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Superalgebras

DEFINITION: Let A∗ = ⊕i∈ZAi be a graded algebra over a field. It is

called graded commutative, or supercommutative, if ab = (−1)ijba for all

a ∈ Ai, b ∈ Aj.

EXAMPLE: Grassmann algebra Λ∗V is clearly supercommutative.

DEFINITION: Let A∗ be a graded commutative algebra, and D : A∗ −→A∗+i

be a map which shifts grading by i. It is called a graded derivation, if

D(ab) = D(a)b+ (−1)ijaD(b), for each a ∈ Aj.

REMARK: If i is even, graded derivation is a usual derivation. If it is even,

it an odd derivation.

DEFINITION: Let M be a smooth manifold, and X ∈ TM a vector field.

Consider an operation of contraction with a vector field iX : ΛiM −→ Λi−1M ,

mapping an i-form α to an (i− 1)-form v1, ..., vi−1 −→ α(X, v1, ..., vi−1)

EXERCISE: Prove that iX is an odd derivation.
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Supercommutator

DEFINITION: Let A∗ be a graded vector space, and E : A∗ −→A∗+i,
F : A∗ −→A∗+j operators shifting the grading by i, j. Define the super-

commutator {E,F} := EF − (−1)ijFE.

DEFINITION: An endomorphism of a graded vector space which shifts grad-
ing by i is called even if i is even, and odd otherwise.

EXERCISE: Prove that the supercommutator satisfies graded Jacobi iden-

tity,

{E, {F,G}} = {{E,F}, G}+ (−1)ẼF̃{F, {E,G}}

where Ẽ and F̃ are 0 if E,F are even, and 1 otherwise.

REMARK: There is a simple mnemonic rule which allows one to remember
a superidentity, if you know the commutative analogue. Each time when in

commutative case two letters E, F are exchanged, in supercommuta-

tive case one needs to multiply by (−1)ẼF̃ .

EXERCISE: Prove that a supercommutator of superderivations is again

a superderivation.
3



Symplectic geometry, lecture 2 M. Verbitsky

Lie derivative

DEFINITION: Let B be a smooth manifold, and v ∈ TM a vector field. An

endomorphism Liev : Λ∗M −→ Λ∗M , preserving the grading is called a Lie

derivative along v if it satisfies the following conditions.

(1) On functions Liev is equal to a derivative along v. (2) [Liev, d] = 0.

(3) Liev is a derivation of the de Rham algebra.

REMARK: The algebra Λ∗(M) is generated by C∞M = Λ0(M) and d(C∞M).

The restriction Liev |C∞M is determined by the first axiom. On d(C∞M) is

also determined because Liev(df) = d(Liev f). Therefore, Liev is uniquely

defined by these axioms.
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Cartan’s formula

EXERCISE: Prove that {d, {d,E}} = 0 for each E ∈ End(Λ∗M).

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field,

iv(η) = η(v, ·, ·, ..., ·) Then {d, iv} is equal to the Lie derivative along v.

Proof: {d, {d, iv}} = 0 by the lemma above. A supercommutator of two

graded derivations is a graded derivation. Finally, {d, iv} acts on functions as

iv(df) = 〈v, df〉.

THEOREM: (Cartan’s formula) Let iv be a convolution with a vector field,

iv(η) = η(v, ·, ·, ..., ·) Then {d, iv} is equal to the Lie derivative along v.

Proof: {d, {d, iv}} = 0 by the lemma above. A supercommutator of two

graded derivations is a graded derivation. Finally, {d, iv} acts on functions as

iv(df) = 〈v, df〉.
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Cartan’s magic formula: d ◦ ix + ix ◦ d = Liex.

Which Cartan?
Élie Cartan (1869-1951) Henri Cartan (1904-2008)

Élie Cartan? Henri Cartan?
(Robert Bryant and Dick Palais, (S.S. Chern: Lectures

Mathoverflow) on differential geometry)
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Flow of diffeomorphisms

DEFINITION: Let f : M × [a, b]−→M be a smooth map such that for all

t ∈ [a, b] the restriction ft := f
∣∣∣M×{t} : M −→M is a diffeomorphism. Then f

is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=

f(Vt(x)). Consider the map f −→ (V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is

a derivation of C∞M (that is, a vector field).
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Poincaré lemma

DEFINITION: An open subset U ⊂ Rn is called starlike if for any x ∈ U the

interval [0, x] belongs to U .

THEOREM: (Poicaré lemma) Let U ⊂ Rn be a starlike subset. Then

Hi(U) = 0 for i > 0.

REMARK: The proof would follow if we construct a vector field ~r such

that Lie~r is invertible on Λ∗(M): Lie~rR = Id. Indeed, for any closed form α

we would have α = Lie~rRα = di~rRα+ i~rRdα = di~rRα, hence any closed form

is exact.

Then Poincaré lemma is implied by the following statement.

PROPOSITION: Let U ⊂ Rn be a starlike subset, t1, ..., tn coordinate func-

tions, and ~r :=
∑
ti
d
dti

the radial vector field. Then Lie~r is invertible on

Λi(U) for i > 0.
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Radial vector field on starlike sets

PROPOSITION: Let U ⊂ Rn be a starlike subset, t1, ..., tn coordinate func-

tions, and ~r :=
∑
ti
d
dti

the radial vector field. Then Lie~r is invertible on

Λi(U) for i > 0.

Proof. Step 1: Let t be the coordinate function on a real line, f(t) ∈ C∞R
a smooth function, and v := t ddt a vector field. Define R(f)(t) :=

∫ 1
0
f(λt)
λ dλ.

Then this integral converges whenever f(0) = 0, and satisfies LievR(f) = f .

Indeed, ∫ 1

0

f(λt)

λ
dλ =

∫ t
0

f(λt)

tλ
d(tλ) =

∫ t
0

f(z)

z
dz,

hence LievR(f) = tf(t)
t = f(t).

Step 2: Consider a function f ∈ C∞Rn satisfying f(0) = 0, and x =

(x1, ..., xn) ∈ Rn. Then

R(f)(x) :=
∫ 1

0

f(λx)

λ
dλ

converges, and satisfies Lie~rR(f) = f.
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Radial vector field on starlike sets (2)

Step 3: Consider a differential form α ∈ Λi, and let hλx−→ λx be the homo-

thety with coefficient λ ∈ [0,1]. Define

R(α) :=
∫ 1

0
λ−1h∗λ(α)dλ.

Since h∗λ(α) = 0 for λ = 0, this integral converges. It remains to prove that

Lie~rR = Id.

Step 4: Let α be a coordinate monomial, α = dti1 ∧ dti2 ∧ ... ∧ dtik. Clearly,

Lie~r(T
−1α) = 0, where T = ti1ti2...tik. Since h∗λ(fα) = h∗λ(Tf)T−1α, we have

R(fα) = R(Tf)T−1α for any function f ∈ C∞M. This gives

Lie~rR(fα) = Lie~rR(Tf)T−1α = TfT−1α = fα.
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A smooth choice of anti-differential

THEOREM 1: Let αt ∈ Λk(M), t ∈ [0,1] be a smooth family of exact forms.

Then there exists a smooth family of forms ηt ∈ Λk−1(M), t ∈ [0,1], such

that dηt = αt.

Proof. Step 1: Let {Ui} be a covering of M by open balls, with all

successive intersection of balls diffeomorphic to balls or empty. Such a

covering can be obtained, for example, using Voronoy partitions, or a trian-

gulation.

We use induction by the number of open balls. When there is only one ball,

the statement follows from the explicit proof of Poincaré lemma. Suppose

that we proved the theorem for a union of n open balls.

Let M = U ∪ V , where U is a ball, and V a union of n balls for which the

theorem is already proven. Then αt = dut on U and αt = dvt on V . The form

ut − vt is closed. Suppose it is exact. Since U ∩ V is a union of n balls, the

theorem is true for it, and ut − vt = dwt. Extending wt to U and replacing ut
by u′t := ut − dwt, we obtain forms u′t, vt which agree on U ∩ V , and can be

glued into ηt such that dηt = αt.
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A smooth choice of anti-differential (2)

Step 1, remainder: Let M = U ∪ V , where U is a ball, and V a union of

n balls for which the theorem is already proven. Then αt = dut on U and

αt = dvt on V . The form ut − vt is closed. If it is exact, we are done.

Step 2: It remains to prove that ut − vt can be chosen exact. Consider the

Mayer-Vietoris exact sequence

Hi−1(U)⊕Hi−1(V )−→Hi−1(U ∩ V )
δ−→ Hi(U ∪ V )−→Hi(U)⊕Hi(V ).

The cohomology class of ut−vt is by construction mapped to the cohomology

class of αt under the coboundary map δ. Since αt is exact, this class comes

from Hi−1(U)⊕Hi−1(V ).

Denote the corresponding family of cohomology classes by [st] := [ut − vt].
Choosing a basis x1, ..., xn in cohomology of U ∩ V and representing each xi
by a smooth form, we may represent [st] by a closed form st which smoothly

depends on t. Since [st] comes from Hi−1(U) ⊕ Hi−1(V ), there are families

of closed forms u′′t on U and v′′t on V such that st is cohomologous to u′′t − v′′t .

Replacing ut by ut − u′′t and vt by vt − v′′t , we obtain a new family u′′′t , v
′′′
t

such that u′′′t − v′′′t = ut − vt − st is exact.
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Moser isotopy lemma

THEOREM: (Moser’s isotopy lemma)
Let M be a compact symplectic manifold, and ωt, t ∈ [0,1] a smooth deforma-
tion of a symplectic form. Assume that the cohomology class [ωt] ∈ H2(M)
is constant in t. Then there exists a diffeomorphism flow Ψt ∈ Diff(M)
mapping ωt to ω0, for all t.

Proof. Step 1: Since all ωt are cohomologous, the form dωt
dt is exact. Then

dωt
dt = dηt, where ηt ∈ Λ1(M). By Theorem 1, this form can be chosen

smoothly in t.

Step 2: Let vt be the tangent vector field to Ψt, with vt := Ψ−1
t

dΨt
dt . The

equation Ψ∗tωt = ω0 (for all t ∈ [0,1]) is equivalent to Ψ0 = Id, dΨt
dt ωt = −Ψt

dωt
dt ,

which is the same as

Lievt ωt = −
dωt

dt
. (∗)

By Cartan’s formula, Lievt ωt = d(ivt(ωt)). Then (*) is equivalent to
d(ivtωt) = −dηt.

Step 3: Since ωt is non-degenerate, there exists a unique vt ∈ TM such
that ivtωt = −ηt. Integrating the time-dependent vector field vt to a flow of
diffeomorphisms, we obtain Ψt satisfying Ψ∗tωt = ω0.
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Hodge theory on finite-dimensional spaces

Let

...
d−→ C−1

d−→ C0
d−→ C1

d−→ C2
d−→ ...

be a complex of finite-dimensional vector spaces. Put a scalar product g

on each Ci, and let d∗ : Ci −→ Ci−1 be adjoint operators. Since g(dx, y) =
d(x, d∗y), the orthogonal complement to im d is ker d∗, and orthogonal com-
plement to ker d is im d∗.

Let ∆ := dd∗+ d∗d be the Laplacian operator. Then (∆x, y) = (dx, dy) +
(d∗x, d∗y), hence x ∈ ker ∆ ⇔ dx = d∗x = 0 ⇔ x ∈ (im d)⊥ ∩ (im d∗)⊥.
This gives a direct sum decomposition Ci = ker ∆ ⊕ im d ⊕ im d∗. Since
im d∗ = (ker d)⊥, this also gives ker ∆ ⊕ im d = ker d, and identifies ker ∆
with cohomology of d.

Since im ∆⊥ ker ∆, the operator ∆ is invertible on im ∆. Denote by G∆
the operator which acts as zero on ker ∆ and as ∆−1 on im ∆. This operator
is called the Green operator.

Write Gd := d∗G∆. For any vector α ∈ im d, one has α = G∆∆(α) becase
α⊥ ker ∆, which gives α = G∆dd

∗α = dG∆α.
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A smooth choice of anti-differential (2)

THEOREM: Let αt ∈ Λk(M), t ∈ [0,1] be a smooth family of exact forms.

Then there exists a smooth family of forms ηt ∈ Λk−1(M), t ∈ [0,1], such

that dηt = αt.

A proof using Hodge theory (works only when M is compact).

Step 1: The decomposition C∗ = ker ∆ ⊕ im d ⊕ im d∗ is always valid in

finite-dimensional situation. For infinite-dimensional vector spaces, it works

if and only if the spaces im d and im d∗ are closed. Hodge theory claims that

this is true, and also defines the Green operator G∆ which inverts ∆ on

im ∆ = ker ∆⊥. Since ∆ commutes with d, d∗, the same is true for G∆.

Step 2: Write Gd := d∗G∆. For any exact form α, one has α = G∆∆(α)

because α⊥ ker ∆, which gives α = G∆dd
∗α = dG∆α. Writing ηt = G∆αt, we

obtain a smooth family ηt such that dηt = αt.
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Fine resolutions

DEFINITION: Recall that a sheaf F over a manifold M is called fine if

for every covering {Ui} of M admitting a partition of unity, and any section

f ∈ F(M), there exists compactly supported sections fi ∈ F(Ui) such that∑
i fi = f .

EXAMPLE: Any sheaf of C∞M-modules is clearly fine.

REMARK: Fine sheaves are clearly acyclic, in other words, for any fine reso-

lution 0−→F −→F1 −→F2 −→ ... of a sheaf F, one has Hi(F) = Hi(H0(F∗))

where Hi(H0(F∗)) denotes the cohomology of the complex of global sections

0−→H0(F)−→H0(F1)−→H0(F2)−→ ...
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Fine resolutions and fiberwise closed differential forms

REMARK: Let Rσ
M×[0,1] the sheaf of smooth functions which are constant

along the fibers of the projection σ : M × [0,1]−→ [0,1]. The sheaf Rσ
M×[0,1]

admits a fine resolution

0−→ RσM×[0,1] −→ C∞(M × [0,1])
dσ−→ Λ1

σ(M × [0,1])
dσ−→ ...

where dσ is de Rham differential taken along the fibers of σ, and Λ∗σ(M×[0,1])

denotes the fiberwise differential forms.

CLAIM: Any smooth family of closed forms αt ∈ Λ∗(M), t ∈ [0,1], represents

an element [αt] ∈ Hi(Rσ
M×[0,1]). There exists a smooth family ηt ∈ Λ∗(M)

such that dηt = αt if and only if [αt] = 0.
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A smooth choice of anti-differential (3)

THEOREM: Let αt ∈ Λk(M), t ∈ [0,1] be a smooth family of exact forms.
Then there exists a smooth family of forms ηt ∈ Λk−1(M), t ∈ [0,1], such
that dηt = αt.

Proof using the sheaf theory. Step 1 The proof will follow if we prove
that the family αt represents 0 in the cohomology of Rσ

M×[0,1].

Step 2: Let R∗σ∗ denote the functor of derived direct image of the sheaf.
This is the same as the functor mapping a sheaf to its fiberwise cohomology
sheaf.

Let RM×[0,1] denote the constant sheaf on M × [0,1]. Since Rσ
M×[0,1] =

RM×[0,1] ⊗R Rσ
M×[0,1], and the functor ⊗RRσM×[0,1] is exact, one has

Riσ∗(RσM×[0,1]) = Riσ∗(RM×[0,1])⊗R RσM×[0,1]

(“the base change theorem”). Here Riσ∗(RσM×[0,1]) is the constant sheaf on

[0,1] with fiber Hi(M,R). Therefore, a fiberwise exact form αt represents
zero in Riσ∗(RσM×[0,1]), and in

H0(Riσ∗(RσM×[0,1])) = Hi(RσM×[0,1]).
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