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Lagrangian submanifolds (reminder)

DEFINITION: Let X ⊂M be a submanifold in a symplectic manifold (M,ω).

It is called Lagrangian if TxX ⊂ TxM is Lagrangian for all x ∈ X. That is to

say, dimX = 1/2 dimM and ω|X = 0.

THEOREM: Let ξ ∈ Λ1M be a 1-form, and Γξ ⊂ T ∗M its graph, considered

as a submanifold in the total space of the cotangent bundle. Then Γξ is

Lagrangian if and only if dξ = 0.

Proof: Let σ : x 7→ (x, ξ(x)) be the standard diffeomorphism from M to Γξ.

Consider the restriction of θ to Γξ. For each u ∈ T(x,ξ(x))Γξ, the form θ takes

u to ξ(dπ(u)). This implies that σ∗θ
∣∣∣Γξ = ξ, hence σ∗ω

∣∣∣Γξ = dξ.
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Hamiltonian vector fields (reminder)

DEFINITION: Let v ∈ TM be a vector field on a symplectic manifold (M,ω).

We say that v is symplectomorphic if Liev ω = 0, that is, if ω is invariant

under the corresponding diffeomorphism flow.

REMARK: From Cartan’s formula, we have Liev ω = d(ivω), hence v is

symplectomorphic if and only if the ω-dual 1-form is closed.

DEFINITION: Let v ∈ TM be a symplectomorphic vector field on a sym-

plectic manifold (M,ω), and η := ivω the corresponding 1-form. We say that

v is a Hamiltonian vector field if ivω is exact. Its Hamiltonian is a function

f such that df = ivω. The group of Hamiltonian symplectomorphisms

is generated by diffeomorphisms obtained by exponents of a time-dependent

vector field vt, which is Hamiltonian for all t ∈ [0,1].

REMARK: We have an exact sequence

0−→ R−→ C∞(M)
δ−→ Ham(M)−→ 0

If we identify Ham(M) with exact 1-forms, the differential δ : C∞(M)−→ Ham(M)

is identified with the de Rham differential.
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Hamiltonian vector fields on Lagrangian fibrations (reminder)

DEFINITION: Let (M,ω) be a symplectic manifold, and π : M −→X a
smooth submersion. It is called a Lagrangian fibration if all its fibers are
Lagrangian.

CLAIM: Let π : M −→X be a Lagrangian fibration, and H a function on
X. Then the corresponding Hamiltonian vector field v is tangent to the
fibers of π. Moreover, v is non-degenerate everywhere on a fiber π−1(x)
if and only if dH 6= 0 in x; otherwise v|π−1(x) = 0.

Proof: Let L := π−1(x). Consider ω as a map from TmM to T ∗mM . Then ω−1

takes 1-forms vanishing in TmL to vectors v ∈ TmM such that ω(v, ·) vanishes
on TmL. However, TmL⊥ = TmL because L is Lagrangian. Therefore, ω−1

takes 1-forms vanishing on TL to the vector fields tangent to L.

The forms vanishing on TL are generated by π∗Λ1X, hence the corresponding
Hamiltonian vector fields are tangent to the fibers of π.

REMARK: Let L = π−1(x) be a fiber of a Lagrangian fibration. Then ω

defines a non-degenerate pairing between TmL and TxX. This implies that
the bundle TL is trivial.
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Hamiltonian isotopy of Lagrangian submanifolds

Let L0, L1 be Lagrangian submanifolds in (M,ω). We say that L0 and L1 are

Hamiltonian isotopic if there exists a flow Ψt of Hamiltonian symplectomor-

phisms, Ψ0 = Id, t ∈ [0,1], such that Ψ1 maps L1 to L0.

EXAMPLE: Let ω be the standard symplectic form on the total space T ∗M ,

and π : T ∗M −→M the corresponding Lagrangian projection. Consider an ex-

act 1-form η on M , and let Lη ⊂ T ∗M be its graph, considered as a Lagrangian

submanifold. Let H ∈ C∞M , with η = dH. The Hamiltonian vector field

v associated with H is tangent to fibers of π and acts as a translation

along each fiber. Evaluating v at a fiber π−1(x) = T ∗xM , we obtain that

v|x = η|x, because ω(v, ·) = η. Then ev = η, hence the Hamiltonian flow

associated with H takes the zero section of T ∗M to Lη.
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Darboux’ theorem

THEOREM: A symplectic manifold is locally symplectomorphic to a
symplectic ball (in a neighbourhood of each point).

Proof. Step 1: It is sufficient to check that for any symplectic form ω1 on
Rn there exists a neighbourhood U 3 0 such that (U, ω1) is symplectomorphic
to a symplectic ball.

Step 2: Choose coordinates xi, yi on R2n in such a way that ω1

∣∣∣T0R2n =

ω0

∣∣∣T0R2n , where ω0 =
∑
i dxi ∧ dyi. The form ωt := tω1 + (1 − t)ω0 is non-

degenerate in 0, because ω1|0 = ω0|0. Choose a starlike neighborhood
U 3 0 such that ωt is non-degenerate for all t ∈ [0,1].

Step 3: In U the forms ωt are all non-degenerate and cohomologous. As in
the proof of Moser’s lemma, choose ηt such that dωt

dt = dηt, and a vector
field vt := −ω−1

t (ηt), vanishing in 0.

Substracting from ηt a constant 1-form, we may assume that ηt
∣∣∣T0U = 0.

Then the the coefficients of the form ηt grow as o(r), where r is the distance
from zero. Therefore, for U sufficiently small, the vector field Ψt integrates
in the whole U, and defines a diffeomorphism Ψ between (U, ω0) and
(Ψ(U), ω1). Finally, since vt = 0 in 0, the set Ψ(U) contains 0.
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Weinstein neighbourhood theorem

The following result is proven in the same way as the Darboux’ theorem.

THEOREM: Let X ⊂ M be a compact Lagrangian submanifold in (M,ω).

Then there exists a neighbourhood U of X ⊂M which is symplectomor-

phic to a neighbourhood of X in X ⊂ T ∗X.

Proof. Step 1: Consider a smooth retraction (say, orthogonal projection)

π : U −→X. Since X is Lagrangian, ω induces a non-degenerate pairing

between TX and the fiberwise tangent bundle TπU . This gives a natural

isomorphism TπU |X ∼= T ∗X. Using the fiberwise exponent map, we obtain a

diffeomorphism Ψ between U and a neighbourhood of zero in TπU |X = T ∗X.

This diffeomorphism is compatible with the symplectic structure on

TU |X .

Step 2: Let ω0 be the symplectic structure on U induced from the embed-

ding U −→ T ∗X, and ω1 the symplectic structure induced from M . Consider

the form ωt := tω1 + (1 − t)ω0, where t ∈ [0,1]. Since ω0

∣∣∣TU |X = ω1

∣∣∣TU |X ,

in a sufficiently small neighbourhood of X all ωt are non-degenerate.

Shrinking U if necessarily, we may assume that this is true on all U .
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Weinstein neighbourhood theorem (2)

THEOREM: Let X ⊂ M be a compact Lagrangian submanifold in (M,ω).
Then there exists a neighbourhood U of X ⊂M which is symplectomor-
phic to a neighbourhood of X in X ⊂ T ∗X.

Step 3: Since U is diffeomorphic to X, and X is Lagrangian, all ωt are exact.
Therefore we may choose a smooth family ηt ∈ Λ1U of 1-forms such that
dηt = ωt. Denote by j : X −→ U the tautological embedding. Since j∗(ωt) = 0,
one has d(j∗ηt) = 0. Replacing ηt by π∗(closed 1-form) if necessarily, we may
assume that j∗ηt is exact. Let ft ∈ C∞X be a family of functions which satisfy
dft = j∗ηt. Replacing ηt by ηt − d(π∗ft), we obtain a family of 1-forms ηt
which satisfy dηt = ωt and j∗ηt = 0.

Step 4: Let vt := ω−1
t (ηt), and let Ψt be the corresponding diffeomorphism

flow. Using Moser isotopy argument, we obtain that Ψ∗tω0 = ωt. However,
ω−1
t maps the kernel of the restiction map Λ1(U)|X −→ Λ1X to TX ⊂ TU |X ,

because X is Lagrangian. Therefore, vt preserves Xt. Putting a metric on U ,
we may decompose the tangent bundle as TU = TπU ⊕ TπU⊥. Let vπt be the
part of vt which lies in TπU . Since vπt vanishes in X, we have |vπt | = o(r), where
r is the distance to X. Using this estimate, it is easy to see that vt integrates
to a diffeomorphism flow in a sufficiently small neighbourhood of X and
maps it to another neighbourhood of X.
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The flux of isotopic Lagrangian submanifolds

DEFINITION: Let X ⊂M be a compact Lagrangian submanifold, and U ⊃ X
its Weinstein neighbourhood, identified with an open subset of T ∗X. We say

that a sequence Xi ⊂ U of Lagrangian submanifolds converges to X in C∞-

topology if each Xi is given as a graph of a closed 1-form ηi, and ηi converge

to zero with all derivatives.

DEFINITION: Define the flux on the space of Lagrangian submanifolds

with C∞-topology as follows. Consider two isotopic (bot not necessarily

Hamiltonian isotopic) submanifolds L0, L1, a homology class [u] ∈ H1(M,Z),

and homotopic circles u0 ⊂ L0 an u1 ⊂ L1 representing u, denote by ψ :

S1 × [0,1]−→M the homotopy map. Then Fluxu(L0, L1) :=
∫
S1×[0,1]ψ

∗ω.

Let Flux(L0, L1) be the associated map from H1(M,Z) to R.
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Flux: correctness of the definition

CLAIM: Suppose that ω is exact. Then the map Fluxu(L0, L1) is inde-

pendent from the choice of representatives u0, u1 and the homotopy

ut.

Proof: Consider a class of the cohomology of the pair H2(M,L1 ∪L2) repre-

sented by ω, and let δ : H1(L1 ∪ L2)−→H2(M,L1 ∪ L2) be the coboundary

map of the exact sequence

...−→H1(L1 ∪ L2)
δ−→ H2(M,L1 ∪ L2)−→H2(M)−→H2(L1 ∪ L2)−→ ...

Since ω is exact, ω = δ(ρ), and flux is obtained as Fluxu(L0, L1) =
∫
u0∪−u1

ρ.

THEOREM: Let L0, L1 be Lagrangian submanifolds in (M,ω). Suppose

that L1 is a identified with a graph of a closed 1-form η in a Weinstein neigh-

bourhood U ⊂ L0. Then L1 is Hamiltonian isotopic to L0 if and only if

Flux(L0, L1). Moreover, every element of Hom(H1(M,Z),R) is represented

by a flux of a Lagrangian submanifold.

The proof follows from Claim 1 on the next slide.
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Hamiltonian isotopy of Lagrangian submanifolds in T ∗X

Claim 1: Let η be a closed 1-form on M , and Lη ⊂ T ∗M be its graph,
considered as a Lagrangian submanifold. Then Lη is Hamiltonian isotopic
to the zero section L0 of T ∗M if and only if η is exact.

Proof: We have already obtained the Hamiltonian isotopy from exactness
of η. To prove the converse implication, we need to show that Lη is not
Hamiltonian isotopic to L0 when η is not exact. To prove this we compute
Flux(L0, Lη) and show that it is non-zero unless η is exact.

Let Ψt map (x, ξ) to (x, ξ + tη), and let v be the vector field tangent to this
action, v

∣∣∣(x, ξ) = (0, η). This vector field acts on T ∗M by symplectomorphisms
because it is locally in M Hamiltonian.

To finish the proof, it suffices to show that Flux[u](L0, Lη) =
∫
[u] η for

any [u] ∈ H1(M,Z).

Let u be its representative in the zero section of T ∗M , with u : S1 −→M ⊂
T ∗M . The corresponding annulus A := Ψ[0,1](u) has boundaries in u and
Ψ1(u). Using dθ = ω, we obtain

∫
A ω = −

∫
u θ +

∫
Ψ1(u) θ. The first integral

vanishes, because θ = 0 on the zero section, and the second integral is equal
to

∫
u η 6= 0 because θ = η on Lη. We proved that Lη is not Hamiltonian

isotopic to the zero section.
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Arnold Conjecture

REMARK: Let η be an exact form, and Lη ⊂ T ∗M its graph, considered as

a Lagrangian submanifold in T ∗M . Denote by L0 the zero section of T ∗M .

The Lagrangian submanifolds Lη and L0 intersect transversally if and only if

η = dH, where H is a Morse function. Clearly, the number of intersection

points L0 ∩ Lη is equal to the number of critical points of a Morse

function, hence #(L0 ∩ Lη) >
∑
i bi(M).

CONJECTURE: (Arnol’d, proven by Floer)

Let L ⊂ T ∗M be a Lagrangian subvariety which transversally intersects the

zero section L0 ⊂ T ∗M . Suppose that L is Hamiltonian isotopic to L0. Then

#(L0 ∩ L) >
∑
i bi(M).
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Strong Arnold Conjecture

REMARK: Note that the minimal number m(M) of critical points of

Morse functions on M is, generally speaking, strictly bigger than
∑
i bi(M).

The strong Arnold conjecture is still open.

CONJECTURE: (strong Arnol’d conjecture)

Let L ⊂ T ∗M be a Lagrangian subvariety which transversally intersects the

zero section L0 ⊂ T ∗M . Suppose that L is Hamiltonian isotopic to L0. Then

#(L0 ∩ L) > m(M).

CONJECTURE: (Arnol’d-Givental conjecture)

Let (M,ω) be a symplectic manifold, and L1, L2 Hamiltonian isotopic La-

grangian submanifolds, intersecting transversally. Then

#(L1 ∩ L2) >
∑
i dimHi(M,Z/2).

13


