρ) = ρ is isomorphic to S̃L(3,C).
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