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Symplectic handout 7: Geometric invariant theory

We freely use the definitions given in assignment 3 and 6 (“Symplectic reduction”,
“Kähler reduction”).

Definition 7.1. Let M be a complex manifold. Define dc : Λi(M)−→ Λi+1(M) as
dc := IdI−1, where I acts on k-forms multiplicatively. Kähler potential is a function
φ : M −→ R such that ddcφ is a Kähler form.

Definition 7.2. A holomorphic vector field is a vector field satisfying LieX I = 0,
that is, such that the corresponding diffeomorphism flow etX is holomorphic.

Exercise 7.1. Let G be a compact Lie group acting on a complex manifold holomor-
phically and preserving a Kähler potential φ. Denote by ω := ddcφ the corresponding
Kähler form.

a. Prove that G acts on (M,ω) by isometries.

b. Let X ∈ Lie(G) be a vector field on TM tangent to the action of G. Prove that
iXω = iX(ddcφ) = −d(iX(dcφ)).

c. Prove that the function −〈X, dcφ〉 is a Hamiltonian for X.

d. Prove that the moment map for the action of G can be written as
(m,X)−→ LieIX(φ)(x).

Exercise 7.2. Let G ⊂ U(n) be a Lie group acting on a complex vector space V = Cn,
equipped with the standard Hermitian structure. Prove that its action admits an
equivariant moment map µ, given by 〈µ(v), g〉 = LieIg l, where v ∈ V , g ∈ Lie(G), and
l ∈ C∞V the function l(v) = 1

4 |v|
2.

Hint. Use the previous exercise.

Exercise 7.3. Let G ⊂ U(n) be a Lie group acting on a complex vector space V = Cn,
equipped with the standard Hermitian structure, and GC ⊂ GL(n,C) its complexifi-
cation. Denote by µ : V −→ g∗ the moment map. Prove that a vector z ∈ V belongs
to µ−1(0) if and only if the function l : GC · z −→ R on the orbit GC has extremum in
z.

Exercise 7.4. Let V = Cn, A ∈ u(V ) be an anti-Hermitian endomorphism, and
GA := etA ⊂ GL(V ), t ∈ C the corresponding 1-parametric subgroup.

a. Consider l(etAz) := |etAz|2 as a function on GA · z. Prove that l(e(t+u)A(z)) =

l(etA(z)) for all u ∈ R. Prove that d2

du2 |e(t+
√
−1u)A(z)|2 = |A(etA(z))|2.

b. Assume that A(z) 6= 0. Prove that l is convex on the complex line GA := eCA

and has at most one minimum on the real line e
√
−1RA(z).

c. Let A be diagonalized in an orthonormal basis x1, ..., xn ∈ R, such that A(xi) =√
−1wixi, and z =

∑
αixi. Prove that the function l has a minimum on the line

e
√
−1RA(z) if and only if there are two basis vectors xl, xk with αl, αk 6= 0, such

that wl < 0 and wk > 0.

Exercise 7.5. Let G ⊂ U(n) be a Lie group acting on a complex vector space V = Cn,
equipped with the standard Hermitian structure, and GC ⊂ GL(n,C) its complexifi-
cation.
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a. Consider l(z) = |z|2 as a function on GC ·z. We parametrize GC ·z by gC = g⊗RC
using the map gC

g 7→egz−−−−→ GC · z. Prove that φ(g) := l(egz) is a convex function

which satisfies d2

dg2 (φ)(g) = | im(g)(z)|2.

b. Prove that either l has no extremal points on GC · z, or l takes minimum some-
where on GC · z. Prove that G acts transitively on the set of minima of l on
GC · z.

Definition 7.3. Let G ⊂ U(n) be a Lie group acting on a complex vector space
V = Cn, equipped with the standard Hermitian structure, and GC ⊂ GL(n,C) its
complexification. An orbit GC · z, z 6= 0 is called stable if l reaches minimum on
GC · z, unstable if 0 belongs to the closure of GC · z, and (strictly) semistable if if
it is not stable and not unstable.

Exercise 7.6. Let GC · z ⊂ V be a stable orbit.

a. Prove that for any non-zero g ∈
√
−1g, one has limt→∞ |etg(z)| =∞.

b. Let B̄R ⊂ V a closed ball of radius R. Prove that B̄R ∩GC · z is compact for all
R ∈ R>0.

c. Prove that there is a neighbourhood U 3 z such that for all zi ∈ U , the orbit
GC · z1 is stable.

Remark 7.1. The following theorem is identifies “the GIT reduction” (taking a GC-
quotient of the union of all stable orbits) and the symplectic reduction.

Exercise 7.7. Let G ⊂ U(n) be a Lie group acting on a complex vector space V = Cn,
equipped with the standard Hermitian structure, and GC ⊂ GL(n,C) its complexifi-
cation. Denote by µ : V −→ g∗ the moment map, µ(g, z) := (LieIg l)(z).

a. Prove that an orbit GC · z is stable if and only if GC · z ∩ µ−1(0) 6= 0.

b. Prove that GC · z ∩ µ−1(0) is precisely one G-orbit.

c. Prove that µ−1(0)/G = Vs/GC, where Vs ⊂ V is the union of all stable orbits.

Hint. Use Exercises 7.3 and 7.5.

Exercise 7.8. (“Hilbert-Mumford criterion of stability”)
Let G = U(1) act on a complex vector space V = Cn, equipped with the standard
Hermitian structure, GC = C∗ the corresponding complex Lie group, and z ∈ V a
non-zero vector.

a. Prove that there exists an orthonormal basis x1, ..., xn in V such that g(xi) =√
−1wixi, where wi ∈ Z are integer numbers called the weights of the action.

b. Let z =
∑
αlkxlk , where αlk are all non-zero. Prove that GC · z is unstable if

and only if all wlk are positive or negative.

c. Prove that GC · z is stable if and only if some wlk are positive while others are
negative. Prove that it is strictly semistable if some wlk vanish and all others
are positive or negative.

Exercise 7.9. Let G = U(1) act on V = C2 as ρt(z1, z2) = (tz1, t
−1z2). Find all

stable and non-stable orbits, and prove that V //G = C∗.
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