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Symplectic structure on the total space of cotangent bundle

From now on, the total space of the cotangent bundle to M is denoted

as T ∗M . The diffeomorphism group of M is denoted Diff(M).

THEOREM: Let M be a smooth manifold. Then T ∗M is equipped with

a natural, Diff(M)-invariant symplectic form ω.

Proof: Let π : TM −→M denote the projection. Consider a point (x, ξ) ∈
T ∗M , where x ∈ M and ξ ∈ T ∗xM . Let θ ∈ Λ1(TM) be a 1-form which

takes a tangent vector v ∈ T(x,ξ)T
∗M and maps it to 〈Dπ(v), ξ〉. Here, Dπ :

T (T ∗M)−→ TM is the differential, and 〈·, ·〉 the pairing between TxM and

T ∗xM .

If we introduce the coordinates p1, ..., pn on M and q1, ..., qn on the fibers of

T ∗M −→M dual to p1, ..., pn, the form θ at a point p1, ..., pn, q1, ...qn takes a

vector
∑
i fi

d
dpi

+
∑
i gi

d
dpqi

to
∑
i fiqi. Therefore, θ =

∑
i qidpi. In the same

coordinates dθ =
∑
i dqi∧dpi; this form is symplectic and by construction

Diff(M)-invariant.
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Lagrangian subspaces

REMARK: Let (V, ω) be a symplectic vector space, dimR V = 2n, and W ⊂ V
be a subspace of dimension m. Denote by W⊥ the symplectic orthogonal to

W . Then W
W⊥∩W is a symplectic vector space, hence rk(ω|W ) = dimW −

dim(W⊥ ∩W ). Since dimW⊥ = 2n − dimW , the intersection W⊥ ∩W has

dimension at most n.

DEFINITION: A subspace W ⊂ V is called

(i) isotropic if ω|W = 0; in this case W ⊂W⊥, hence dimW 6 n.

(ii) coisotropic if ω|W ⊥ = 0, or, equivalently, W⊥ ⊂W . In this case W ⊃W⊥,

hence dimW > n.

(iii) Lagrangian if it is isotropic and coisotropic, that is, W⊥ = W .

REMARK: Isotropic and coisotropic subspaces have minimal possible rank

of ω for a given dimension.

REMARK: An ω-orthogonal complement to an isotropic space is coisotropic,

and vice versa.
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Lagrangian submanifolds

DEFINITION: Let X ⊂ M be a submanifold in a symplectic manifold. It is

called Lagrangian if TxX ⊂ TxM is Lagrangian for all x ∈ X.

THEOREM: Let ξ ∈ Λ1M be a 1-form, and Γξ ⊂ T ∗M its graph, considered

as a submanifold in the total space of the cotangent bundle. Then Γξ is

Lagrangian if and only if dξ = 0.

Proof: Let σ : x 7→ (x, ξ(x)) be the standard diffeomorphism from M to Γξ.

Consider the restriction of θ to Γξ. For each u ∈ T(x,ξ(x))Γξ, the form θ takes

u to ξ(dπ(u)). This implies that σ∗θ
∣∣∣Γξ = ξ, hence σ∗ω

∣∣∣Γξ = dξ.
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Hamiltonian vector fields

DEFINITION: Let v ∈ TM be a vector field on a symplectic manifold (M,ω).

We say that v is symplectomorphic if Liev ω = 0, that is, if ω is invariant

under the corresponding diffeomorphism flow.

REMARK: From Cartan’s formula, we have Liev ω = d(ivω), hence v is

symplectomorphic if and only if the ω-dual 1-form is closed.

DEFINITION: Let v ∈ TM be a symplectomorphic vector field on a sym-

plectic manifold (M,ω), and η := ivω the corresponding 1-form. We say that

v is a Hamiltonian vector field if ivω is exact. Its Hamiltonian is a function

f such that df = ivω. The group of Hamiltonian symplectomorphisms

is generated by diffeomorphisms obtained by exponents of a time-dependent

vector field vt, which is Hamiltonian for all t ∈ [0,1].

REMARK: We have an exact sequence

0−→ R−→ C∞(M)
δ−→ Ham(M)−→ 0

If we identify Ham(M) with exact 1-forms, the differential δ : C∞(M)−→ Ham(M)

is identified with the de Rham differential.
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The flux

DEFINITION: Let Ψt be a flow of symplectomorphisms of (M,ω), with

t ∈ [0, a] and Ψ0 = IdM . Given a homology class [u] ∈ H1(M,Z), consider its

representative as a smooth circle u : S1 −→M . Then Ψt(u) takes (s ∈ S1, t ∈
[0,1]) to Ψt(u(s)), giving a smooth map Ψt(u) : S1 × [0,1]−→M . Denote

its image by Ψ[0,1](u). Define the flux of Ψt on u as
∫
Ψ[0,1](u) ω.

CLAIM: The flux of Ψt on u is independent from the choice of u in [u].

Proof: Suppose that uτ , τ ∈ [0,1] is a homotopy of u0 to u1. Consider

the map Ψ̃ : S1 × [0,1] × [0,1] mapping (s, t, τ) to Ψt(uτ). The surfaces

Ψ[0,1](u0), Ψ[0,1](u1), ∪τ∈[0,1]uτ and ∪τ∈[0,1]Ψ1(uτ) bound a solid torus im Ψ̃,

hence to prove that
∫
Ψ[0,1](u1) ω =

∫
Ψ[0,1](u2) ω, it would suffice to show

that
∫
∪τ∈[0,1]uτ

ω =
∫
∪τ∈[0,1]Ψa(uτ) ω, which is clear because Ψ1 is a symplecto-

morphism.

To pass from homotopy to homology, we notice that flux is additive on unions

of curves, hence vanishes on a commutator of π1(M), and defines a map

from π1(M)
[π1(M),π1(M)] = H1(M).
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The flux conjecture

CLAIM: Flux of a Hamiltonian diffeomorphism vanishes.

Proof: Let Ψt be a Hamiltonian symplectomorphism flow on (M,ω), with t ∈
[0,1] and Ψ−1

t
dΨt
dt = vt, where vt is a Hamiltonian vector field with Hamiltonian

Ht, and u : S1 −→M a circle. To prove that the flux vanishes it would

suffice to show that d
dt

∫
Ψ[0,t](u) ω = 0. This derivative can be computed as∫

Ψt(u)) ω(dΨt
dt , ·). However, the 1-form ω(dΨt

dt , ·) = Ψ∗t (dHt) is exact, because

vt is Hamiltonian, hence d
dt

∫
Ψ[0,t](u) ω = 0.

REMARK: The famous “flux conjecture” states that vanishing of the flux

is a necessary and sufficient condition: if Ψt, t ∈ [0,1] is a flow of symplec-

tomorphisms, and the flux of Ψ1 vanishes, then Ψ1 is a Hamiltonian

symplectomorphism. Flux conjecture was proven by Kaoru Ono using

Floer theory.

REMARK: Flux conjecture implies that Hamiltonian symplectomorphisms

is closed in the group of symplectomorphisms.
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Commutator of Hamiltonian vector fields

EXAMPLE: Let uε be a rotation of a 2-dimensional torus S1 × S1 with the

product metric which comes from unit circles and the symplectic structure

given by the volume form. Consider a rotation along the first circle with angle

ε. Then its flux through the second circle is the area of the segment bounded

by the first circle and its image, that, is 2πε. In particular, rotation of a

torus is not a Hamiltonian symplectomorphism.

THEOREM: Let X, Y be a Hamiltonian vector fields on (M,ω). Then the

commutator [X,Y ] is Hamiltonian.

Proof: Let f, g ∈ C∞M , and let Xf , Xg be the corresponding Hamiltonian

vector fields. Define the Poisson bracket as {f, g} := ω(Xf , Xg). By defi-

nition, ω(Xf , Xg) = 〈dg,Xf〉 = LieXf(g), which gives [Xf , Xg] = LieXf(Xg) =

XLieXf (g) = Xh, where h = ω(Xf , Xg). Therefore, commutator of Hamilto-

nian vector fields corresponds to the Poisson bracket on their Hamil-

tonian functions.
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Hamiltonian vector fields on Lagrangian fibrations

DEFINITION: Let (M,ω) be a symplectic manifold, and π : M −→X a
smooth submersion. It is called a Lagrangian fibration if all its fibers are
Lagrangian.

CLAIM: Let π : M −→X be a Lagrangian fibration, and H a function on
X. Then the corresponding Hamiltonian vector field v is tangent to the
fibers of π. Moreover, v is non-degenerate everywhere on a fiber π−1(x)
if and only if dH 6= 0 in x; otherwise v|π−1(x) = 0.

Proof: Let L := π−1(x). Consider ω as a map from TmM to T ∗mM . Then ω−1

takes 1-forms vanishing in TmL to vectors v ∈ TmM such that ω(v, ·) vanishes
on TmL. However, TmL⊥ = TmL because L is Lagrangian. Therefore, ω−1

takes 1-forms vanishing on TL to the vector fields tangent to L.

The forms vanishing on TL are generated by π∗Λ1X, hence the corresponding
Hamiltonian vector fields are tangent to the fibers of π.

REMARK: Let L = π−1(x) be a fiber of a Lagrangian fibration. Then ω

defines a non-degenerate pairing between TmL and TxX. This implies that
the bundle TL is trivial.
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Collections of commuting Hamiltonians

REMARK: Let π : M −→X be a Lagrangian fibration, and v1, v2 two Hamil-

tonian vector fields obtained from H1, H2 ∈ C∞X as above. Then H1, H2

commute. Indeed, the Poisson commutator {H1, H2} is expressed as ω(vt, ut),

vanishing for the vector fields tangent to fibers of π.

PROPOSITION: Let π : M −→X be a Lagrangian fibration, and L its fiber.

Then the bundle TL has a basis of globally defined commuting vector

fields. Moreover, if L is compact, it is a torus.

Proof: Let L = π−1(x) be a fiber, and H1, ..., Hn ∈ C∞X be a collection

of functions such that dH1, ..., dHn|T xX is a basis in T ∗xX. Then the corre-

sponding vector fields commute and define a basis in TL. If these vector

fields are complete (that is, can be integrated to a flow for all t ∈ R), the

manifold L is equipped with a transitive Rn-action, which gives L = Rn/Λ,

where Λ is a discrete subgroup. If L is compact, Λ is a cocompact lattice,

hence L is a torus.
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