Symplectic geometry

lecture 3: Flow of diffeomorphisms and Moser isotopy lemma

Misha Verbitsky

HSE, room 306, 16:20,

September 11, 2021

Flow of diffeomorphisms

DEFINITION: Let $f : M \times [a,b] \longrightarrow M$ be a smooth map such that for all $t \in [a,b]$ the restriction $f_t := f|_{M \times \{t\}} : M \longrightarrow M$ is a diffeomorphism. Then f is called a flow of diffeomorphisms.

CLAIM: Let V_t be a flow of diffeomorphisms, $f \in C^{\infty}M$, and $V_t^*(f)(x) := f(V_t(x))$. Consider the map $\frac{d}{dt}V_t|_{t=c}$: $C^{\infty}M \longrightarrow C^{\infty}M$, with $\frac{d}{dt}V_t|_{t=c}(f) = (V_c^{-1})^*\frac{dV_t}{dt}|_{t=c}f$. Then $f \longrightarrow (V_t^{-1})^*\frac{d}{dt}V_t^*f$ is a derivation (that is, a vector field).

Proof:
$$\frac{d}{dt}V_t^*(fg) = V_t^*(f)\frac{d}{dt}V_t^*g + \frac{d}{dt}V_t^*fV_t^*(g)$$
 by the Leignitz rule, giving $(V_t^{-1})^*\frac{d}{dt}V_t^*(fg) = f \cdot (V_t^{-1})^*\frac{d}{dt}V_t^*g + g \cdot (V_t^{-1})^*\frac{d}{dt}V_t^*f.$

DEFINITION: The vector field $V_t^{-1} \frac{d}{dt} V_t|_{t=c}$ is called **the vector field tangent to a flow of diffeomorphisms** V_t at t = c.

Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and $\Psi : C^{\infty}M \longrightarrow C^{\infty}M$ is a ring automorphism. Prove that Ψ is induced by an action of a diffeomorphism of M.

THEOREM: Let M be a compact manifold, and $X_t \in TM$ a family of vector fields smoothly depending on $t \in [0, a]$. Then there exists a unique diffeomorphism flow V_t , $t \in [0, a]$, such that $V_0 = \text{Id}$ and $(V_t^{-1})^* \frac{d}{dt} V_t^* = X_t$.

Proof. Step 1: Given $f \in C^{\infty}M$, we can solve an equation $\frac{d}{dt}W_t(f) = \text{Lie}_{X_t}(f)$ (here $\text{Lie}_{X_t}(f)$ denotes the derivative along the vector field). The solution $W_t(f)$ exists for all $t \in [0, x]$ and is unique by Peano theorem on existence and uniqueness of solutions of ODE.

Step 2: Since

$$\frac{d}{dt}W_t(fg) = \operatorname{Lie}_{X_t}(f)g + \operatorname{Lie}_{X_t}(g)f = \frac{d}{dt}(W_t(f)W_t(g)),$$

 W_t is multiplicative. Also, it is invertible. Applying the previous exercise, we obtain that W_t is a diffeomorphism.

For another proof see Chapter 5 of Arnold V.I., Ordinary Differential Equations

Diffeomorphism flow and vector fields

DEFINITION: Let v_t be a vector field on M, smoothly depending on the "time parameter" $t \in [a,b]$, and $\Psi_t^{-1}\Psi_t \colon M \times [a,b] \longrightarrow M$ a flow of diffeomorphisms which satisfies $\frac{d}{dt}\Psi_t = v_t$ for each $t \in [a,b]$, and $V_0 = \text{Id}$. Then Ψ_t is called **an exponent of** v_t .

CLAIM: Let Ψ_t be an exponent of a time-dependent vector field v_t . Then for any differential form η , we have

$$\left(\Psi^{-1}\right)^* \frac{d\Psi_t^*}{dt} \Big|_{t=t_0} \eta = \operatorname{Lie}_{v_t} \eta.$$

Proof: Both sides of this equation are derivations of de Rham algebra which commute with d and are equal to Lie_{vt} on functions.

COROLLARY 1: Let Ψ_t be an exponent of a time-dependent vector field v_t , and $\eta_t := \Psi_t^* \eta$. Then $\Psi_a^* \eta = \eta + \int_0^a \operatorname{Lie}_{v_t} \eta_t dt$. Conversely, if this equation holds, we have $\eta_t := \Psi_t^* \eta$.

Moser isotopy lemma (variant)

THEOREM: (Moser's isotopy lemma)

Let M be a compact symplectic manifold, and ω_t , $t \in [0, 1]$ a smooth deformation of a symplectic form. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then there exists a diffeomorphism flow $\Psi_t \in \text{Diff}(M)$ mapping ω_t to ω_0 , for all t.

Proof. Step 1: By Corollary 1, we need to find a family of vector fields v_t such that $\omega_0 + \int_0^a \operatorname{Lie}_{v_t} \omega_t dt = \omega_a$. Then $\omega_0 := \Psi_t^* \omega$. This would follow if $\frac{d\omega_t}{dt} = \operatorname{Lie}_{v_t} \omega_t$. Since all ω_t are cohomologous, the form $\frac{d\omega_t}{dt}$ is exact. Then $\frac{d\omega_t}{dt} = d\eta_t$, where $\eta_t \in \Lambda^1(M)$. This form can be chosen smoothly in t (Lecture 2).

Step 2: By Step 1, to prove the theorem, we need to solve the equation

$$\operatorname{Lie}_{v_t}\omega_t = -rac{d\omega_t}{dt}.$$
 (*)

By Cartan's formula, $\operatorname{Lie}_{v_t} \omega_t = d(i_{v_t}(\omega_t))$. Then (*) is equivalent to $d(i_{v_t}\omega_t) = -d\eta_t$.

Step 3: The map $x \longrightarrow i_x(\omega)$ induces an isomorphism $TM \longrightarrow T^*M$ whenever ω is a non-degenerate 2-form. Therefore, there exists a unique $v_t \in TM$ such that $i_{v_t}\omega_t = -\eta_t$. This solves (*) and finishes the proof.

Darboux' theorem (reminder)

THEOREM: A symplectic manifold is locally symplectomorphic to a symplectic ball (in a neighbourhood of each point).

Proof. Step 1: It is sufficient to check that for any symplectic form ω_1 on \mathbb{R}^n there exists a neighbourhood $U \ni 0$ such that (U, ω_1) is symplectomorphic to a symplectic ball.

Step 2: Choose coordinates x_i, y_i on \mathbb{R}^{2n} in such a way that $\omega_1|_{T_0\mathbb{R}^{2n}} = \omega_0|_{T_0\mathbb{R}^{2n}}$, where $\omega_0 = \sum_i dx_i \wedge dy_i$. The form $\omega_t := t\omega_1 + (1-t)\omega_0$ is non-degenerate in 0, because $\omega_1|_0 = \omega_0|_0$. Choose a starlike neighborhood $U \ni 0$ such that ω_t is non-degenerate for all $t \in [0, 1]$.

Step 3: In *U* the forms ω_t are all non-degenerate and cohomologous. As in the proof of Moser's lemma, choose η_t such that $\frac{d\omega_t}{dt} = d\eta_t$, and a vector field $v_t := -\omega_t^{-1}(\eta_t)$, vanishing in 0.

Substracting from η_t a constant 1-form, we may assume that $\eta_t|_{T_0U} = 0$. Then the the coefficients of the form η_t grow as o(r), where r is the distance from zero. Therefore, for U sufficiently small, the vector field Ψ_t integrates in the whole U, and defines a diffeomorphism Ψ between (U, ω_0) and $(\Psi(U), \omega_1)$. Finally, since $v_t = 0$ in 0, the set $\Psi(U)$ contains 0.

Symplectic structure on the total space of cotangent bundle

From now on, the total space of the cotangent bundle to M is denoted as T^*M . The diffeomorphism group of M is denoted Diff(M).

THEOREM: Let *M* be a smooth manifold. Then T^*M is equipped with a natural, Diff(M)-invariant symplectic form ω .

Proof: Let $\pi : TM \longrightarrow M$ denote the projection. Consider a point $(x,\xi) \in T^*M$, where $x \in M$ and $\xi \in T^*_xM$. Let $\theta \in \Lambda^1(TM)$ be a 1-form which takes a tangent vector $v \in T_{(x,\xi)}T^*M$ and maps it to $\langle D\pi(v),\xi \rangle$. Here, $D\pi : T(T^*M) \longrightarrow TM$ is the differential, and $\langle \cdot, \cdot \rangle$ the pairing between T_xM and T^*_xM .

If we introduce the coordinates $p_1, ..., p_n$ on M and $q_1, ..., q_n$ on the fibers of $T^*M \longrightarrow M$ dual to $p_1, ..., p_n$, the form θ at a point $p_1, ..., p_n, q_1, ...q_n$ takes a vector $\sum_i f_i \frac{d}{dp_i} + \sum_i g_i \frac{d}{dpq_i}$ to $\sum_i f_i q_i$. Therefore, $\theta = \sum_i q_i dp_i$. In the same coordinates $d\theta = \sum_i dq_i \wedge dp_i$; this form is symplectic and by construction Diff(M)-invariant.