Symplectic geometry

lecture 6: Gromov capacity

Misha Verbitsky

HSE, room 306, 16:20,

September 22, 2021

Volume and capacity (reminder)

DEFINITION: Standard symplectic structure on \mathbb{R}^{2n} with coordinates $p_1,...,p_n,q_1,...,q_n$ is $\omega:=\sum_i dp_i\wedge dq_i$ ("Darboux coordinates").

DEFINITION: A symplectic ball of radius r is the standard ball

$$B^{2n} := \left\{ (p_1, ..., p_n, q_1, ..., q_n) \in \mathbb{R}^{2n} \mid \sum_i p_i^2 + q_i^2 < r^2 \right\}$$

equipped with the standard symplectic form $\omega := \sum_i dp_i \wedge dq_i$

DEFINITION: Symplectic volume of a symplectic manifold (M, ω) , $\dim_{\mathbb{R}} M = 2n$, is $Vol(M, \omega) := \int_M \omega^n$.

Symplectic capacity is a way to distinguish diffeomorphic symplectic manifolds of the same volume.

Gromov capacity (reminder)

DEFINITION: An (open) symplectic embedding is an open embedding of symplectic manifolds, symplectimorphic to its image.

DEFINITION: Let (M,ω) be a symplectic manifold, and r a supremum of radii of all symplectic balls of the same dimension, admitting a symplectic embedding to M. The number $\operatorname{capa}(M,\omega) := \pi r^2$ is called **Gromov symplectic** capacity of M.

THEOREM: (Ekeland-Hofer)

Let φ be an oriented diffeomorphism of symplectic manifold. Then φ is a symplectomorphism if and only if φ preserves the symplectic capacity of all open subsets.

Proof: Later today. ■

Gromov Non-Squeezing Theorem (reminder)

DEFINITION: A symplectic cylinder C_r is $\mathbb{R}^{2n} \times B_r$, where \mathbb{R}^{2n} is equipped with the standard symplectic form $\sum_i dp_i \wedge dq_i$, and B_r is the standard symplectic ball of radius r in \mathbb{R}^2 .

THEOREM: (Gromov) Symplectic capacity of a symplectic cylinder C_r is equal to πr^2 .

Proof: Later in these lectures.

REMARK: The volume is not the only obstruction to symplectic embeddings. Indeed, the volume of the symplectic cylinder is infinite.

Related: This theorem is also called "Symplectic camel theorem", or "Gromov Non-Squeezing Theorem".

Ekeland-Hofer theorem

THEOREM: (Ekeland-Hofer)

Let φ be an oriented diffeomorphism of symplectic manifold. Then φ is a symplectomorphism if and only if φ preserves the symplectic capacity of all open subsets.

Today, the Ekeland-Hofer theorem will be deduced from its linear version.

THEOREM: Ekeland-Hofer, the linear version

Let $(V = \mathbb{R}^{2n}, \omega = \sum_i dp_i \wedge dq_i)$ be a symplectic vector space, and $\varphi : V \longrightarrow V$ an oriented linear map which preserves the Gromov capacity of all ellipsoids. Then φ is a symplectomorphism.

Proof: Later in this course.

Open-compact topology

Plan of the proof:

- 0. Define the topology on the maps and subsets.
- 1. Deduce Ekeland-Hofer from its linear version, by approximating a symplectomorphism in appropriate scale with its differential.
- 2. Prove the linear version.

DEFINITION: Let $\varphi_i: M \longrightarrow N$ be a sequence of maps of metric spaces, $\varphi: M \longrightarrow N$ a map. Suppose that for each compact $K \subset M$ one has $\lim_i \sup_{x \in K} d(\varphi(x), \varphi_i(x)) = 0$. In this situation we say that $\{\varphi_i\}$ converges to φ in the compact-open topology.

EXERCISE: Let $K \subset M$ be a compact subset, $U \subset N$ an open subset, and let C(K,U) be the set of all maps $\varphi: M \longrightarrow N$ taking K to U. Prove that C(K,U) is the base of compact-open topology.

REMARK: From this exercise it follows that the compact-open topology is independent from the metric.

Hausdorff metric

DEFINITION: Let $Z \subset M$ be a metric space. An ε -neighbourhood $Z(\varepsilon)$ of Z is a union of all ε -balls centered in Z. Hausdorff metric d_H on closed subsets M is defined as follows: $d_H(X,Y)$ is infimum of all ε such that $Y \subset X(\varepsilon)$ and $X \subset Y(\varepsilon)$.

Properties of Hausdorff metric:

- 1. Let M be a metrizable topological space, and \mathcal{C} the set of compact subsets of M. Then the topology induced by the Hausdorff metric on \mathcal{C} is independent from the choice of the metric on M. (Prove it!)
- 2. Let $\varphi_i: M \longrightarrow N$ be a sequence of continuous maps, and $\Gamma_{\varphi_i} \subset M \times N$ their graphs. Suppose that M,N are compact. Then the sequence $\{\varphi_i\}$ converges to $\varphi: M \longrightarrow N$ (in the compact-open topology) if and only if Γ_{φ_i} converges to Γ_{φ} in the Hausdorff topology.

REMARK: Further on, we will consider "the Hausdorff metric" on the set of open subsets of M with compact closure. This is in fact a pseudometric: two open subsets U, V with the same closure satisfy $d_H(U, V) = 0$.

Hausdorff distance and boundary

LEMMA: Let E_1, E_2 be bounded open convex subsets in \mathbb{R}^n and $U_i := \mathbb{R}^n \backslash E_i$. Then $d_H(E_1, E_2) \geqslant d_H(U_1, U_2)$.

Proof: Suppose that $d_H(U_1,U_2)\geqslant \varepsilon$. Let $x\in U_1$ such that $x\notin U_2(\varepsilon)$. This means that $d(x,U_2)\geqslant \varepsilon$, hence $B_\varepsilon(x)\supset E_2$. By Hahn-Banach separation theorem, there exists a hyperplane H passing through x such that all E_1 lies to one side of this hyperplane. Since the distance from $B_\varepsilon(x)$ to this hyperplane is ε , and $B_\varepsilon(x)\subset E_2$, this implies that $d_H(E_1,E_2)\geqslant \varepsilon$.

LEMMA: Let E_1, E_2 be bounded open convex subsets in \mathbb{R}^n and $\partial(E_1) := \overline{E_i} \setminus E_i$ denote the boundary of E_i . Then $d_H(E_1, E_2) \geqslant d_H(\partial E_1, \partial E_2)$.

Proof: Whenever $d_H(E_1, E_2) < \varepsilon$, we also have $d_H(U_1, U_2) < \varepsilon$, where $U_i = \mathbb{R}^n \backslash E_i$, hence every point x on a boundary of E_1 satisfies $x \in E_2(\varepsilon) \cap U_2(\varepsilon) = \partial E_2(\varepsilon)$.

Hausdorff distance between convex sets and homothety

Claim 1: Let $E \subset \mathbb{R}^n$ be a convex set containing 0, and $\varepsilon > 0$. Define $\lambda U := \{x \in \mathbb{R}^{2n} \mid \lambda^{-1}x \in U\}$. Then for each $\varepsilon > 0$ there exists $\delta > 0$ such that any convex set E_1 satisfying $d_H(E, E_1) < \varepsilon$ also satisfies $(1 - \delta)E \subset E_1 \subset (1 + \delta)E$.

Proof. Step 1: Define $u(\delta): \mathbb{R}^{>0} \longrightarrow \mathbb{R}^{>0}$ as

$$u(\delta) := \inf_{x \in \partial E} \min[d(x, \partial (1 - \delta)E), d(x, \partial (1 + \delta)E)].$$

Since ∂E is compact, and $d(x,\partial(1-\delta)E)$ is 1-Lipschitz as a function of x, the number $d(x,\partial(1-\delta)E)$ reaches its minumum somewhere on ∂E , and $u(\delta)$ is positive. An infimum of 1-Lipschitz functions is 1-Lipschitz, hence u is 1-Lipschitz. Therefore, there exists δ such that $u(\delta) < \varepsilon$.

Step 2: For any convex sets $E, E_1 \subset \mathbb{R}^n$, the inequality $d_H(E, E_1) < \varepsilon$ implies $\partial E_1 \subset \partial E(\varepsilon)$, by the previous lemma. Step 1 implies that anything which lies in an ε -neighbourhood of ∂E belongs to the segment bounded by $\partial (1 - \delta)E$ and $\partial (1 - \delta)E$). This implies that $(1 - \delta)E \subset \partial E_1 \subset (1 + \delta)E$. Passing to convex hulls, we obtain $(1 - \delta)E \subset E_1 \subset (1 + \delta)E$.

Symplectic capacity and Hausdorff convergence

CLAIM: Let $U_i \subset \mathbb{R}^{2n}$ be a Cauchy sequence of bounded open subsets, containing 0, and U their limit in the Hausdorff metric. Assume that U is convex. Then $\lim_i \operatorname{capa}_G(U_i) = \operatorname{capa}_G(U)$, where $\operatorname{capa}_G(U)$ denotes the Gromov capacity.

Proof: Let $\lambda U := \{x \in \mathbb{R}^{2n} \mid \lambda^{-1}x \in U\}$. By Claim 1, for any $\varepsilon > 0$, almost all elements of the sequence U_i contain $(1-\varepsilon)U$ and are contained in $(1+\varepsilon)U$. In this situation,

$$\sqrt{1-\varepsilon}$$
 capa $_G(U) \leqslant \text{capa}_G(U_i) \leqslant \sqrt{1+\varepsilon}$ capa $_G(U)$.

Now we can deduce Ekeland-Hofer theorem from its linear version.

THEOREM: Ekeland-Hofer, the linear version

Let $(V = \mathbb{R}^{2n}, \omega = \sum_i dp_i \wedge dq_i)$ be a symplectic vector space, and $\varphi : V \longrightarrow V$ an oriented linear map which preserves the Gromov capacity of all ellipsoids. Then φ is a symplectomorphism.

Image of an ellipsoid

Recall that C^n -topology on functions $\varphi: \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is the topology of uniform convergence on compacts for the derivatives up to n-th.

Claim 2: Let $\varphi_i: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a sequence of diffeomorphisms converging to identity in C^2 -topology, and $E \subset \mathbb{R}^n$ an ellipsoid. Then for i sufficiently big, all $\varphi_i(E)$ are convex.

Proof: Let $u: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a quadratic function $u(x_1,...,x_n) = \sum x_i^2 a_i^2$ such that $E = u^{-1}([0,1[), \text{ and } u_i := (\varphi_i^{-1})(u)$. Then $\varphi_i(E) = u_i^{-1}([0,1[).$ Clearly, the C^2 -convergence of φ_i to identity implies the C^2 -convergence of u_i to u. The functions u_i are convex for i sufficiently big, because **the Hessian** Hess $(u_i - u)$ uniformly converges to zero, and Hess(u) is positive definite. On the other hand, the preimage $u_i^{-1}([0,1[)$ is convex if u_i is convex.

Ekeland-Hofer theorem deduced from its linear version

THEOREM: (Ekeland-Hofer)

Let φ be an oriented diffeomorphism of symplectic manifold. Then φ is a symplectomorphism if and only if φ preserves the symplectic capacity of all open subsets.

Proof: Locally, every symplectic manifold is symplectomorphic to a symplectic ball (Darboux). Therefore it would suffice to prove the following (weaker) form of this theorem.

THEOREM: Let $(B,\omega) \xrightarrow{\varphi} (\mathbb{R}^{2n},\omega)$ be an open embedding, mapping a symplectic ball to \mathbb{R}^{2n} with the usual symplectic structure, mapping 0 to 0, and preserving the Gromov symplectic capacities of all convex subsets. **Then** φ is a symplectomorphism.

Proof. Step 1: Let $\lambda > 1$, and $\Gamma_{\lambda} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ the homothety mapping v to λv . By conformal invariance of capa_G , the diffeomorphism $\varphi_{\lambda} : B \longrightarrow \mathbb{R}^{2n}$, defined as $\varphi_{\lambda}(v) := \Gamma_{\lambda}(\varphi(\Gamma_{\lambda}^{-1}(v)))$ preserves the Gromov symplectic capacities. If $\varphi(x) = \sum_{i=1}^{\infty} P_i(x)$ is the Taylor decomposition for φ , with P_i homogeneous polynomials of degree i, one has $\varphi_{\lambda}(x) = \sum_{i=1}^{\infty} \lambda^{i-1} P_i(x)$.

Ekeland-Hofer theorem deduced from its linear version (2)

Step 1: Let $\varphi_{\lambda}(v) := \Gamma_{\lambda}(\varphi(\Gamma_{\lambda}^{-1}(v)))$. If $\varphi(x) = \sum_{i=1}^{\infty} P_i(x)$ is the Taylor decomposition for φ , we have $\varphi_{\lambda}(x) = \sum_{i=1}^{\infty} \lambda^{i-1} P_i(x)$.

Step 2: For any diffeomorphism $(B,\omega) \xrightarrow{\varphi} (\mathbb{R}^{2n},\omega)$ and any ellipsoid $E \subset B$, there exists $\lambda_0 > 0$ such that $\varphi_{\lambda}(E)$ is convex for any $\lambda > \lambda_0$. Indeed, the second derivative of φ_{λ} tends to 0 as λ tends to infinity, hence for λ sufficiently big this map maps E to a convex set.

Step 3: In an open-compact topology, $\lim_{\lambda\to\infty}\varphi_{\lambda}$ is equal to the differential $\mathfrak{D}:=D_0\varphi$. For each ellipsoid $E\subset B$, we have $\mathfrak{D}(E)=\lim_{\lambda\to\infty}\varphi_{\lambda}(E)$ (in the Hausdorff topology). For λ sufficiently big, the set $\varphi_{\lambda}(E)$ is convex by Claim 2, and on convex subsets, the function capa_G is continuous in the Hausdorff topology. **This gives**

$$\operatorname{capa}_G(\mathfrak{D}(E)) = \lim_{\lambda \to \infty} \operatorname{capa}_G(\varphi_{\lambda}(E)) = \operatorname{capa}_G(E),$$

that is, $\mathfrak D$ preserves the symplectic capacity.

Step 4: Using the linear Ekeland-Hofer, we obtain that $\mathfrak{D} = D_0 \varphi$ is a symplectomorphism. Since the choice of 0 was arbitrary, the same argument proves that the differential of φ preserves the symplectic form everywhere where it is defined.