Symplectic handout 1: Non-degenerate 2-forms

Definition 1.1. Let V be a vector space. A complex structure on V is an operator $I \in \text{End}(V)$ which satisfies $I^2 = -\operatorname{Id}$.

Exercise 1.1. Let V be a real vector space, and X the set of complex subspaces $W \subset V \otimes_{\mathbb{R}} \mathbb{C}$ which satisfy $W \cap \overline{W} = 0$, $W + \overline{W} = V \otimes_{\mathbb{R}} \mathbb{C}$. Construct a GL(V)-invariant bijective correspondence between X and the space of complex structures on V.

Definition 1.2. Let M be a manifold. An endomorphism $I \in \text{End}(TM)$, $I^2 = -\operatorname{Id}_{TM}$ is called **an almost complex structure**. An I-invariant Riemannian metric is called **an Hermitian metric**.

Exercise 1.2. Let (M, I) be an almost complex manifold, $\dim_{\mathbb{C}} M = n$. Prove that (M, I) always admits a Hermitian metric g. Consider the orientation form ω^n , obtained as the top exterior power of the corresponding Hermitian form ω . Prove that the orientation defined by ω^n is independent from the choice of g.

Exercise 1.3. Let g be a positive definite scalar product on a vector space V.

- a. Construct a bijection between bilinear symmetric forms on V and operators $A \in \text{End}(V)$ satisfying g(A(x), y) = g(x, A(y)) (such operators are called **symmetric**, or **self-adjoint**).
- b. Construct a bijection between bilinear anti-symmetric forms on V and operators $A \in \text{End}(V)$ satisfying g(A(x), y) = -g(x, A(y)) (such operators are called **anti-symmetric**).
- c. A symmetric matrix A is called **positive** if the bilinear symmetric form $x, y \longrightarrow g(A(x), y)$ is positive definite. Construct a bijection between positive symmetric matrices and positive definite bilinear symmetric forms.
- d. Let A be a non-degenerate anti-symmetric operator. Prove that $-A^2$ is positive symmetric.

Exercise 1.4. Let g, g_1 be bilinear symmetric forms on V, with g positive definite and $S_g \subset V$ the sphere $\{v \in V \mid g(v, v) = 1\}$.

- a. Denote by $x \in S_g$ an extremum of the function $x \longrightarrow g_1(x, x)$ on S_g . Prove that the 1-forms $g(x, \cdot)$ and $g_1(x, \cdot)$ are proportional.
- b. ("Simultaneous diagonalization theorem") Prove that there exists an orthonormal basis $x_1, ..., x_n$ in V such that $g_1(x_i, x_j) = 0$ for $i \neq j$.

Hint. Take for x_1 the point of S_g where $x \longrightarrow g_1(x, x)$ reaches maximum, pass to x^{\perp} and apply induction on dim V.

Exercise 1.5. Let A be a positive symmetric operator, and A_1 a positive symmetric operator satisfying $A_1^2 = A$. Prove that A_1 is unique.

Hint. Use the simultaneous diagonalization theorem.

Exercise 1.6. Let ω be an antisymmetric 2-form on a vector space $V = \mathbb{R}^{2n}$, and g a positive definite scalar product. Prove that there exists a basis $x_1, ..., x_{2n}$, orthonormal with respect to g, such that ω is written in this basis as

$\int 0$	a_1	0	0	 0	0 \
$ -a_1 $	0	0	0	 0	0
0	0	0	a_2	 0	0
0	0	$-a_2$	0	 0	0
0	0	0	0	 0	a_n
$\setminus 0$	0	0	0	 $-a_n$	0/

where $a_1, ..., a_n$ are non-negative real numbers.

Hint. Apply the simultaneous diagonalization theorem to $g, -A^2$, where A is the anti-symmetric operator corresponding to ω .

Exercise 1.7. Let (M,g) be a Riemannian manifold, and $A \in \text{End}(TM)$ a positive symmetric operator, smooth in M. Prove that there exists a positive symmetric operator $A_1 \in \text{End}(TM)$ such that $A_1^2 = A$. Prove that A_1 is smooth.

Hint. Use the uniqueness of A_1 .

Exercise 1.8. Let g be a positive definite form on a manifold, ω a non-degenerate 2-form, and $A \in \text{End}(TM)$ the corresponding anti-symmetric operator.

- a. Prove that there exists a positive symmetric operator $A_1 \in \text{End}(TM)$, smooth in M, such that $A_1^2 = -A^2$.
- b. Consider the symmetric form $g_1(x,y) := g(A_1(x),y)$, and let I be an operator which satisfies $g_1(I(x),y) = \omega(x,y)$. Prove that $I^2 = -\operatorname{Id}$.
- c. Let M be a manifold admitting a non-degenerate 2-form. Prove that M admits an almost complex structure.

Exercise 1.9 (*). Prove that the space of almost complex structures on M is homotopy equivalent to the space of non-degenerate 2-forms on M.

Exercise 1.10 (*). Let Ω be a non-degenerate complex linear 3-form on \mathbb{C}^3 , and $\rho := \operatorname{Re}(\Omega)$ the corresponding form on \mathbb{R}^6 . Let $\widetilde{SL}(3,\mathbb{C})$ be the group generated by $SL(2,\mathbb{C})$ and the complex conjugation. Prove that the group of all $A \in GL(6,\mathbb{R})$ such that $A(\rho) = \rho$ is isomorphic to $\widetilde{SL}(3,\mathbb{C})$.