Symplectic geometry, lecture 7 M. Verbitsky

Symplectic geometry

lecture 7: Ekeland-Hofer theorem

Misha Verbitsky

HSE, room 306, 16:20,

September 25, 2021



Symplectic geometry, lecture 7 M. Verbitsky

Gromov capacity (reminder)

DEFINITION: An (open) symplectic embedding is an open embedding
of symplectic manifolds, symplectimorphic to its image.

DEFINITION: Let (M,w) be a symplectic manifold, and » a supremum of
radii of all symplectic balls of the same dimension, admitting a symplectic em-
bedding to M. The number capa(M,w) := nr? is called Gromov symplectic
capacity of M.

THEOREM: (Ekeland-Hofer)

Let © be an oriented diffeomorphism of symplectic manifold. Then ¢ is a
symplectomorphism if and only if ¢ preserves the symplectic capacity
of all open subsets.

Proof:. Later today. m
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Ekeland-Hofer theorem (reminder)

THEOREM: (Ekeland-Hofer)

Let © be an oriented diffeomorphism of symplectic manifold. Then ¢ is a
symplectomorphism if and only if ¢ preserves the symplectic capacity
of all open subsets.

Today, the Ekeland-Hofer theorem will be deduced from its linear version.
THEOREM: Ekeland-Hofer, the linear version

Let (V =R?", w =Y. dp; Adg;) be a symplectic vector space, and ¢ : V —V
an oriented linear map which preserves the Gromov capacity of all ellipsoids.

Then ¢ is a symplectomorphism.

Proof: Next lecture. =
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Hausdorff metric (reminder)

DEFINITION: Let Z C M be a metric space. An e-neighbourhood Z(¢)
of Z is a union of all e-balls centered in Z. Hausdorff metric dy on closed
subsets M is defined as follows: dgy(X,Y) is infimum of all e such that Y C
X(e) and X C Y (e).

Properties of Hausdorff metric:

1. Let M be a metrizable topological space, and C the set of compact subsets
of M. Then the topology induced by the Hausdorff metric on C is independent
from the choice of the metric on M. (Prove it!)

2. Let p; : M — N be a sequence of continuous maps, and I',, C M X N their
graphs. Suppose that M, N are compact. Then the sequence {p;} converges
to ¢ : M — N (in the compact-open topology) if and only if [',, converges
to I, In the Hausdorff topology.

REMARK: Further on, we will consider *“the Hausdorff metric”’ on the set of
open subsets of M with compact closure. This is in fact a pseudometric:

two open subsets U,V with the same closure satisfy dy (U, V) = 0.
4
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Hausdorff distance and boundary

LEMMA: Let E4, E> be bounded open convex subsets in R™ and U; := R"\ E;.
Then dy(E1, E) > dg(Uy,Us).

Proof: Suppose that dg(Uq1,Us) > e. Let « € Uy such that « € Us(e). This
means that d(x,U>) > ¢, hence B:(xz) D E»>. By Hahn-Banach separation
theorem, there exists a hyperplane H passing through x such that all Eq lies
to one side of this hyperplane. Since the distance from the farthest point of
Be(x) to this hyperplane is €, and B:(x) C E», this implies that dy(F1, E>) > €.
|

LEMMA: Let Eq, E»> be bounded open convex subsets in R™ and 0(FEp) =
E;\E; denote the boundary of E;. Then dy(FE1,E>) > dy(0E1,0E>).

Proof: Whenever dy(FE1,E>) < g, we also have dy(U1,Us) < &, where U;
R™\ E;, hence every point x on a boundary of E; satisfies z € Ex(e) NUx(e)
8E2(€). |
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Hausdorff distance between convex sets and homothety

Claim 1: Let E C R™ be a convex set containing 0, and € > 0. Define
AU = {z € R?" | X~ lz ¢ U}. Then for each ¢ > 0 there exists § > 0 such
that any convex E; satisfying dy(FE, E1) < ¢ also satisfies (1 —-6§)FE C 1 C
(14 9)E.

Proof. Step 1: Define u(8) : R°9 — R>0 as
w(6) := inf min[d(z,0(1 —0)F),d(x,0(1 + §)E)].
rEOK
Since OF is compact, and d(xz,0(1 — 6)FE) is 1-Lipschitz as a function of =z,
the number d(x,0(1 —§)E) reaches its minumum somewhere on dF, and u(J)
is positive. An infimum of 1-Lipschitz functions is 1-Lipschitz, hence u is
1-Lipschitz. Therefore, there exists § such that u(4) < e.

Step 2: The inequality dy(F, E1) < € implies 0FE1 C dE(e), by the previous
lemma. Step 1 implies that anything which lies in an s-neighbourhood of
OF belongs to the segment bounded by 9(1 —§)E and 9(1 —§)E). This
implies that (1 —6)FE C OF1 C (1 4+ 6§)E. Passing to convex hulls, we obtain
(1-0)FCFEF{1C(14+d6)F. =



Symplectic geometry, lecture 7 M. Verbitsky

Symplectic capacity and Hausdorff convergence (remider)

CLAIM: Let U; C R2" be a Cauchy sequence of bounded open subsets,
containing O, and U their limit in the Hausdorff metric. Assume that U is
convex. Then lim;capan(U;) = capaz(U), where capa(U) denotes the Gromov
capacity.

Proof: Let AU := {z € R?® | A lx € U}. By Claim 1, for any £ > 0, almost
all elements of the sequence U; contain (1—¢)U and are contained in (14¢)U.
In this situation,

V1 — ecapa(U) < capa(U;) < v1 4 ecapag(U).

Now we can deduce Ekeland-Hofer theorem from its linear version.

THEOREM: Ekeland-Hofer, the linear version

Let (V =R?", w =Y. dp; Adg;) be a symplectic vector space, and ¢ : V —V
an oriented linear map which preserves the Gromov capacity of all ellipsoids.
Then ¢ is a symplectomorphism.



Symplectic geometry, lecture 7 M. Verbitsky

Image of an ellipsoid

Recall that C"-topology on functions ¢ : R" — RF is the topology of uniform
convergence on compacts for the derivatives up to n-th.

Claim 2: Let ¢; : R®" — R" be a sequence of diffeomorphisms converging
to identity in CQ—topology, and E C R"™ an ellipsoid. Then for : sufficiently
big, all ¢,(F) are convex.

Proof: Let u: R®™ — R be a quadratic function u(z1,...,zn) = > x2a? such
that E = »~1([0,1]), and u; := (p; )(u). Then ¢;(E) = u; *([0,1[). Clearly,
the C2-convergence of ¢; to identity implies the C?-convergence of u; to
u. The functions u; are convex for ¢ sufficiently big, because the Hessian
Hess(u; —u) uniformly converges to zero, and Hess(u) is positive definite.
On the other hand, the preimage u,;l([o, 1[) is convex if u; is convex. =
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Ekeland-Hofer theorem deduced from its linear version (reminder)

THEOREM: (Ekeland-Hofer)

Let © be an oriented diffeomorphism of symplectic manifold. Then ¢ is a
symplectomorphism if and only if ¢ preserves the symplectic capacity
of all open subsets.

Proof: Locally, every symplectic manifold is symplectomorphic to a symplectic
ball (Darboux). Therefore it would suffice to prove the following (weaker)
form of this theorem.

THEOREM: Let (B,w) LN (R?™ w) be an open embedding, mapping a
symplectic ball to R?" with the usual symplectic structure, mapping 0 to O,
and preserving the Gromov symplectic capacities of all convex subsets. Then
@ IS a symplectomorphism.

Proof. Step 1: Let A > 1, and Iy, : R" — R"™ the homothety mapping v

to \v. By conformal invariance of capag, the diffeomorphism ¢, : B — R?",

defined as ¢)(v) = |_>\(g0(|_;1(v))) preserves the Gromov symplectic capac-

ities. If p(x) = >.°2, Pi(z) is the Taylor decomposition for ¢, with B,

homogeneous polynomials of degree i, one has ¢)(x) = > 72 AN—1p(x).
9
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Ekeland-Hofer theorem deduced from its linear version (2)

Step 1: Let ¢p)(v) = I_A(gp(r;\l(v))). If o(x) = 3721 P;(x) is the Taylor
decomposition for ¢, we have ¢y (z) = 30 A= 1P(=).

Step 2: For any diffeomorphism (B,w) —= (R2", w) and any ellipsoid E C B,
there exists \g > 0 such that ¢,(F) is convex for any )\ > )\g. Indeed,
the second derivative of ¢, tends to 0 as A tends to infinity, hence for A\
sufficiently big this map maps E to a convex set.

Step 3: In an open-compact topology, /\Iim @y IS equal to the differential
— 00
9 := Dgp. For each ellipsoid E C B, we have D(F) = )\Iim o (E) (in the
—00

Hausdorff topology). For X sufficiently big, the set ¢, (FE) is convex by Claim
2, and on convex subsets, the function capag is continuous in the Hausdorff
topology. This gives

capag(D(F)) = Jim. capag(pr(F)) = capag(F),

that is, ® preserves the symplectic capacity.

Step 4: Using the linear Ekeland-Hofer, we obtain that ® = Dge is a sym-
plectomorphism. Since the choice of O was arbitrary, the same argument
proves that the differential of ¢ preserves the symplectic form every-
where where it is defined. m
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