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Almost complex structures

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM — TM which satisfies 12 = —Idp;,.

DEFINITION: Let (M,w) be a symplectic manifold, and I an almost complex
structure. We say that I is compatible with the symplectic structure if
g(z,y) ;= w(lz,y) for some Riemannian form g. In that case, ¢ is called
compatible with I as well.

LEMMA 1: Let (M,w) be a symplectic manifold, and (By,> dx; A dy;) —
(M,w) a symplectic embedding. Then for any € > 0 there exists an almost
complex structure I on (M,w) compatible with w and equal to the
standard complex structure on B,_. C B;.

Proof: Let g; be any Riemannian metric on M, compatible with w and gg the
standard Riemannian metric on B,. Denote by A € C°°M the cut-off function
vanishing outside of B, and equal to 1 on B,_.. Then g:= Ago+ (1 — Mg
is equal to gg on B,_- and g7 outside of By. This form is compatible with w
in Br_. and M\B,. To make it compatible with 2 everywhere, we use the
argument from Theorem 1 in Lecture 9: produce a symmetric matrix B =

1 2
e~ 3109(=4%) \where A := ¢ lw, and g(-,-) := §(By-,-) is a metric compatible
with w. This gives an almost complex structure I := w~1g, equal to the
standard one on B,_. C M because By =Id on B,_.. =
2
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Svymplectic capacity and the pseudoholomorphic curves

THEOREM 2: Let M = CP! x T?" be the product of CP! and a torus,
equipped with the standard symplectic structure, and J a compatible al-
most complex structure. Then for any =z € M there exists a pseudo-
holomorphic curve S homologous to CP! x {m} and passing through

L.
This theorem implies Gromov'’'s non-squeezing theorem.

THEOREM: (Gromov) Symplectic capacity of a symplectic cylinder
Cyly is equal to .

Scheme of the proof: We map Cyl; = B? x R°*2 to M = CP! x 7?72
in such a way that the disk B? is bijectively mapped to CP1\co, and R?"~2
is mapped to R2"=2/72n—2 = 72n=2  Then we show that the volume of an
intersection of a symplectic ball B C Cyly and a pseudoholomorphic curve
passing through 0 € B, is > 7rr2, which is impossible when » > 1 and the
curve is obtained from the Gromov’'s family obtained in Theorem 2, because

all these curves have volume .



Symplectic geometry, lecture 11 M. Verbitsky

Proof of Gromov’s theorem

THEOREM: (Gromov)
Symplectic capacity of a symplectic cylinder Cyl; is equal to .

Proof. Step 1: Let f1 : Br — Cyly be a symplectic embedding, r > 1,
and I the usual (flat) almost complex structure on B, c C**t1,  Consider the
manifold M = CPl x 72", equipped with the standard symplectic structure,
and let fo: Cyl; — CP1 xT?" pe a symplectic map taking Cyl; = A xR2" to
CPl x 72" applying the Z2™ quotient on the second argument and the natural
symplectomorphism A —s CP1\co on the first argument.

Step 2: Choose the lattice Z2™ ¢ R2" in such a way that its fundamental
domain contains f1(Byr). Then the composition fi o fo gives a symplectic
embedding B, —s M = CPl x 1727

We obtained that Gromov’s non-squeezing theorem is deduced from the
following result.
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Proof of Gromov’s theorem (2)

THEOREM: Let M = CP! x T2" pe equipped with the standard symplectic
form, with the symplectic volume of cpl equal to w, and ¢ . B — M a
symplectic embedding. Then » < 1.

Proof. Step 1: Choose a flat complex structure and the flat Hermitian
metric on B,. Denote by gg the corresponding Hermitian metric on ¢(By).
Then gg can be extended to a Riemannian metric g; on M such that gg = g7
in a ball o(B,_.), for some ¢ such that r —e > 1. Lemma 1 gives a metric
g compatible with the symplectic structure on M and coinciding with gg in a
ball o(B,_:). Replacing B, by B,_., we can add to the assumptions of
the theorem the following assumption.

There exists a compatible almost complex structure such that uts

restriction to ¢(B,) is equal to the standard complex structure on B, C
cn+i,
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Proof of Gromov’s theorem (3)

THEOREM: Let M = CP! x T?" equipped with the standard symplectic
form, with the symplectic volume of CPl equal to =, and 0. Br— M a
symplectic embedding. Assume that there exists a compatible almost
complex structure such that its restriction to ¢(B,) is equal to the
standard complex structure on B, c C*t1, Then r < 1.

Step 2: Let x € M be the image of the center of B, and S C M the
pseudo-holomorphic curve which passes through x by Theorem 2. Then
T = [qwpr = fgo_l(S)w' where wj; is the symplectic form on M, and w the
symplectic form on B,. Since S is pseudo-holomorphic, f¢_1(5) wpg, 1s the
Riemannian volume of its intersection with ¢(B;).

Step 3: We obtained a complex curve D = cp_l(S) passing through O in a
pball B with flat Riemannian metric and the standard complex structure, with
the Riemannian volume Vol(D) < w. Applying the homothety, we obtain a
properly embedded complex disk in the ball B of radius 1, passing through
0 and with area r—1x. For any r > 1, this is impossible, as follows from
the following statement, proven later today.

PROPOSITION 1: Let D C By be a closed complex disk in a unit ball
By Cc C", with 0 € D. Then Vol(D) > .
6
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Monotonicity formula (1)

PROPOSITION: Let D C By be a complex curve (that is, a closed 1-
dimensional complex subvariety) in a unit ball By C C%, with 0 € D. Then
Vol(D) > .

We deduce it from the monotonicity formula.

LEMMA: (monotonicity formula)

Let (B,w) be the unit ball B1(0) C R?™ equipped with the standard symplectic
form w and the almost complex structure J, and A C B a J-holomorphic Rie-
mann surface submanifold passing through 0. We assume that A is immersed
to B with its boundary in such a way that 0A is mapped to 0B. Let A; be
the intersection of A with a ball B;(0) of radius t. Then the function
t — t—2Vol(A,) is non-decreasing.

Clearly, L]in?)Vol(At) = 7t2 (on a very small scale, any smooth disk is flat).
_>

Then the monotonicity lemma gives Vol A > w. This proves Proposition
1.
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Monotonicity formula (2)

LEMMA: (monotonicity formula)

Let (B,w) be the unit ball B1(0) C R2" equipped with the standard symplectic
form w and the almost complex structure J, and A C B a J-holomorphic Rie-
mann surface submanifold passing through 0. We assume that A is immersed
to B with its boundary in such a way that 0A is mapped to 0B. Let A; be
the intersection of A with a ball B;(0) of radius t. Then the function
t —s t—2Vol(A;) is non-decreasing.

Proof. Step 1: Let C(0A) C B be the 3-dimensional cone obtained as a
union of all intervals connecting O and points of 0A C 0B. Then

Vol C(8A) > /C(M) w = /Aw — Vol A.

The first equality follows from the Stokes’ theorem, because 0A = 0C(04A),
and the first inequality holds because w is a calibration.

Step 2: The formula for the cone volume gives Vol C(0A) = %l(aA), where
[(DA) is the area of the boundary dA. This implies Vol A < %l(aA).

3
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Monotonicity formula (3)

LEMMA: (monotonicity formula)

Let (B,w) be the unit ball B1(0) C R?™ equipped with the standard symplectic
form w and the almost complex structure J, A C B a J-holomorphic Riemann
surface submanifold passing through 0. We assume that A is immersed to
B with its boundary in such a way that 0A is mapped to 0B. Let A; be
the intersection of A with a ball B;(0) of radius t. Then the function
t —s t—2Vol(A;) is non-decreasing.

Step 2: We have obtained Vol A < 51(9A).

Step 3: The same argument applied to A; gives t72VolA; < Qltl(aAt).
(homothety maps the 2-dimensional Riemann volume p to t2x). On the
other hand, %Vol Ay > 1(0A:), because the volume of the strip of A between
0A; and 04,4, is bounded by €l(0A;4.). This gives

t t d
Vol Ay < —l(0A;) < —— Vol Ay.
¢ 2( t) 7 ¢

Step 4: Let f(t) := Vol A;. The last formula of Step 3 gives f(t) < %f’(t),
hence

%t_zf(t) — t_2f/(t) . 2t—3f(t) > t_2f/(t) . t_zf/(t) —0.
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