Symplectic geometry

lecture 4: Hamiltonian symplectomorphisms

Misha Verbitsky

HSE, room 306, 16:20,

September 15, 2021

Symplectic structure on the total space of cotangent bundle

From now on, the total space of the cotangent bundle to M is denoted as T^*M . The diffeomorphism group of M is denoted Diff(M).

THEOREM: Let *M* be a smooth manifold. Then T^*M is equipped with a natural, Diff(M)-invariant symplectic form ω .

Proof: Let $\pi : TM \longrightarrow M$ denote the projection. Consider a point $(x,\xi) \in T^*M$, where $x \in M$ and $\xi \in T^*_xM$. Let $\theta \in \Lambda^1(TM)$ be a 1-form which takes a tangent vector $v \in T_{(x,\xi)}T^*M$ and maps it to $\langle D\pi(v), \xi \rangle$. Here, $D\pi : T(T^*M) \longrightarrow TM$ is the differential, and $\langle \cdot, \cdot \rangle$ the pairing between T_xM and T^*_xM .

If we introduce the coordinates $p_1, ..., p_n$ on M and $q_1, ..., q_n$ on the fibers of $T^*M \longrightarrow M$ dual to $p_1, ..., p_n$, the form θ at a point $p_1, ..., p_n, q_1, ...q_n$ takes a vector $\sum_i f_i \frac{d}{dp_i} + \sum_i g_i \frac{d}{dpq_i}$ to $\sum_i f_i q_i$. Therefore, $\theta = \sum_i q_i dp_i$. In the same coordinates $d\theta = \sum_i dq_i \wedge dp_i$; this form is symplectic and by construction Diff(M)-invariant.

Lagrangian subspaces

REMARK: Let (V, ω) be a symplectic vector space, $\dim_{\mathbb{R}} V = 2n$, and $W \subset V$ be a subspace of dimension m. Denote by W^{\perp} the symplectic orthogonal to W. Then $\frac{W}{W^{\perp} \cap W}$ is a symplectic vector space, hence $\operatorname{rk}(\omega|_W) = \dim W - \dim(W^{\perp} \cap W)$. Since $\dim W^{\perp} = 2n - \dim W$, the intersection $W^{\perp} \cap W$ has dimension at most n.

DEFINITION: A subspace $W \subset V$ is called (i) isotropic if $\omega|_W = 0$; in this case $W \subset W^{\perp}$, hence dim $W \leq n$. (ii) coisotropic if $\omega|_W^{\perp} = 0$, or, equivalently, $W^{\perp} \subset W$. In this case $W \supset W^{\perp}$, hence dim $W \geq n$. (iii) Lagrangian if it is isotropic and coisotropic, that is, $W^{\perp} = W$.

REMARK: Isotropic and coisotropic subspaces have minimal possible rank of ω for a given dimension.

REMARK: An ω -orthogonal complement to an isotropic space is coisotropic, and vice versa.

Lagrangian submanifolds

DEFINITION: Let $X \subset M$ be a submanifold in a symplectic manifold. It is called Lagrangian if $T_x X \subset T_x M$ is Lagrangian for all $x \in X$.

THEOREM: Let $\xi \in \Lambda^1 M$ be a 1-form, and $\Gamma_{\xi} \subset T^*M$ its graph, considered as a submanifold in the total space of the cotangent bundle. Then Γ_{ξ} is Lagrangian if and only if $d\xi = 0$.

Proof: Let $\sigma : x \mapsto (x, \xi(x))$ be the standard diffeomorphism from M to Γ_{ξ} . Consider the restriction of θ to Γ_{ξ} . For each $u \in T_{(x,\xi(x))}\Gamma_{\xi}$, the form θ takes u to $\xi(d\pi(u))$. This implies that $\sigma^*\theta|_{\Gamma_{\xi}} = \xi$, hence $\sigma^*\omega|_{\Gamma_{\xi}} = d\xi$.

Hamiltonian vector fields

DEFINITION: Let $v \in TM$ be a vector field on a symplectic manifold (M, ω) . We say that v is **symplectomorphic** if $\text{Lie}_v \omega = 0$, that is, if ω is invariant under the corresponding diffeomorphism flow.

REMARK: From Cartan's formula, we have $\text{Lie}_v \omega = d(i_v \omega)$, hence v is symplectomorphic if and only if the ω -dual 1-form is closed.

DEFINITION: Let $v \in TM$ be a symplectomorphic vector field on a symplectic manifold (M, ω) , and $\eta := i_v \omega$ the corresponding 1-form. We say that v is a Hamiltonian vector field if $i_v \omega$ is exact. Its Hamiltonian is a function f such that $df = i_v \omega$. The group of Hamiltonian symplectomorphisms is generated by diffeomorphisms obtained by exponents of a time-dependent vector field v_t , which is Hamiltonian for all $t \in [0, 1]$.

REMARK: We have an exact sequence

$$0 \longrightarrow \mathbb{R} \longrightarrow C^{\infty}(M) \xrightarrow{\delta} \operatorname{Ham}(M) \longrightarrow 0$$

If we identify Ham(M) with exact 1-forms, the differential $\delta : C^{\infty}(M) \longrightarrow Ham(M)$ is identified with the de Rham differential.

M. Verbitsky

The flux

DEFINITION: Let Ψ_t be a flow of symplectomorphisms of (M, ω) , with $t \in [0, a]$ and $\Psi_0 = \operatorname{Id}_M$. Given a homology class $[u] \in H_1(M, \mathbb{Z})$, consider its representative as a smooth circle $u : S^1 \longrightarrow M$. Then $\Psi_t(u)$ takes $(s \in S^1, t \in [0, 1])$ to $\Psi_t(u(s))$, giving a smooth map $\Psi_t(u) : S^1 \times [0, 1] \longrightarrow M$. Denote its image by $\Psi_{[0,1]}(u)$. Define the flux of Ψ_t on u as $\int_{\Psi_{[0,1]}(u)} \omega$.

CLAIM: The flux of Ψ_t on u is independent from the choice of u in [u].

Proof: Suppose that u_{τ} , $\tau \in [0,1]$ is a homotopy of u_0 to u_1 . Consider the map $\tilde{\Psi}$: $S^1 \times [0,1] \times [0,1]$ mapping (s,t,τ) to $\Psi_t(u_{\tau})$. The surfaces $\Psi_{[0,1]}(u_0)$, $\Psi_{[0,1]}(u_1)$, $\bigcup_{\tau \in [0,1]} u_{\tau}$ and $\bigcup_{\tau \in [0,1]} \Psi_1(u_{\tau})$ bound a solid torus im $\tilde{\Psi}$, hence **to prove that** $\int_{\Psi_{[0,1]}(u_1)} \omega = \int_{\Psi_{[0,1]}(u_2)} \omega$, **it would suffice to show that** $\int_{\bigcup_{\tau \in [0,1]} u_{\tau}} \omega = \int_{\bigcup_{\tau \in [0,1]} \Psi_a(u_{\tau})} \omega$, which is clear because Ψ_1 is a symplectomorphism.

To pass from homotopy to homology, we notice that flux is additive on unions of curves, hence **vanishes on a commutator of** $\pi_1(M)$, and defines a map from $\frac{\pi_1(M)}{[\pi_1(M),\pi_1(M)]} = H_1(M)$.

The flux conjecture

CLAIM: Flux of a Hamiltonian diffeomorphism vanishes.

Proof: Let Ψ_t be a Hamiltonian symplectomorphism flow on (M, ω) , with $t \in [0, 1]$ and $\Psi_t^{-1} \frac{d\Psi_t}{dt} = v_t$, where v_t is a Hamiltonian vector field with Hamiltonian H_t , and $u : S^1 \longrightarrow M$ a circle. To prove that the flux vanishes it would suffice to show that $\frac{d}{dt} \int_{\Psi_{[0,t]}(u)} \omega = 0$. This derivative can be computed as $\int_{\Psi_t(u)} \omega(\frac{d\Psi_t}{dt}, \cdot)$. However, the 1-form $\omega(\frac{d\Psi_t}{dt}, \cdot) = \Psi_t^*(dH_t)$ is exact, because v_t is Hamiltonian, hence $\frac{d}{dt} \int_{\Psi_{[0,t]}(u)} \omega = 0$.

REMARK: The famous "flux conjecture" states that vanishing of the flux is a necessary and sufficient condition: if Ψ_t , $t \in [0, 1]$ is a flow of symplectomorphisms, and the flux of Ψ_1 vanishes, then Ψ_1 is a Hamiltonian symplectomorphism. Flux conjecture was proven by Kaoru Ono using Floer theory.

REMARK: Flux conjecture implies that **Hamiltonian symplectomorphisms** is closed in the group of symplectomorphisms.

Commutator of Hamiltonian vector fields

EXAMPLE: Let u_{ε} be a rotation of a 2-dimensional torus $S^1 \times S^1$ with the product metric which comes from unit circles and the symplectic structure given by the volume form. Consider a rotation along the first circle with angle ε . Then its flux through the second circle is the area of the segment bounded by the first circle and its image, that, is $2\pi\varepsilon$. In particular, rotation of a torus is not a Hamiltonian symplectomorphism.

THEOREM: Let X, Y be a Hamiltonian vector fields on (M, ω) . Then the commutator [X, Y] is Hamiltonian.

Proof: Let $f,g \in C^{\infty}M$, and let X_f, X_g be the corresponding Hamiltonian vector fields. Define the Poisson bracket as $\{f,g\} := \omega(X_f, X_g)$. By definition, $\omega(X_f, X_g) = \langle dg, X_f \rangle = \operatorname{Lie}_{X_f}(g)$, which gives $[X_f, X_g] = \operatorname{Lie}_{X_f}(X_g) = X_{\operatorname{Lie}_{X_f}(g)} = X_h$, where $h = \omega(X_f, X_g)$. Therefore, commutator of Hamiltonian vector fields corresponds to the Poisson bracket on their Hamiltonian functions.

Hamiltonian vector fields on Lagrangian fibrations

DEFINITION: Let (M, ω) be a symplectic manifold, and $\pi : M \longrightarrow X$ a smooth submersion. It is called a Lagrangian fibration if all its fibers are Lagrangian.

CLAIM: Let $\pi : M \longrightarrow X$ be a Lagrangian fibration, and H a function on X. Then the corresponding Hamiltonian vector field v is tangent to the fibers of π . Moreover, v is non-degenerate everywhere on a fiber $\pi^{-1}(x)$ if and only if $dH \neq 0$ in x; otherwise $v|_{\pi}^{-1}(x) = 0$.

Proof: Let $L := \pi^{-1}(x)$. Consider ω as a map from $T_m M$ to $T_m^* M$. Then ω^{-1} takes 1-forms vanishing in $T_m L$ to vectors $v \in T_m M$ such that $\omega(v, \cdot)$ vanishes on $T_m L$. However, $T_m L^{\perp} = T_m L$ because L is Lagrangian. Therefore, ω^{-1} takes 1-forms vanishing on TL to the vector fields tangent to L.

The forms vanishing on TL are generated by $\pi^* \Lambda^1 X$, hence the corresponding Hamiltonian vector fields are tangent to the fibers of π .

REMARK: Let $L = \pi^{-1}(x)$ be a fiber of a Lagrangian fibration. Then ω defines a non-degenerate pairing between T_mL and T_xX . This implies that **the bundle** TL is trivial.

Collections of commuting Hamiltonians

REMARK: Let $\pi : M \longrightarrow X$ be a Lagrangian fibration, and v_1, v_2 two Hamiltonian vector fields obtained from $H_1, H_2 \in C^{\infty}X$ as above. Then H_1, H_2 commute. Indeed, the Poisson commutator $\{H_1, H_2\}$ is expressed as $\omega(v_t, u_t)$, vanishing for the vector fields tangent to fibers of π .

PROPOSITION: Let π : $M \rightarrow X$ be a Lagrangian fibration, and L its fiber. Then **the bundle** TL **has a basis of globally defined commuting vector fields.** Moreover, **if** L **is compact, it is a torus.**

Proof: Let $L = \pi^{-1}(x)$ be a fiber, and $H_1, ..., H_n \in C^{\infty}X$ be a collection of functions such that $dH_1, ..., dH_n|_{T_x}X$ is a basis in T_x^*X . Then **the corresponding vector fields commute and define a basis in** TL. If these vector fields are **complete** (that is, can be integrated to a flow for all $t \in \mathbb{R}$), the manifold L is equipped with a transitive \mathbb{R}^n -action, which gives $L = \mathbb{R}^n / \Lambda$, where Λ is a discrete subgroup. If L is compact, Λ is a cocompact lattice, hence L is a torus.