
Symplectic geometry, lecture 3 M. Verbitsky

Symplectic geometry
lecture 3: Flow of diffeomorphisms and Moser isotopy lemma

Misha Verbitsky

HSE, room 306, 16:20,

September 11, 2021

1



Symplectic geometry, lecture 3 M. Verbitsky

Flow of diffeomorphisms

DEFINITION: Let f : M × [a, b]−→M be a smooth map such that for all

t ∈ [a, b] the restriction ft := f
∣∣∣M×{t} : M −→M is a diffeomorphism. Then f

is called a flow of diffeomorphisms.

CLAIM: Let Vt be a flow of diffeomorphisms, f ∈ C∞M , and V ∗t (f)(x) :=

f(Vt(x)). Consider the map d
dtVt|t=c : C∞M −→ C∞M , with d

dtVt|t=c(f) =

(V −1
c )∗dVtdt |t=cf . Then f −→ (V −1

t )∗ ddtV
∗
t f is a derivation (that is, a vector

field).

Proof: d
dtV
∗
t (fg) = V ∗t (f) ddtV

∗
t g + d

dtV
∗
t fV

∗
t (g) by the Leignitz rule, giving

(V −1
t )∗

d

dt
V ∗t (fg) = f · (V −1

t )∗
d

dt
V ∗t g + g · (V −1

t )∗
d

dt
V ∗t f.

DEFINITION: The vector field V −1
t

d
dtVt|t=c is called the vector field tan-

gent to a flow of diffeomorphisms Vt at t = c.
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Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and Ψ : C∞M −→ C∞M is a ring
automorphism. Prove that Ψ is induced by an action of a diffeomorphism
of M.

THEOREM: Let M be a compact manifold, and Xt ∈ TM a family of
vector fields smoothly depending on t ∈ [0, a]. Then there exists a unique
diffeomorphism flow Vt, t ∈ [0, a], such that V0 = Id and (V −1

t )∗ ddtV
∗
t = Xt.

Proof. Step 1: Given f ∈ C∞M , we can solve an equation d
dtWt(f) = LieXt(f)

(here LieXt(f) denotes the derivative along the vector field). The solution
Wt(f) exists for all t ∈ [0, x] and is unique by Peano theorem on existence and
uniqueness of solutions of ODE.

Step 2: Since

d

dt
Wt(fg) = LieXt(f)g + LieXt(g)f =

d

dt
(Wt(f)Wt(g)),

Wt is multiplicative. Also, it is invertible. Applying the previous exercise, we
obtain that Wt is a diffeomorphism.

For another proof see Chapter 5 of Arnold V.I., Ordinary Differential Equa-
tions
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Diffeomorphism flow and vector fields

DEFINITION: Let vt be a vector field on M , smoothly depending on the

“time parameter” t ∈ [a, b], and Ψ−1
t Ψt : M × [a, b]−→M a flow of diffeomor-

phisms which satisfies d
dtΨt = vt for each t ∈ [a, b], and V0 = Id. Then Ψt is

called an exponent of vt.

CLAIM: Let Ψt be an exponent of a time-dependent vector field vt. Then

for any differenial form η, we have(
Ψ−1

)∗ dΨ∗t
dt

∣∣∣t=t0η = Lievt η.

Proof: Both sides of this equation are derivations of de Rham algebra which

commute with d and are equal to Lievt on functions.

COROLLARY 1: Let Ψt be an exponent of a time-dependent vector field

vt, and ηt := Ψ∗tη. Then Ψ∗aη = η +
∫ a
0 Lievt ηtdt. Conversely, if this equation

holds, we have ηt := Ψ∗tη.
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Moser isotopy lemma (variant)

THEOREM: (Moser’s isotopy lemma)
Let M be a compact symplectic manifold, and ωt, t ∈ [0,1] a smooth deforma-
tion of a symplectic form. Assume that the cohomology class [ωt] ∈ H2(M)
is constant in t. Then there exists a diffeomorphism flow Ψt ∈ Diff(M)
mapping ωt to ω0, for all t.

Proof. Step 1: By Corollary 1, we need to find a family of vector fields vt
such that ω0 +

∫ a
0 Lievt ωtdt = ωa. Then ω0 := Ψ∗tω. This would follow if

dωt
dt = Lievt ωt. Since all ωt are cohomologous, the form dωt

dt is exact. Then
dωt
dt = dηt, where ηt ∈ Λ1(M). This form can be chosen smoothly in t

(Lecture 2).

Step 2: By Step 1, to prove the theorem, we need to solve the equation

Lievt ωt = −
dωt

dt
. (∗)

By Cartan’s formula, Lievt ωt = d(ivt(ωt)). Then (*) is equivalent to
d(ivtωt) = −dηt.

Step 3: The map x−→ ix(ω) induces an isomorphism TM −→ T ∗M whenever
ω is a non-degenerate 2-form. Therefore, there exists a unique vt ∈ TM such
that ivtωt = −ηt. This solves (*) and finishes the proof.
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Darboux’ theorem (reminder)

THEOREM: A symplectic manifold is locally symplectomorphic to a
symplectic ball (in a neighbourhood of each point).

Proof. Step 1: It is sufficient to check that for any symplectic form ω1 on
Rn there exists a neighbourhood U 3 0 such that (U, ω1) is symplectomorphic
to a symplectic ball.

Step 2: Choose coordinates xi, yi on R2n in such a way that ω1

∣∣∣T0R2n =

ω0

∣∣∣T0R2n , where ω0 =
∑
i dxi ∧ dyi. The form ωt := tω1 + (1 − t)ω0 is non-

degenerate in 0, because ω1|0 = ω0|0. Choose a starlike neighborhood
U 3 0 such that ωt is non-degenerate for all t ∈ [0,1].

Step 3: In U the forms ωt are all non-degenerate and cohomologous. As in
the proof of Moser’s lemma, choose ηt such that dωt

dt = dηt, and a vector
field vt := −ω−1

t (ηt), vanishing in 0.

Substracting from ηt a constant 1-form, we may assume that ηt
∣∣∣T0U = 0.

Then the the coefficients of the form ηt grow as o(r), where r is the distance
from zero. Therefore, for U sufficiently small, the vector field Ψt integrates
in the whole U, and defines a diffeomorphism Ψ between (U, ω0) and
(Ψ(U), ω1). Finally, since vt = 0 in 0, the set Ψ(U) contains 0.
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Symplectic structure on the total space of cotangent bundle

From now on, the total space of the cotangent bundle to M is denoted

as T ∗M . The diffeomorphism group of M is denoted Diff(M).

THEOREM: Let M be a smooth manifold. Then T ∗M is equipped with

a natural, Diff(M)-invariant symplectic form ω.

Proof: Let π : TM −→M denote the projection. Consider a point (x, ξ) ∈
T ∗M , where x ∈ M and ξ ∈ T ∗xM . Let θ ∈ Λ1(TM) be a 1-form which

takes a tangent vector v ∈ T(x,ξ)T
∗M and maps it to 〈Dπ(v), ξ〉. Here, Dπ :

T (T ∗M)−→ TM is the differential, and 〈·, ·〉 the pairing between TxM and

T ∗xM .

If we introduce the coordinates p1, ..., pn on M and q1, ..., qn on the fibers of

T ∗M −→M dual to p1, ..., pn, the form θ at a point p1, ..., pn, q1, ...qn takes a

vector
∑
i fi

d
dpi

+
∑
i gi

d
dpqi

to
∑
i fiqi. Therefore, θ =

∑
i qidpi. In the same

coordinates dθ =
∑
i dqi∧dpi; this form is symplectic and by construction

Diff(M)-invariant.
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