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Volume and capacity (reminder)

DEFINITION: Standard symplectic structure on R2n with coordinates

p1, ..., pn, q1, ..., qn is ω :=
∑
i dpi ∧ dqi (“Darboux coordinates”).

DEFINITION: A symplectic ball of radius r is the standard ball

B2n :=

(p1, ..., pn, q1, ..., qn) ∈ R2n |
∑
i

p2
i + q2

i < r2


equipped with the standard symplectic form ω :=

∑
i dpi ∧ dqi

DEFINITION: Symplectic volume of a symplectic manifold (M,ω), dimRM =

2n, is Vol(M,ω) :=
∫
M ωn.

Symplectic capacity is a way to distinguish diffeomorphic symplectic man-

ifolds of the same volume.
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Gromov capacity (reminder)

DEFINITION: An (open) symplectic embedding is an open embedding

of symplectic manifolds, symplectimorphic to its image.

DEFINITION: Let (M,ω) be a symplectic manifold, and r a supremum of

radii of all symplectic balls of the same dimension, admitting a symplectic em-

bedding to M . The number capa(M,ω) := πr2 is called Gromov symplectic

capacity of M .

THEOREM: (Ekeland-Hofer)

Let ϕ be an oriented diffeomorphism of symplectic manifold. Then ϕ is a

symplectomorphism if and only if ϕ preserves the symplectic capacity

of all open subsets.

Proof: Later today.
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Gromov Non-Squeezing Theorem (reminder)

DEFINITION: A symplectic cylinder Cr is R2n×Br, where R2n is equipped
with the standard symplectic form

∑
i dpi ∧ dqi, and Br is the standard sym-

plectic ball of radius r in R2.

THEOREM: (Gromov) Symplectic capacity of a symplectic cylinder Cr
is equal to πr2.

Proof: Later in these lectures.

REMARK: The volume is not the only obstruction to symplectic embeddings.
Indeed, the volume of the symplectic cylinder is infinite.

Related: This theorem is also called “Symplectic camel theorem”, or “Gro-
mov Non-Squeezing Theorem”.
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Ekeland-Hofer theorem

THEOREM: (Ekeland-Hofer)

Let ϕ be an oriented diffeomorphism of symplectic manifold. Then ϕ is a

symplectomorphism if and only if ϕ preserves the symplectic capacity

of all open subsets.

Today, the Ekeland-Hofer theorem will be deduced from its linear version.

THEOREM: Ekeland-Hofer, the linear version

Let (V = R2n, ω =
∑
i dpi ∧ dqi) be a symplectic vector space, and ϕ : V −→ V

an oriented linear map which preserves the Gromov capacity of all ellipsoids.

Then ϕ is a symplectomorphism.

Proof: Later in this course.
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Open-compact topology

Plan of the proof:

0. Define the topology on the maps and subsets.

1. Deduce Ekeland-Hofer from its linear version, by approximating a symplec-
tomorphism in appropriate scale with its differential.

2. Prove the linear version.

DEFINITION: Let ϕi : M −→N be a sequence of maps of metric spaces,
ϕ : M −→N a map. Suppose that for each compact K ⊂ M one has
limi supx∈K d(ϕ(x), ϕi(x)) = 0. In this situation we say that {ϕi} converges
to ϕ in the compact-open topology.

EXERCISE: Let K ⊂ M be a compact subset, U ⊂ N an open subset, and
let C(K,U) be the set of all maps ϕ : M −→N taking K to U . Prove that
C(K,U) is the base of compact-open topology.

REMARK: From this exercise it follows that the compact-open topology
is independent from the metric.
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Hausdorff metric

DEFINITION: Let Z ⊂ M be a metric space. An ε-neighbourhood Z(ε)

of Z is a union of all ε-balls centered in Z. Hausdorff metric dH on closed

subsets M is defined as follows: dH(X,Y ) is infimum of all ε such that Y ⊂
X(ε) and X ⊂ Y (ε).

Properties of Hausdorff metric:

1. Let M be a metrizable topological space, and C the set of compact subsets

of M . Then the topology induced by the Hausdorff metric on C is independent

from the choice of the metric on M . (Prove it!)

2. Let ϕi : M −→N be a sequence of continuous maps, and Γϕi ⊂M×N their

graphs. Suppose that M,N are compact. Then the sequence {ϕi} converges

to ϕ : M −→N (in the compact-open topology) if and only if Γϕi converges

to Γϕ in the Hausdorff topology.

REMARK: Further on, we will consider “the Hausdorff metric” on the set of

open subsets of M with compact closure. This is in fact a pseudometric:

two open subsets U, V with the same closure satisfy dH(U, V ) = 0.
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Hausdorff distance and boundary

LEMMA: Let E1, E2 be bounded open convex subsets in Rn and Ui := Rn\Ei.
Then dH(E1, E2) > dH(U1, U2).

Proof: Suppose that dH(U1, U2) > ε. Let x ∈ U1 such that x /∈ U2(ε). This

means that d(x, U2) > ε, hence Bε(x) ⊃ E2. By Hahn-Banach separation

theorem, there exists a hyperplane H passing through x such that all E1

lies to one side of this hyperplane. Since the distance from Bε(x) to this

hyperplane is ε, and Bε(x) ⊂ E2, this implies that dH(E1, E2) > ε.

LEMMA: Let E1, E2 be bounded open convex subsets in Rn and ∂(E1) :=

Ei\Ei denote the boundary of Ei. Then dH(E1, E2) > dH(∂E1, ∂E2).

Proof: Whenever dH(E1, E2) < ε, we also have dH(U1, U2) < ε, where Ui =

Rn\Ei, hence every point x on a boundary of E1 satisfies x ∈ E2(ε) ∩ U2(ε) =

∂E2(ε).
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Hausdorff distance between convex sets and homothety

Claim 1: Let E ⊂ Rn be a convex set containing 0, and ε > 0. Define

λU := {x ∈ R2n | λ−1x ∈ U}. Then for each ε > 0 there exists δ > 0 such

that any convex set E1 satisfying dH(E,E1) < ε also satisfies (1− δ)E ⊂
E1 ⊂ (1 + δ)E.

Proof. Step 1: Define u(δ) : R>0 −→ R>0 as

u(δ) := inf
x∈∂E

min[d(x, ∂(1− δ)E), d(x, ∂(1 + δ)E)].

Since ∂E is compact, and d(x, ∂(1 − δ)E) is 1-Lipschitz as a function of x,

the number d(x, ∂(1− δ)E) reaches its minumum somewhere on ∂E, and u(δ)

is positive. An infimum of 1-Lipschitz functions is 1-Lipschitz, hence u is

1-Lipschitz. Therefore, there exists δ such that u(δ) < ε.

Step 2: For any convex sets E,E1 ⊂ Rn, the inequality dH(E,E1) < ε implies

∂E1 ⊂ ∂E(ε), by the previous lemma. Step 1 implies that anything which lies

in an ε-neighbourhood of ∂E belongs to the segment bounded by ∂(1 − δ)E
and ∂(1 − δ)E). This implies that (1 − δ)E ⊂ ∂E1 ⊂ (1 + δ)E. Passing to

convex hulls, we obtain (1− δ)E ⊂ E1 ⊂ (1 + δ)E.
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Symplectic capacity and Hausdorff convergence

CLAIM: Let Ui ⊂ R2n be a Cauchy sequence of bounded open subsets,

containing 0, and U their limit in the Hausdorff metric. Assume that U is

convex. Then limi capaG(Ui) = capaG(U), where capaG(U) denotes the Gromov

capacity.

Proof: Let λU := {x ∈ R2n | λ−1x ∈ U}. By Claim 1, for any ε > 0, almost

all elements of the sequence Ui contain (1−ε)U and are contained in (1+ε)U .

In this situation,
√

1− εcapaG(U) 6 capaG(Ui) 6
√

1 + εcapaG(U).

Now we can deduce Ekeland-Hofer theorem from its linear version.

THEOREM: Ekeland-Hofer, the linear version

Let (V = R2n, ω =
∑
i dpi ∧ dqi) be a symplectic vector space, and ϕ : V −→ V

an oriented linear map which preserves the Gromov capacity of all ellipsoids.

Then ϕ is a symplectomorphism.
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Image of an ellipsoid

Recall that Cn-topology on functions ϕ : Rn −→ Rk is the topology of uniform

convergence on compacts for the derivatives up to n-th.

Claim 2: Let ϕi : Rn −→ Rn be a sequence of diffeomorphisms converging

to identity in C2-topology, and E ⊂ Rn an ellipsoid. Then for i sufficiently

big, all ϕi(E) are convex.

Proof: Let u : Rn −→ R be a quadratic function u(x1, ..., xn) =
∑
x2
i a

2
i such

that E = u−1([0,1[), and ui := (ϕ−1
i )(u). Then ϕi(E) = u−1

i ([0,1[). Clearly,

the C2-convergence of ϕi to identity implies the C2-convergence of ui to

u. The functions ui are convex for i sufficiently big, because the Hessian

Hess(ui−u) uniformly converges to zero, and Hess(u) is positive definite.

On the other hand, the preimage u−1
i ([0,1[) is convex if ui is convex.
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Ekeland-Hofer theorem deduced from its linear version

THEOREM: (Ekeland-Hofer)

Let ϕ be an oriented diffeomorphism of symplectic manifold. Then ϕ is a

symplectomorphism if and only if ϕ preserves the symplectic capacity

of all open subsets.

Proof: Locally, every symplectic manifold is symplectomorphic to a symplectic

ball (Darboux). Therefore it would suffice to prove the following (weaker)

form of this theorem.

THEOREM: Let (B,ω)
ϕ−→ (R2n, ω) be an open embedding, mapping a

symplectic ball to R2n with the usual symplectic structure, mapping 0 to 0,

and preserving the Gromov symplectic capacities of all convex subsets. Then

ϕ is a symplectomorphism.

Proof. Step 1: Let λ > 1, and Γλ : Rn −→ Rn the homothety mapping v

to λv. By conformal invariance of capaG, the diffeomorphism ϕλ : B −→ R2n,

defined as ϕλ(v) := Γλ(ϕ(Γ−1
λ (v))) preserves the Gromov symplectic capac-

ities. If ϕ(x) =
∑∞
i=1 Pi(x) is the Taylor decomposition for ϕ, with Pi

homogeneous polynomials of degree i, one has ϕλ(x) =
∑∞
i=1 λ

i−1Pi(x).
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Ekeland-Hofer theorem deduced from its linear version (2)

Step 1: Let ϕλ(v) := Γλ(ϕ(Γ−1
λ (v))). If ϕ(x) =

∑∞
i=1 Pi(x) is the Taylor

decomposition for ϕ, we have ϕλ(x) =
∑∞
i=1 λ

i−1Pi(x).

Step 2: For any diffeomorphism (B,ω)
ϕ−→ (R2n, ω) and any ellipsoid E ⊂ B,

there exists λ0 > 0 such that ϕλ(E) is convex for any λ > λ0. Indeed,
the second derivative of ϕλ tends to 0 as λ tends to infinity, hence for λ
sufficiently big this map maps E to a convex set.

Step 3: In an open-compact topology, lim
λ→∞

ϕλ is equal to the differential

D := D0ϕ. For each ellipsoid E ⊂ B, we have D(E) = lim
λ→∞

ϕλ(E) (in the

Hausdorff topology). For λ sufficiently big, the set ϕλ(E) is convex by Claim
2, and on convex subsets, the function capaG is continuous in the Hausdorff
topology. This gives

capaG(D(E)) = lim
λ→∞

capaG(ϕλ(E)) = capaG(E),

that is, D preserves the symplectic capacity.

Step 4: Using the linear Ekeland-Hofer, we obtain that D = D0ϕ is a sym-
plectomorphism. Since the choice of 0 was arbitrary, the same argument
proves that the differential of ϕ preserves the symplectic form every-
where where it is defined.
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