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Almost complex structures

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

DEFINITION: Let (M,ω) be a symplectic manifold, and I an almost complex
structure. We say that I is compatible with the symplectic structure if
g(x, y) := ω(Ix, y) for some Riemannian form g. In that case, g is called
compatible with I as well.

LEMMA 1: Let (M,ω) be a symplectic manifold, and (Br,
∑
dxi ∧ dyi) ↪→

(M,ω) a symplectic embedding. Then for any ε > 0 there exists an almost
complex structure I on (M,ω) compatible with ω and equal to the
standard complex structure on Br−ε ⊂ Br.

Proof: Let g1 be any Riemannian metric on M , compatible with ω and g0 the
standard Riemannian metric on Br. Denote by λ ∈ C∞M the cut-off function
vanishing outside of Br and equal to 1 on Br−ε. Then g̃ := λg0 + (1 − λ)g1
is equal to g0 on Br−ε and g1 outside of Br. This form is compatible with ω
in Br−ε and M\Br. To make it compatible with Ω everywhere, we use the
argument from Theorem 1 in Lecture 9: produce a symmetric matrix B1 =

e−
1
2 log(−A2), where A := g−1ω, and g(·, ·) := g̃(B1·, ·) is a metric compatible

with ω. This gives an almost complex structure I := ω−1g, equal to the
standard one on Br−ε ⊂M because B1 = Id on Br−ε.
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Symplectic capacity and the pseudoholomorphic curves

THEOREM 2: Let M = CP1 × T2n be the product of CP1 and a torus,

equipped with the standard symplectic structure, and J a compatible al-

most complex structure. Then for any x ∈ M there exists a pseudo-

holomorphic curve S homologous to CP1 × {m} and passing through

x.

This theorem implies Gromov’s non-squeezing theorem.

THEOREM: (Gromov) Symplectic capacity of a symplectic cylinder

Cyl1 is equal to π.

Scheme of the proof: We map Cyl1 = B2
1 × R2n−2 to M = CP1 × T2n−2

in such a way that the disk B2
1 is bijectively mapped to CP1\∞, and R2n−2

is mapped to R2n−2/Z2n−2 = T2n−2. Then we show that the volume of an

intersection of a symplectic ball Br ⊂ Cyl1 and a pseudoholomorphic curve

passing through 0 ∈ Br is > πr2, which is impossible when r > 1 and the

curve is obtained from the Gromov’s family obtained in Theorem 2, because

all these curves have volume π.
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Proof of Gromov’s theorem

THEOREM: (Gromov)

Symplectic capacity of a symplectic cylinder Cyl1 is equal to π.

Proof. Step 1: Let f1 : Br −→ Cyl1 be a symplectic embedding, r > 1,

and I the usual (flat) almost complex structure on Br ⊂ Cn+1. Consider the

manifold M = CP1 × T2n, equipped with the standard symplectic structure,

and let f2 : Cyl1 −→ CP1×T2n be a symplectic map taking Cyl1 = ∆×R2n to

CP1×T2n applying the Z2n quotient on the second argument and the natural

symplectomorphism ∆ −̃→ CP1\∞ on the first argument.

Step 2: Choose the lattice Z2n ⊂ R2n in such a way that its fundamental

domain contains f1(Br). Then the composition f1 ◦ f2 gives a symplectic

embedding Br −→M = CP1 × T2n.

We obtained that Gromov’s non-squeezing theorem is deduced from the

following result.
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Proof of Gromov’s theorem (2)

THEOREM: Let M = CP1× T2n be equipped with the standard symplectic

form, with the symplectic volume of CP1 equal to π, and ϕ : Br −→M a

symplectic embedding. Then r 6 1.

Proof. Step 1: Choose a flat complex structure and the flat Hermitian

metric on Br. Denote by g0 the corresponding Hermitian metric on ϕ(Br).

Then g0 can be extended to a Riemannian metric g1 on M such that g0 = g1

in a ball ϕ(Br−ε), for some ε such that r − ε > 1. Lemma 1 gives a metric

g compatible with the symplectic structure on M and coinciding with g0 in a

ball ϕ(Br−ε). Replacing Br by Br−ε, we can add to the assumptions of

the theorem the following assumption.

There exists a compatible almost complex structure such that uts

restriction to ϕ(Br) is equal to the standard complex structure on Br ⊂
Cn+1.
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Proof of Gromov’s theorem (3)

THEOREM: Let M = CP1 × T2n equipped with the standard symplectic
form, with the symplectic volume of CP1 equal to π, and ϕ : Br −→M a
symplectic embedding. Assume that there exists a compatible almost
complex structure such that its restriction to ϕ(Br) is equal to the
standard complex structure on Br ⊂ Cn+1. Then r 6 1.

Step 2: Let x ∈ M be the image of the center of Br, and S ⊂ M the
pseudo-holomorphic curve which passes through x by Theorem 2. Then
π =

∫
S ωM >

∫
ϕ−1(S) ω, where ωM is the symplectic form on M , and ω the

symplectic form on Br. Since S is pseudo-holomorphic,
∫
ϕ−1(S) ωBr is the

Riemannian volume of its intersection with ϕ(Br).

Step 3: We obtained a complex curve D := ϕ−1(S) passing through 0 in a
ball Br with flat Riemannian metric and the standard complex structure, with
the Riemannian volume Vol(D) 6 π. Applying the homothety, we obtain a
properly embedded complex disk in the ball B of radius 1, passing through
0 and with area r−1π. For any r > 1, this is impossible, as follows from
the following statement, proven later today.

PROPOSITION 1: Let D ⊂ B1 be a closed complex disk in a unit ball
B1 ⊂ Cn, with 0 ∈ D. Then Vol(D) > π.
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Monotonicity formula (1)

PROPOSITION: Let D ⊂ B1 be a complex curve (that is, a closed 1-

dimensional complex subvariety) in a unit ball B1 ⊂ Cn, with 0 ∈ D. Then

Vol(D) > π.

We deduce it from the monotonicity formula.

LEMMA: (monotonicity formula)

Let (B,ω) be the unit ball B1(0) ⊂ R2n equipped with the standard symplectic

form ω and the almost complex structure J, and ∆ ⊂ B a J-holomorphic Rie-

mann surface submanifold passing through 0. We assume that ∆ is immersed

to B with its boundary in such a way that ∂∆ is mapped to ∂B. Let ∆t be

the intersection of ∆ with a ball Bt(0) of radius t. Then the function

t−→ t−2 Vol(∆t) is non-decreasing.

Clearly, lim
t→0

Vol(∆t) = πt2 (on a very small scale, any smooth disk is flat).

Then the monotonicity lemma gives Vol ∆ > π. This proves Proposition

1.
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Monotonicity formula (2)

LEMMA: (monotonicity formula)

Let (B,ω) be the unit ball B1(0) ⊂ R2n equipped with the standard symplectic

form ω and the almost complex structure J, and ∆ ⊂ B a J-holomorphic Rie-

mann surface submanifold passing through 0. We assume that ∆ is immersed

to B with its boundary in such a way that ∂∆ is mapped to ∂B. Let ∆t be

the intersection of ∆ with a ball Bt(0) of radius t. Then the function

t−→ t−2 Vol(∆t) is non-decreasing.

Proof. Step 1: Let C(∂∆) ⊂ B be the 3-dimensional cone obtained as a

union of all intervals connecting 0 and points of ∂∆ ⊂ ∂B. Then

VolC(∂∆) >
∫
C(∂∆)

ω =
∫

∆
ω = Vol ∆.

The first equality follows from the Stokes’ theorem, because ∂∆ = ∂C(∂∆),

and the first inequality holds because ω is a calibration.

Step 2: The formula for the cone volume gives VolC(∂∆) = 1
2l(∂∆), where

l(∂∆) is the area of the boundary ∂∆. This implies Vol ∆ 6 1
2l(∂∆).
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Monotonicity formula (3)

LEMMA: (monotonicity formula)
Let (B,ω) be the unit ball B1(0) ⊂ R2n equipped with the standard symplectic
form ω and the almost complex structure J, ∆ ⊂ B a J-holomorphic Riemann
surface submanifold passing through 0. We assume that ∆ is immersed to
B with its boundary in such a way that ∂∆ is mapped to ∂B. Let ∆t be
the intersection of ∆ with a ball Bt(0) of radius t. Then the function
t−→ t−2 Vol(∆t) is non-decreasing.

Step 2: We have obtained Vol ∆ 6 1
2l(∂∆).

Step 3: The same argument applied to ∆t gives t−2 Vol ∆t 6 1
2tl(∂∆t).

(homothety maps the 2-dimensional Riemann volume µ to t2µ). On the
other hand, d

dt Vol ∆t > l(∂∆t), because the volume of the strip of ∆ between
∂∆t and ∂∆t+ε is bounded by εl(∂∆t+ε). This gives

Vol ∆t 6
t

2
l(∂∆t) 6

t

2

d

dt
Vol ∆t.

Step 4: Let f(t) := Vol ∆t. The last formula of Step 3 gives f(t) 6 t
2f
′(t),

hence
d

dt
t−2f(t) = t−2f ′(t)− 2t−3f(t) > t−2f ′(t)− t−2f ′(t) = 0.
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