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Almost complex structures (reminder)

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies 12 = —Idp,,.

The eigenvalues of this operator are =+/—1 . The corresponding eigenvalue
decomposition is denoted TM = T%1M ¢ T1.0(M1).

DEFINITION: An almost complex structure is integrable if VX,Y & 71,00
one has [X,Y] € T1OM. In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
T his definition is equivalent to the usual one.

DEFINITION: Let (M,w) be a symplectic manifold, and I an almost complex
structure. We say that I is compatible with the symplectic structure if
g(z,y) ;= w(lz,y) for some Riemannian form g.

THEOREM 1: Let (M,w) be a manifold equipped with a non-degenerate
skew-symmetric 2-form. Then the space C of almost complex structures

compatible with w is contractible.
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Calibrations (reminder)

DEFINITION: (Harvey-Lawson, 1982)

Let W C V be a p-dimensional subspace in a Euclidean space, and Vol(W)
denote the Riemannian volume form of W C V, defined up to a sign. For any
p-form n € APV, let comass comass(n) be the maximum of 2WL:U2:%) gop o)

lva|lval...|vp|
p-tuples (v1,...,vp) Of vectors in V and face be the set of planes W C V where

W = comass(n).
DEFINITION: A precalibration on a Riemannian manifold is a differential
form with comass < 1 everywhere.

DEFINITION: A calibration is a precalibration which is closed.

DEFINITION: Let n be a k-dimensional precalibration on a Riemannian
manifold, and Z C M a k-dimensional subvariety (we always assume that the
Hausdorff dimension of the set of singular points of Z is < k — 2, because in
this case a compactly supported differential form can be integrated over 7).
We say that Z is calibrated by 7 if at any smooth point z € Z, the space
1.7 is a face of the precalibration n.
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Calibrations and minimal submanifolds (reminder)

REMARK: Clearly, for any precalibration n, one has

vol(2) > [ m. ()

where Vol(Z) denotes the Riemannian volume of a compact Z, and the equal-
ity happens iff Z is calibrated by n. If, in addition, n is closed, the number
[z mn is a cohomological invariant. Then, the inequality (*) implies that 7
minimizes the Riemannian volume in its homology class.

DEFINITION: A subvariety Z is called minimal if for any sufficiently small
deformation Z’ of Z in class C1, one has Vol(Z') > Vol(Z).

REMARK: Calibrated subvarieties are obviously minimal.



Symplectic geometry, lecture 10 M. Verbitsky

Pseudoholomorphic curves (reminder)

DEFINITION: Let (M, J) be an almost complex manifold, (3,7) a Riemann
surface, and ¢ : > — M an I-holomorphic map, that is, a smooth map with
Do(Ix) = J(Dp(x)). Then o(X) is called a pseudo-holomorphic curve, or
a J-holomorphic curve.

THEOREM: (Wirtenger’s inequality):
Let (M, I,w) be an almost Kahler manifold. Then %w Is a calibration which
calibrates pseudo-holomorphic curves.

Proof: Let gg¢ be the Riemannian volume form on S, and z,y € TsS be
orthogonal vectors of length 1. Then gg(x,y) =1 and w(z,y) = g(x,Iy) < 1,
and the equality is realized if and only if x = Iy, by Cauchy-Bunyakovsky-
Schwarz inequality. m

COROLLARY: Pseudoholomorphic curves are minimal.
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Svymplectic capacity and the pseudoholomorphic curves

THEOREM 2: Let M = CP! x 72" pbe the product of CP! and a torus,
equipped with the standard symplectic structure, and J a compatible al-
most complex structure. Then for any = € M there exists a pseudo-
holomorphic curve S homologous to cPl x {m} and passing through

L.
This theorem implies Gromov’s non-squeezing theorem.

THEOREM: (Gromov) Symplectic capacity of a symplectic cylinder
Cyly is equal to .
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Proof of Gromov’s theorem

THEOREM: (Gromov)
Symplectic capacity of a symplectic cylinder Cyl; is equal to .

Proof. Step 1: Let f1 : Br — Cyly be a symplectic embedding, r > 1,
and I the usual (flat) almost complex structure on B, c C**t1,  Consider the
manifold M = CPl x 72", equipped with the standard symplectic structure,
and let fo: Cyl; — CP1 xT?" pe a symplectic map taking Cyl; = A xR2" to
CPl x 72" applying the Z2™ quotient on the second argument and the natural
symplectomorphism A —s CP1\co on the first argument.

Step 2: Choose the lattice Z2™ ¢ R2" in such a way that its fundamental
domain contains f1(Byr). Then the composition fi o fo gives a symplectic
embedding B, —s M = CPl x 1727

We obtained that Gromov’s non-squeezing theorem is deduced from the
following result.
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Proof of Gromov’s theorem (2)

THEOREM: Let M = CP! x T2" pe equipped with the standard symplectic
form, with the symplectic volume of CP! equal to w, and ¢ : Br — M a
symplectic embedding. Then r < 1.

Proof. Step 1: Choose a flat complex structure and the flat Hermitian metric
on By. Denote by gg the corresponding Hermitian metric on ¢o(By). Then gg
can be extended to a Riemannian metric g; on M such that gg = g7 in a ball
o(Br_¢), for some ¢ such that r — e > 1. The operation ¢g1(-,-) — g1(B1-, ")
constructed in the proof of Theorem 1, gives a metric g compatible with the
symplectic structure on M and coinciding with gg in a ball p(B,_.). Replacing
By by B,._., we can add to the assumptions of the theorem the following
assumption.

There exists a compatible almost complex structure such that uts

restriction to ¢(B,) is equal to the standard complex structure on B, C
crri,
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Proof of Gromov’s theorem (3)

THEOREM: Let M = CP! x T?" equipped with the standard symplectic
form, with the symplectic volume of CPl equal to =, and 0. Br— M a
symplectic embedding. Assume that there exists a compatible almost
complex structure such that its restriction to ¢(B,) is equal to the
standard complex structure on B, c C*t1, Then r < 1.

Step 2: Let x € M be the image of the center of B, and S C M the
pseudo-holomorphic curve which passes through x by Theorem 2. Then
T = [qwpr = fgo_l(S)w' where wj; is the symplectic form on M, and w the
symplectic form on B,. Since S is pseudo-holomorphic, f¢_1(5) wpg, 1s the
Riemannian volume of its intersection with ¢(B;).

Step 3: We obtained a complex curve D = cp_l(S) passing through O in a
pball B with flat Riemannian metric and the standard complex structure, with
the Riemannian volume Vol(D) < w. Applying the homothety, we obtain a
properly embedded complex disk in the ball B of radius 1, passing through
0 and with area r—1x. For any r > 1, this is impossible, as follows from
the following statement, proven later today.

PROPOSITION: Let D C B be a closed complex disk in a unit ball B; C C",
with 0 € D. Then Vol(D) > .
)
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Monotonicity formula (1)

PROPOSITION: Let D C By be a complex curve (that is, a closed 1-
dimensional complex subvariety) in a unit ball By C C%, with 0 € D. Then
Vol(D) > .

We deduce it from the monotonicity formula.

LEMMA: (monotonicity formula)

Let (B,n) be a unit ball B1(0) C R™ equipped with a calibration n € A¥B; with
constant coefficients, and the standard flat metric, and A C B a calibrated
k-dimensional submanifold passing through 0. We assume that A is immersed
to B with its boundary in such a way that 0A is mapped to 0B. Let A; be
the intersection of A with a ball B;(0) of radius t. Then the function
t — t—kVol(A;) is non-decreasing.

Clearly, tlin?)VoI(At) — 7t (on a very small scale, any smooth disk is flat).
_>
Then the monotonicity lemma gives Vol A > .
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Monotonicity formula (2)

LEMMA: (monotonicity formula)

Let (B,n) be a unit ball equipped equipped with a calibration n € AkBl
with constant coefficients, and A C B a calibrated k-dimensional submanifold
passing through 0. Let A; be the intersection of A with a ball B;(0) of
radius t. Then the function t — t—%Vol(A,) is non-decreasing.

Proof. Step 1: Let C(0A) C B be the cone obtained as a union of all
intervals connecting O and points of 0A C 0B. Then
Vol C(8A) >/

= = Vol A.
c@ony /A"

The first equality follows from the Stokes’ theorem, because 0A = 0C(94A),
and the first inequality holds because 7n is a calibration.

Step 2: The formula for the cone volume gives Vol C(0A) = %l(aA), where
[(DA) is the area of the boundary dA. This implies Vol A < 1(0A).
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Monotonicity formula (3)

LEMMA: (monotonicity formula)

Let (B,n) be a unit ball equipped equipped with a calibration n € /\’fBl
with constant coefficients, and A C B a calibrated k-dimensional submanifold
passing through 0. Let A; be the intersection of A with a ball B;(0) of
radius t. Then the function t — t—%Vol(A,) is non-decreasing.

Step 2: We have obtained Vol A < %l(aA).

Step 3: The same argument applied to A; gives t~ % Vol A; < ktk—l_ll(aAt)-

omotnety maps e k-dimensiona lemann volume u Ot o). N e otner
(h thet the k-di ional Ri | to t*u). On the oth

hand, %Vol A > 1(0A:), because the volume of the strip of A between 0A;

and 0A4 . is bounded by el(0A;4.). This gives

t t d
Vol A; < —1l(0A;) < —— Vol A\,.
¢ k( t) Py ¢

Step 4: Let f(t) := VolA;. The last formula of Step 3 gives f(t) < 7f/(t),
hence

%t_k F@& =tk — kP 2 R @) R () = 0.
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