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Symplectic handout 5: Hausdorff metric on convex sets

Definition 5.1. Let M be a metric space, and X C M a subset. The e-neighbourhood of X
is X(g) := Uyex Be(x), where B.(z) is an e-ball centered in 2 € X. the Hausdorff distance
dy(X,Y) is the infimum of all € such that X(¢) DY and Y(¢) D X.

Definition 5.2. Diameter diam of a metric space M is supremum d(x,y) for all z,y € M.

Exercise 5.1. Let M be a metric space of finite diameter, and 4 the set of all closed subsets of
M. Prove that dg defines a metric on [.

Exercise 5.2. Let X; be a dy-Cauchy sequence of closed subsets of a metric space M, and X its
limit.

a. Prove that X =) X;(g;), for an appropriate sequence {e; € R>°} converging to 0.

o

. Let {z; € X} be any sequence, and z its limit. Prove that = € X.
c. Let x € X. Prove that z is a limit of a sequence {z; € X;}.
d. Prove that X is the set of all limiting points lim;_, . x;, for al sequences {z; € X;}

e. Prove that the topology on il induced from dp is determined by the topology on M.

Exercise 5.3. Let M be a complete metric space of finite diameter, and 4 the set of all closed
subsets of M, equipped with dg-topology. Prove that 4 is complete.

Exercise 5.4. Let M be a compact metric space, and il the set of all closed subsets of M, equipped
with dg-topology. Prove that 4 is compact.

Definition 5.3. Let X,Y be metric spaces. Uniform topology on the space Map(X,Y) of
continuous maps is the topology induced by the metric

d(f,9) == sup d(f(z), g()).

zeX

C°-topology is uniform convergence on compacts, and C-topology is uniform convergence on com-
pacts with all derivatives up to i-th.

Exercise 5.5. Let X,Y be compact metric spaces, and f,g € Map(X,Y). Define di(f,g) as the
Hausdorff distance between the graphs of f and g. Prove that the topology induced by this metric
on Map(X,Y) coincides with the uniform topology.

Definition 5.4. A convex hull of U C R” is the smallest convex set containing U. A simplex
is a convex hull of n + 1 points.

Exercise 5.6. Let U C R" be a convex hull of U C R™. Prove that U is a union of all simplices
with vertices in U.

Exercise 5.7. Let A C R™ be a compact, convex subset of R™. A point = € A is called extremal
if  £ty+ (1 —t)z for any t €]0,1[ and any y,z € A. Prove that A is a convex hull of the set of its
extremal points.

Remark 5.1. From now on, we consider R™ as a metric space with the standard Euclidean metric.

Exercise 5.8. Let € be the set of all convex, compact subsets of R”, Prove that (€, dg) is complete.
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Exercise 5.9. Let O be the set of all open, bounded convex subsets, and let dy (A, B) := dy(R™\ A, R™\B).
a. Prove that dy is a metric, and induces the same topology on O as dy.
b. Prove that dy (A, B) < dg(A, B). Find an example when dy (A, B) < dg(A, B).
Exercise 5.10. For any subset A C R", consider the boundary 04 := A\ A°, where A is the
closure and A° is the set of interior points of A. Find compact subsets A, B C R™ such that
a. dg(0A,0B) > dy(A, B)
b. dy(0A,0B) < du (A, B).
c. Prove that dy(0A,0B) = duy (A, B) when A, B are convex.

Exercise 5.11. Let A C R” be an open, convex, bounded subset containing 0. Denote by AA the
set {x € R"® | A~lz € A}. Prove that for each \ # 1 there exists ¢ such that 9A(g) N I(\A) = 0.

Exercise 5.12. Let A C R™ be an open, convex, bounded subset containing 0. Prove that for each
d > 0 there exist € > 0 such that for any convex B with dy (B, A) < ¢, one has (1 —§)A C B C
(1+0)A.

Hint. Use the previous exercise.

Exercise 5.13. Let ¢ : R — R" be a smooth diffeomorphism, ¢(0) = 0. Prove that there exists
€ > 0 such that ¢ maps an open ball Bs(0) to a convex set, for any § < e.

Exercise 5.14. Let ¢; : R™ — R" be a sequence of diffeomorphisms which converges in C2-
topology to a diffeomorphism ¢. Suppose that all ¢; and ¢ map 0 to 0. Prove that for a sufficiently
small Euclidean open ball E 3 0, almost all images ¢;(F) are convex.

Definition 5.5. Let O be the set of all open, bounded convex subsets. A function ¢: O —3 R>Y
is called convex capacity if it is invariant under isometries and satisfies ¢(AE) = A?c(E) and
¢(E1) = ¢(F2) whenever By D Es.

Exercise 5.15. Prove that any convex capacity is continuous on £ in the topology defined by the
Hausdorff metric.

Hint. Use Exercise 5.12.

Exercise 5.16. Let ¢; : R™ — R”™ be a sequence of diffeomorphisms which converge in uniform
topology to a diffeomorphism ¢. Prove that for any compact set F C R™, ¢;(E) converges to ¢(F)
in the topology given by the Hausdorff metric.

Exercise 5.17. Let ¢; : R® — R” be a sequence of diffeomorphisms which converge in uniform
topology to a diffeomorphism ¢, and ¢ a convex capacity. Suppose that ¢; and ¢ map a given
convex subset E € O to a convex subset. Prove that lim; c(¢;(E)) = c¢(¢(E)).

Exercise 5.18. Let ¢ : R"™ — R" be a diffeomorphism, and ¢ : © — R>? a convex capacity.
Suppose that ¢(¢(E)) = ¢(E) for any E € O such that ¢(E) is convex. Let hy(x) = Az, and let

(2) == ha((hy ' (2)))-
a. Prove that ¢, converges to the differential d¢ uniformly on compacts as A goes to oc.

b. Prove that ¢(d¢(E)) = ¢(E) for any ellipsoid E C R™.
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