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Flow of diffeomorphisms

DEFINITION: Let f: M X [a,b] — M be a smooth map such that for all
t € [a,b] the restriction f; := f‘Mx{t} . M — M is a diffeomorphism. Then f
is called a flow of diffeomorphisms.

CLAIM: Let V; be a flow of diffeomorphisms, f € C®°M, and V,*(f)(x) :
f(Vi(z)). Consider the map 4Viji=. : C®M — C®M, with 4Vi|;—.(f) =
(Vc—l)*%hch. Then f—>(Vt_1)*%Vt*f iIs a derivation (that is, a vector
field).

Proof: 4V (fg) = V() EVirg + LV fVi*(g) by the Leignitz rule, giving

— *d * — *d * — *d *
(Vi D Vi (fo) = F- (Vi )" Vg +g- (Vi D'V F.
L

DEFINITION: The vector field \/;_1%%|tzc is called the vector field tan-
gent to a flow of diffeomorphisms V; at t = c.
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Flow of diffeomorphisms obtained from vector fields

EXERCISE: Let M be a compact manifold, and W : C°°M — C°M is a ring
automorphism. Prove that W is induced by an action of a diffeomorphism
of M.

THEOREM: Let M be a compact manifold, and X; € TM a family of
vector fields smoothly depending on t € [0,a]. Then there exists a unique
diffeomorphism flow V;, ¢ € [0,a], such that Vo =1Id and (V; 1)* 4V = X;.

Proof. Step 1: Given f € C*°M, we can solve an equation %Wt(f) = Liex,(f)
(here Liex,(f) denotes the derivative along the vector field). The solution
Wi (f) exists for all ¢t € [0,z] and is unique by Peano theorem on existence and
uniqueness of solutions of ODE.

Step 2: Since

d . . d
—Wilf9) = Liex,(Ng + Liex,(9)f = — (We(HWi(9)),
Wy is multiplicative. Also, it is invertible. Applying the previous exercise, we

obtain that W, is a diffeomorphism. m

For another proof see Chapter 5 of Arnold V.I., Ordinary Differential Equa-
tions
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Diffeomorphism flow and vector fields

DEFINITION: Let v+ be a vector field on M, smoothly depending on the
“time parameter” t € [a,b], and \ut—lwt . M x [a,b] — M a flow of diffeomor-
phisms which satisfies %\Ut = vy for each t € [a,b], and Vg = 1Id. Then Wy is
called an exponent of vy.

CLAIM: Let Wy be an exponent of a time-dependent vector field v;. Then
for any differenial form n, we have

(W ) d—tt t=toT — |_|evt 7.

Proof:. Both sides of this equation are derivations of de Rham algebra which
commute with d and are equal to Liey: on functions. m

COROLLARY 1: Let W; be an exponent of a time-dependent vector field
vg, and ny 1= Win. Then Win =n+ [§Liey, nidt. Conversely, if this equation
holds, we have n; (= Win. =
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Moser isotopy lemma (variant)

THEOREM: (Moser’s isotopy lemma)

Let M be a compact symplectic manifold, and wy, t € [0, 1] a smooth deforma-
tion of a symplectic form. Assume that the cohomology class [w;] € H2(M)
is constant in t. Then there exists a diffeomorphism flow W; ¢ Diff(M)
mapping w; to wg, for all t.

Proof. Step 1: By Corollary 1, we need to find a family of vector fields v
such that wg + [§ Liey, widt = wq. Then wg := Wiw. This would follow if
% = Liey, we. Since all wy are cohomologous, the form % is exact. Then

% = dny, where n; € AY(M). This form can be chosen smoothly in ¢

(Lecture 2).

Step 2: By Step 1, to prove the theorem, we need to solve the equation

: dw
|_|efvt Wt — —d—tt (*)
By Cartan’s formula, Liey,wy = d(iy,(w¢)). Then (*) is equivalent to

d(tvywy) = —dny.

Step 3: The map x — iz(w) induces an isomorphism T'M — T*M whenever
w IS a non-degenerate 2-form. Therefore, there exists a unique v+ € T'M such
that iy,wr = —n. This solves (*) and finishes the proof. m
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Darboux’ theorem (reminder)

THEOREM: A symplectic manifold is locally symplectomorphic to a
symplectic ball (in a neighbourhood of each point).

Proof. Step 1: It is sufficient to check that for any symplectic form wj on
R™ there exists a neighbourhood U 3 0 such that (U,w;) is symplectomorphic
to a symplectic ball.

Step 2: Choose coordinates z;,y; on R?™ in such a way that wl‘ToRgn =

wo|p r2n: Where wg = 33;dx; Ady;. The form wy ;= tw1 + (1 — t)wg is non-
degenerate in 0, because wi|lg = wglg. Choose a starlike neighborhood
U > 0 such that w; is non-degenerate for all ¢t € [0, 1].

Step 3: In U the forms w; are all non-degenerate and cohomologous. AS in
the proof of Moser’'s lemma, choose 7n; such that % = dn¢, and a vector
field v; := —wt_l(m). vanishing in O.

Substracting from n; a constant 1-form, we may assume that nt‘ToU = 0.
Then the the coefficients of the form n; grow as o(r), where r is the distance
from zero. Therefore, for U sufficiently small, the vector field W; integrates
in the whole U, and defines a diffeomorphism W between (U,wp) and
(W(U),wq1). Finally, since v+ =0 in 0, the set W(U) contains 0. m
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Svymplectic structure on the total space of cotangent bundle

From now on, the total space of the cotangent bundle to M is denoted
as T*M. The diffeomorphism group of M is denoted Diff(M).

THEOREM: Let M be a smooth manifold. Then T*M is equipped with
a natural, Diff(M)-invariant symplectic form w.

Proof: Let # : TM — M denote the projection. Consider a point (x,§) €
T*M, where x € M and ¢ € T*M. Let 6 € AL (TM) be a 1-form which
takes a tangent vector v € T, -yT*M and maps it to (Dw(v),§). Here, D :
T(T*M) — TM is the differential, and (-,-) the pairing between T, M and
TxM.

If we introduce the coordinates p1,...,pn ON M and q1,...,qn On the fibers of
T*"M — M dual to pq,...,pn, the form 6 at a point pq,...,pn,q1,...qn takes a
vector >, fidipi + > gi%q@- to > ; fiq;- Therefore, 6 = > ;q;dp;. In the same
coordinates df = Y, dq; N dp;; this form is symplectic and by construction

Diff(M)-invariant. =



