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Frobenius bracket

DEFINITION: Distribution on a manifold is a sub-bundle B ⊂ TM

REMARK: Let Π : TM −→ TM/B be the projection, and x, y ∈ B some

vector fields. Then [fx, y] = f [x, y] − Dy(f)x. This implies that Π([x, y]) is

C∞(M)-linear as a function of x and y.

DEFINITION: The map [B,B]−→ TM/B we have constructed is called

Frobenius bracket (or Frobenius form); it is a skew-symmetric C∞(M)-

linear form on B with values in TM/B.

DEFINITION: A distribution is called integrable, or holonomic, or involu-

tive, if its Frobenius form vanishes.
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Frobenius theorem and foliations

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then B is involutive

if and only if each point x ∈ M has a neighbourhood U 3 x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

DEFINITION: The fibers of π are called leaves, or integral submanifolds

of the distribution B. Globally on M , a leaf of B is a maximal connected

manifold Z ↪→ M which is immersed to M and tangent to B at each point.

A distribution for which Frobenius theorem holds is called integrable. If B is

integrable, the set of its leaves is called a foliation. The leaves are manifolds

which are immersed to M , but not necessarily closed.
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Holonomy of a foliation with compact leaves

DEFINITION: Let F be a smooth foliation on M . Suppose that all leaves
of F are compact (in this case F is called a foliation with compact leaves).

Let F ⊂M be a compact leaf of F, and U its tubular neighbourhood. Denote
by π a smooth retraction of U to F . For U sufficiently small, we may assume
that π is locally a diffeomorphism on each leaf of F. Then π restricted to
a compact leaf F1 ⊂ F is a covering. In particular, every path γ ⊂ F can
be lifted to a covering γ1 ∈ F1. Let S := π−1(x), where x is the starting
point of a loop γ : [0,1]−→ F . Then γ1 is uniquely determined by γ1(0) and
gives a Hγ : S −→ S mapping γ1(0) to γ1(1). This construction defines a
group homomorphism π1(F )−→ Diffx(Sx), where Sx is a germ of S in x,
and Diffx(Sx) denotes the group of diffeomorphisms of this germ.

DEFINITION: (Ehresmann)
The homomorphism π1(F )−→ Diffx(Sx) is called the holonomy of the fo-
liation F in F .

REMARK: Holonomy is well defined for any leaf of a foliation, compactness
of its leaves is not necessary. Moreover, a germ of a foliation in a
neighbourhood of a closed leaf is uniquely (up to a diffeo) determined by
its holonomy.
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Holonomy of a foliation with compact leaves

REMARK: Holonomy of a foliation with compact leaves is finite in dimension

3, by a theorem of D. B. A. Epstein. However, in dimension 5 D. Sullivan

produced an S1-foliation on S5 with infinite holonomy.

EXERCISE: Let G be a compact Lie group acting on a manifold M . Prove

that all orbits have dimension dimG if and only if for some basis g1, ...gn ∈
LieG the corresponding vector fields on M are linearly independent

everywhere.

DEFINITION: In this case, the action of G on M is called locally free.

THEOREM: Let G be a compact Lie group which locally freely acts on

a manifold M , and F the corresponding foliation, with its leaves being the

orbits of G. Then the holonomy of F is finite. Moreover, the leaf space

M/G locally in a neighbourhood of [F ] is homeomorphic to Rn/Γ, where Γ

is the holonomy of F in F .
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Holonomy of a foliation with transitive group action on its leaves

THEOREM: Let G be a compact Lie group with locally freely acts on a
manifold M , and F the corresponding foliation, with its leaves being the
orbits of G. Then the holonomy of F is finite. Moreover, the leaf space
M/G locally in a neighbourhood of [F ] is homeomorphic to Rn/Γ, where Γ
is the holonomy of F in F .

Proof. Step 1: Choose a G-invariant Riemannian metric on M by taking
any Riemannian metric and averaging it with G. Then for any r ∈ R>0, an
r-neighbourhood U of a leaf F is G-invariant. Therefore, U contains the
whole leaf F1 of F if it contains a point of F1.

Let π : U −→ F a smooth retraction, S := π−1(x), and Γ the holonomy of F
in F . Consider a leaf F1 of F passing through x1 ∈ S. Then F1 ∩ S = Γ · x1,
hence U/G = S/Γ. We proved the second claim of the theorem.

Step 2: To see that Γ is positive, we choose σ inverse to the Riemannian
geodesic (exponential) map in the direction orthogonal to F . Consider the
map µ : S × G−→ U mapping (s, g) to g(s). This map is by construction
surjective and each point x1 ∈ S ∩ F1 has precisely ΓF1

preimages. Let ΓF be
the subgroup of G fixing x ∈ F . Then µ(ΓF ) maps S ⊂ U to itself, and this
action coincides with Γ. Since G is compact, ΓF is finite.
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