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Almost complex structures (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

DEFINITION: Let (M,ω) be a symplectic manifold, and I an almost complex
structure. We say that I is compatible with the symplectic structure if
g(x, y) := ω(Ix, y) for some Riemannian form g.

THEOREM 1: Let (M,ω) be a manifold equipped with a non-degenerate
skew-symmetric 2-form. Then the space C of almost complex structures
compatible with ω is contractible.
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Calibrations (reminder)

DEFINITION: (Harvey-Lawson, 1982)

Let W ⊂ V be a p-dimensional subspace in a Euclidean space, and Vol(W )

denote the Riemannian volume form of W ⊂ V , defined up to a sign. For any

p-form η ∈ ΛpV , let comass comass(η) be the maximum of
η(v1,v2,...,vp)
|v1||v2|...|vp|

, for all

p-tuples (v1, ..., vp) of vectors in V and face be the set of planes W ⊂ V where
η

Vol(W ) = comass(η).

DEFINITION: A precalibration on a Riemannian manifold is a differential

form with comass 6 1 everywhere.

DEFINITION: A calibration is a precalibration which is closed.

DEFINITION: Let η be a k-dimensional precalibration on a Riemannian

manifold, and Z ⊂M a k-dimensional subvariety (we always assume that the

Hausdorff dimension of the set of singular points of Z is 6 k − 2, because in

this case a compactly supported differential form can be integrated over Z).

We say that Z is calibrated by η if at any smooth point z ∈ Z, the space

TzZ is a face of the precalibration η.
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Calibrations and minimal submanifolds (reminder)

REMARK: Clearly, for any precalibration η, one has

Vol(Z) >
∫
Z
η, (∗)

where Vol(Z) denotes the Riemannian volume of a compact Z, and the equal-

ity happens iff Z is calibrated by η. If, in addition, η is closed, the number∫
Z η is a cohomological invariant. Then, the inequality (*) implies that Z

minimizes the Riemannian volume in its homology class.

DEFINITION: A subvariety Z is called minimal if for any sufficiently small

deformation Z′ of Z in class C1, one has Vol(Z′) > Vol(Z).

REMARK: Calibrated subvarieties are obviously minimal.
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Pseudoholomorphic curves (reminder)

DEFINITION: Let (M,J) be an almost complex manifold, (Σ, I) a Riemann

surface, and ϕ : Σ−→M an I-holomorphic map, that is, a smooth map with

Dϕ(Ix) = J(Dϕ(x)). Then ϕ(Σ) is called a pseudo-holomorphic curve, or

a J-holomorphic curve.

THEOREM: (Wirtenger’s inequality):

Let (M, I, ω) be an almost Kähler manifold. Then 1
2ω is a calibration which

calibrates pseudo-holomorphic curves.

Proof: Let gS be the Riemannian volume form on S, and x, y ∈ TsS be

orthogonal vectors of length 1. Then gS(x, y) = 1 and ω(x, y) = g(x, Iy) 6 1,

and the equality is realized if and only if x = Iy, by Cauchy-Bunyakovsky-

Schwarz inequality.

COROLLARY: Pseudoholomorphic curves are minimal.
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Symplectic capacity and the pseudoholomorphic curves

THEOREM 2: Let M = CP1 × T2n be the product of CP1 and a torus,

equipped with the standard symplectic structure, and J a compatible al-

most complex structure. Then for any x ∈ M there exists a pseudo-

holomorphic curve S homologous to CP1 × {m} and passing through

x.

This theorem implies Gromov’s non-squeezing theorem.

THEOREM: (Gromov) Symplectic capacity of a symplectic cylinder

Cyl1 is equal to π.
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Proof of Gromov’s theorem

THEOREM: (Gromov)

Symplectic capacity of a symplectic cylinder Cyl1 is equal to π.

Proof. Step 1: Let f1 : Br −→ Cyl1 be a symplectic embedding, r > 1,

and I the usual (flat) almost complex structure on Br ⊂ Cn+1. Consider the

manifold M = CP1 × T2n, equipped with the standard symplectic structure,

and let f2 : Cyl1 −→ CP1×T2n be a symplectic map taking Cyl1 = ∆×R2n to

CP1×T2n applying the Z2n quotient on the second argument and the natural

symplectomorphism ∆ −̃→ CP1\∞ on the first argument.

Step 2: Choose the lattice Z2n ⊂ R2n in such a way that its fundamental

domain contains f1(Br). Then the composition f1 ◦ f2 gives a symplectic

embedding Br −→M = CP1 × T2n.

We obtained that Gromov’s non-squeezing theorem is deduced from the

following result.
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Proof of Gromov’s theorem (2)

THEOREM: Let M = CP1× T2n be equipped with the standard symplectic

form, with the symplectic volume of CP1 equal to π, and ϕ : Br −→M a

symplectic embedding. Then r 6 1.

Proof. Step 1: Choose a flat complex structure and the flat Hermitian metric

on Br. Denote by g0 the corresponding Hermitian metric on ϕ(Br). Then g0

can be extended to a Riemannian metric g1 on M such that g0 = g1 in a ball

ϕ(Br−ε), for some ε such that r − ε > 1. The operation g1(·, ·)−→ g1(B1·, ·)
constructed in the proof of Theorem 1, gives a metric g compatible with the

symplectic structure on M and coinciding with g0 in a ball ϕ(Br−ε). Replacing

Br by Br−ε, we can add to the assumptions of the theorem the following

assumption.

There exists a compatible almost complex structure such that uts

restriction to ϕ(Br) is equal to the standard complex structure on Br ⊂
Cn+1.
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Proof of Gromov’s theorem (3)

THEOREM: Let M = CP1 × T2n equipped with the standard symplectic
form, with the symplectic volume of CP1 equal to π, and ϕ : Br −→M a
symplectic embedding. Assume that there exists a compatible almost
complex structure such that its restriction to ϕ(Br) is equal to the
standard complex structure on Br ⊂ Cn+1. Then r 6 1.

Step 2: Let x ∈ M be the image of the center of Br, and S ⊂ M the
pseudo-holomorphic curve which passes through x by Theorem 2. Then
π =

∫
S ωM >

∫
ϕ−1(S) ω, where ωM is the symplectic form on M , and ω the

symplectic form on Br. Since S is pseudo-holomorphic,
∫
ϕ−1(S) ωBr is the

Riemannian volume of its intersection with ϕ(Br).

Step 3: We obtained a complex curve D := ϕ−1(S) passing through 0 in a
ball Br with flat Riemannian metric and the standard complex structure, with
the Riemannian volume Vol(D) 6 π. Applying the homothety, we obtain a
properly embedded complex disk in the ball B of radius 1, passing through
0 and with area r−1π. For any r > 1, this is impossible, as follows from
the following statement, proven later today.

PROPOSITION: Let D ⊂ B1 be a closed complex disk in a unit ball B1 ⊂ Cn,
with 0 ∈ D. Then Vol(D) > π.
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Monotonicity formula (1)

PROPOSITION: Let D ⊂ B1 be a complex curve (that is, a closed 1-

dimensional complex subvariety) in a unit ball B1 ⊂ Cn, with 0 ∈ D. Then

Vol(D) > π.

We deduce it from the monotonicity formula.

LEMMA: (monotonicity formula)

Let (B, η) be a unit ball B1(0) ⊂ Rn equipped with a calibration η ∈ ΛkB1 with

constant coefficients, and the standard flat metric, and ∆ ⊂ B a calibrated

k-dimensional submanifold passing through 0. We assume that ∆ is immersed

to B with its boundary in such a way that ∂∆ is mapped to ∂B. Let ∆t be

the intersection of ∆ with a ball Bt(0) of radius t. Then the function

t−→ t−k Vol(∆t) is non-decreasing.

Clearly, lim
t→0

Vol(∆t) = πt2 (on a very small scale, any smooth disk is flat).

Then the monotonicity lemma gives Vol ∆ > π.
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Monotonicity formula (2)

LEMMA: (monotonicity formula)

Let (B, η) be a unit ball equipped equipped with a calibration η ∈ ΛkB1

with constant coefficients, and ∆ ⊂ B a calibrated k-dimensional submanifold

passing through 0. Let ∆t be the intersection of ∆ with a ball Bt(0) of

radius t. Then the function t−→ t−k Vol(∆t) is non-decreasing.

Proof. Step 1: Let C(∂∆) ⊂ B be the cone obtained as a union of all

intervals connecting 0 and points of ∂∆ ⊂ ∂B. Then

VolC(∂∆) >
∫
C(∂∆)

η =
∫

∆
η = Vol ∆.

The first equality follows from the Stokes’ theorem, because ∂∆ = ∂C(∂∆),

and the first inequality holds because η is a calibration.

Step 2: The formula for the cone volume gives VolC(∂∆) = 1
k l(∂∆), where

l(∂∆) is the area of the boundary ∂∆. This implies Vol ∆ 6 1
k l(∂∆).
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Monotonicity formula (3)

LEMMA: (monotonicity formula)

Let (B, η) be a unit ball equipped equipped with a calibration η ∈ ΛkB1

with constant coefficients, and ∆ ⊂ B a calibrated k-dimensional submanifold
passing through 0. Let ∆t be the intersection of ∆ with a ball Bt(0) of

radius t. Then the function t−→ t−k Vol(∆t) is non-decreasing.

Step 2: We have obtained Vol ∆ 6 1
k l(∂∆).

Step 3: The same argument applied to ∆t gives t−k Vol ∆t 6 1
ktk−1l(∂∆t).

(homothety maps the k-dimensional Riemann volume µ to tkµ). On the other
hand, d

dt Vol ∆t > l(∂∆t), because the volume of the strip of ∆ between ∂∆t

and ∂∆t+ε is bounded by εl(∂∆t+ε). This gives

Vol ∆t 6
t

k
l(∂∆t) 6

t

k

d

dt
Vol ∆t.

Step 4: Let f(t) := Vol ∆t. The last formula of Step 3 gives f(t) 6 t
kf
′(t),

hence
d

dt
t−kf(t) = t−kf ′(t)− kt−k−1f(t) > t−kf ′(t)− t−kf ′(t) = 0.
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