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Lagrangian submanifolds (reminder)

DEFINITION: Let X C M be a submanifold in a symplectic manifold (M, w).
It is called Lagrangian if 1,,.X C T, M is Lagrangian for all x € X. That is to
say, dmX =1/2dim M and w|x = 0.

THEOREM: Let € € ALM be a 1-form, and I‘f C T*M its graph, considered
as a submanifold in the total space of the cotangent bundle. Then I‘g IS
Lagrangian if and only if d¢ = 0.

Proof: Let o : x> (z,£{(x)) be the standard diffeomorphism from M to I.
Consider the restriction of 6 to [',. For each u € T(, ¢(,))l¢, the form 6 takes

u to &£(dm(w)). This implies that o*6

re = £, hence U*w‘rg =d{. m
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Hamiltonian vector fields (reminder)

DEFINITION: Let v € TM be a vector field on a symplectic manifold (M, w).
We say that v is symplectomorphic if Lie,w = 0, that is, if w is invariant
under the corresponding diffeomorphism flow.

REMARK: From Cartan’s formula, we have Lieyw = d(iyw), hence v Is
symplectomorphic if and only if the w-dual 1-form is closed.

DEFINITION: Let v € TTM be a symplectomorphic vector field on a sym-
plectic manifold (M,w), and n := iyw the corresponding 1-form. We say that
v is @ Hamiltonian vector field if 1yw is exact. Its Hamiltonian is a function
f such that df = www. The group of Hamiltonian symplectomorphisms
IS generated by diffeomorphisms obtained by exponents of a time-dependent
vector field v¢, which is Hamiltonian for all ¢ € [0, 1].

REMARK: We have an exact sequence
0—R— C®(M) > Ham(M) — 0

If we identify Ham(M) with exact 1-forms, the differential § : C*°(M) — Ham(M)

IS identified with the de Rham differential.
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Hamiltonian vector fields on Lagrangian fibrations (reminder)

DEFINITION: Let (M,w) be a symplectic manifold, and = : M — X a
smooth submersion. It is called a Lagrangian fibration if all its fibers are
LLagrangian.

CLAIM: Let m: M — X be a Lagrangian fibration, and H a function on
X. Then the corresponding Hamiltonian vector field v is tangent to the
fibers of =. Moreover, v is non-degenerate everywhere on a fiber 7~ 1(z)
iIf and only if dH # 0 in z; otherwise v|77_1(:13) = 0.

Proof: Let L := n—1(z). Consider w as a map from T,,M to T M. Then w™?!
takes 1-forms vanishing in T, L to vectors v € T;, M such that w(v,-) vanishes
on T,,L. However, T,,L+ = T,,L because L is Lagrangian. Therefore, w1
takes 1-forms vanishing on T'L to the vector fields tangent to L.

The forms vanishing on T'L are generated by ~*Al X, hence the corresponding
Hamiltonian vector fields are tangent to the fibers of 7. m

REMARK: Let L = n~1(a) be a fiber of a Lagrangian fibration. Then w
defines a non-degenerate pairing between 1;,,L and T1,;X. This implies that
the bundle T'L is trivial.
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Hamiltonian isotopy of Lagrangian submanifolds

Let Lo, L1 be Lagrangian submanifolds in (M,w). We say that Ly and L are
Hamiltonian isotopic if there exists a flow W; of Hamiltonian symplectomor-
phisms, Vg =1d, t € [0,1], such that W; maps Lq to Lg.

EXAMPLE: Let w be the standard symplectic form on the total space T*M,
and 7w : T*M — M the corresponding Lagrangian projection. Consider an ex-
act 1-form n on M, and let L, C T*M be its graph, considered as a Lagrangian
submanifold. Let H € C*°M, with n = dH. The Hamiltonian vector field
v associated with H is tangent to fibers of # and acts as a translation
along each fiber. Evaluating v at a fiber 7= 1(z) = TM, we obtain that
v|eg = n|z, because w(v,-) = n. Then e¥ = n, hence the Hamiltonian flow
associated with H takes the zero section of T"M to L.
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Darboux’ theorem

THEOREM: A symplectic manifold is locally symplectomorphic to a
symplectic ball (in a neighbourhood of each point).

Proof. Step 1: It is sufficient to check that for any symplectic form wj on
R™ there exists a neighbourhood U 3 0 such that (U,w;) is symplectomorphic
to a symplectic ball.

Step 2: Choose coordinates z;,y; on R?™ in such a way that wl‘ToRgn =

wo|p r2n: Where wg = 33;dx; Ady;. The form wy ;= tw1 + (1 — t)wg is non-
degenerate in 0, because wi|lg = wglg. Choose a starlike neighborhood
U > 0 such that w; is non-degenerate for all ¢t € [0, 1].

Step 3: In U the forms w; are all non-degenerate and cohomologous. AS in
the proof of Moser’'s lemma, choose 7n; such that % = dn¢, and a vector
field v; := —wt_l(m). vanishing in O.

Substracting from n; a constant 1-form, we may assume that nt‘ToU = 0.
Then the the coefficients of the form n; grow as o(r), where r is the distance
from zero. Therefore, for U sufficiently small, the vector field W; integrates
in the whole U, and defines a diffeomorphism W between (U,wp) and
(W(U),wq1). Finally, since v+ =0 in 0, the set W(U) contains 0. m
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Weinstein neighbourhood theorem
The following result is proven in the same way as the Darboux’ theorem.

THEOREM: Let X C M be a compact Lagrangian submanifold in (M,w).
Then there exists a neighbourhood U of X C M which is symplectomor-
phic to a neighbourhood of X in X C T*X.

Proof. Step 1: Consider a smooth retraction (say, orthogonal projection)
w . U— X. Since X is Lagrangian, w induces a non-degenerate pairing
between T'X and the fiberwise tangent bundle T;U. This gives a natural
isomorphism TU|x = T*X. Using the fiberwise exponent map, we obtain a
diffeomorphism W between U and a neighbourhood of zero in TRU|x =T*X.
This diffeomorphism is compatible with the symplectic structure on
TU|x .

Step 2: Let wg be the symplectic structure on U induced from the embed-
ding U — T*X, and w; the symplectic structure induced from M. Consider
the form w; = tw1 + (1 — t)wg, where t € [0,1]. Since wg TU|xy = W1|TU|y
in a sufficiently small neighbourhood of X all w; are non-degenerate.

Shrinking U if necessarily, we may assume that this is true on all U.
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Weinstein neighbourhood theorem (2)

THEOREM: Let X C M be a compact Lagrangian submanifold in (M,w).
Then there exists a neighbourhood U of X C M which is symplectomor-
phic to a neighbourhood of X in X C T*X.

Step 3: Since U is diffeomorphic to X, and X is Lagrangian, all w; are exact.
Therefore we may choose a smooth family n; € AU of 1-forms such that
dny = wy. Denote by j: X — U the tautological embedding. Since j*(w¢) = 0,
one has d(j*n;) = 0. Replacing n; by n*(closed 1-form) if necessarily, we may
assume that j*n; is exact. Let f; € C°°X be a family of functions which satisfy
dfy = 7*n:. Replacing n; by n+ — d(7*f;), we obtain a family of 1-forms
which satisfy dn; = w¢ and j*nt = 0.

Step 4: Let v := wt_l(m), and let W; be the corresponding diffeomorphism
flow. Using Moser isotopy argument, we obtain that \Ifj;wo = w¢. However,
w; 1 maps the kernel of the restiction map AL(U)|x — AlX to TX C TU|x,
because X is Lagrangian. Therefore, v; preserves X;. Putting a metric on U,
we may decompose the tangent bundle as TU = T,U @ T,UL. Let o] be the
part of vy which lies in T;U. Since v} vanishes in X, we have |v]| = o(r), where
r is the distance to X. Using this estimate, it is easy to see that v; integrates
to a diffeomorphism flow in a sufficiently small neighbourhood of X and
maps it to another neighbourhood of X. m
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T he flux of isotopic Lagrangian submanifolds

DEFINITION: Let X C M be a compact Lagrangian submanifold, and U D X
its Weinstein neighbourhood, identified with an open subset of T*X. We say
that a sequence X,; C U of Lagrangian submanifolds converges to X in ('°°-
topology if each X; is given as a graph of a closed 1-form n;, and n; converge
to zero with all derivatives.

DEFINITION: Define the flux on the space of Lagrangian submanifolds
with C°-topology as follows. Consider two isotopic (bot not necessarily
Hamiltonian isotopic) submanifolds Lg, L1, a homology class [u] € H1(M,Z),
and homotopic circles ug C Lg an uy C Lq representing u, denote by o :
Sl x [0,1] — M the homotopy map. Then Fluxy(Lg, L1) := Jstx(0.1) ¥ w.
Let Flux(Lg, L1) be the associated map from Hq{(M,Z) to R.
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Flux: correctness of the definition

CLAIM: Suppose that w is exact. Then the map Fluxy(Lg, L) is inde-
pendent from the choice of representatives ug,u; and the homotopy
Ut

Proof: Consider a class of the cohomology of the pair H2(M, L1 U L>) repre-
sented by w, and let § : HY(L{ULy) — H?(M, LU L>) be the coboundary
map of the exact sequence

i — HY (L1 U Lo) =% H2(M, L1 U Ly) —s H2(M) —s H2(L1 U L) —» ...

Since w is exact, w = §(p), and flux is obtained as Fluxy(Lg, L1) = JugU—uq P-
u

THEOREM: Let Lg,Lq be Lagrangian submanifolds in (M,w). Suppose
that L1 is a identified with a graph of a closed 1-form n in a Weinstein neigh-
bourhood U C Lg. Then L4 is Hamiltonian isotopic to Ly if and only if
Flux(Lg, L1). Moreover, every element of Hom(H{(M,Z),R) is represented
by a flux of a Lagrangian submanifold.

The proof follows from Claim 1 on the next slide.
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Hamiltonian isotopy of Lagrangian submanifolds in 7*X

Claim 1: Let n be a closed 1-form on M, and L, C T*M be its graph,
considered as a Lagrangian submanifold. Then L, is Hamiltonian isotopic
to the zero section Ly of T*M if and only if n is exact.

Proof: We have already obtained the Hamiltonian isotopy from exactness
of n. To prove the converse implication, we need to show that L, is not
Hamiltonian isotopic to Lg when 7 is not exact. To prove this we compute
Flux(Lg, L) and show that it is non-zero unless 7 is exact.

Let W; map (x,€) to (x,€ 4+ tn), and let v be the vector field tangent to this
action, v‘(a:,f) = (0,n). This vector field acts on T*M by symplectomorphisms
because it is locally in M Hamiltonian.

To finish the proof, it suffices to show that Fluxp, (Lo, Ly) = [, n for
any [u] € HY(M, 7).

Let v be its representative in the zero section of T*M, with w : Sl s M C
T*M. The corresponding annulus A = W[O,l](u) has boundaries in v and
Wi(u). Using df = w, we obtain [yw = — [0 + [y, () 0- The first integral
vanishes, because 6 = 0 on the zero section, and the second integral is equal
to J,m # 0 because 6 = n on Ly. We proved that L, is not Hamiltonian
iIsotopic to the zero section. m
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Arnold Conjecture

REMARK: Let  be an exact form, and L, C T™M its graph, considered as
a Lagrangian submanifold in T*M. Denote by Lg the zero section of T*M.
The Lagrangian submanifolds Ly and Lg intersect transversally if and only if
n = dH, where H is a Morse function. Clearly, the number of intersection
points Lo N L, is equal to the number of critical points of a Morse
function, hence #(LoNLy) > >, b;(M).

CONJECTURE: (Arnol'd, proven by Floer)
Let L C T*M be a Lagrangian subvariety which transversally intersects the
zero section Lo C T*M. Suppose that L is Hamiltonian isotopic to Lg. Then

#(LoNL) =3, b;(M).
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Strong Arnold Conjecture

REMARK: Note that the minimal number m(M) of critical points of
Morse functions on M is, generally speaking, strictly bigger than >, b,(M).

The strong Arnold conjecture is still open.

CONJECTURE: (strong Arnol’d conjecture)

Let L C T*M be a Lagrangian subvariety which transversally intersects the
zero section Lo C T*M. Suppose that L is Hamiltonian isotopic to Lg. Then
#(LoNL) = m(M).

CONJECTURE: (Arnol’d-Givental conjecture)
Let (M,w) be a symplectic manifold, and Lq,L> Hamiltonian isotopic La-

grangian submanifolds, intersecting transversally. Then
#(L1N L) > ¥, dim H'(M,Z/2).
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