Symplectic geometry

lecture 13: symplectic reduction

Misha Verbitsky

HSE, room 306, 16:20,

October 16, 2021

Frobenius theorem and foliations (reminder)

Frobenius Theorem: Let $B \subset TM$ be a sub-bundle. Then $[B,B] \subset B$ if and only if each point $x \in M$ has a neighbourhood $U \ni x$ and a smooth submersion $U \xrightarrow{\pi} V$ such that B is its vertical tangent space: $B = T_{\pi}M$.

DEFINITION: The fibers of π are called **leaves**, or **integral submanifolds** of the distribution *B*. Globally on *M*, **a leaf of** *B* is a maximal connected manifold $Z \hookrightarrow M$ which is immersed to *M* and tangent to *B* at each point. A distribution for which Frobenius theorem holds is called **integrable**. If *B* is integrable, the set of its leaves is called **a foliation**. The leaves are manifolds which are immersed to *M*, but not necessarily closed.

Holonomy of a foliation with compact leaves (reminder)

DEFINITION: Let \mathcal{F} be a smooth foliation on M. Suppose that all leaves of \mathcal{F} are compact (in this case \mathcal{F} is called a foliation with compact leaves).

Let $F \subset M$ be a compact leaf of \mathcal{F} , and U its tubular neighbourhood. Denote by π a smooth retraction of U to F. For U sufficiently small, we may assume that π is locally a diffeomorphism on each leaf of \mathcal{F} . Then π restricted to a compact leaf $F_1 \subset F$ is a covering. In particular, every path $\gamma \subset F$ can be lifted to a covering $\gamma_1 \in F_1$. Let $S := \pi^{-1}(x)$, where x is the starting point of a loop $\gamma : [0,1] \longrightarrow F$. Then γ_1 is uniquely determined by $\gamma_1(0)$ and gives a $H_{\gamma} : S \longrightarrow S$ mapping $\gamma_1(0)$ to $\gamma_1(1)$. This construction defines a group homomorphism $\pi_1(F) \longrightarrow \text{Diff}_x(S_x)$, where S_x is a germ of S in x, and $\text{Diff}_x(S_x)$ denotes the group of diffeomorphisms of this germ.

DEFINITION: (Ehresmann)

The homomorphism $\pi_1(F) \longrightarrow \text{Diff}_x(S_x)$ is called the holonomy of the foliation \mathcal{F} in F.

REMARK: Holonomy is well defined for any leaf of a foliation, **compactness** of its leaves is not necessary. Moreover, a germ of a foliation in a neighbourhood of a closed leaf is uniquely (up to a diffeo) determined by its holonomy.

Holonomy of a foliation with compact leaves (reminder)

REMARK: Holonomy of a foliation with compact leaves is finite in dimension 3, by a theorem of D. B. A. Epstein. However, in dimension 5 D. Sullivan **produced an** S^1 -foliation on S^5 with infinite holonomy.

EXERCISE: Let *G* be a compact Lie group acting on a manifold *M*. Prove that all orbits have dimension dim *G* if and only if for some basis $g_1, ..., g_n \in$ Lie *G* the corresponding vector fields on *M* are linearly independent everywhere.

DEFINITION: In this case, the action of G on M is called **locally free**.

THEOREM: Let G be a compact Lie group which locally freely acts on a manifold M, and \mathcal{F} the corresponding foliation, with its leaves being the orbits of G. Then the holonomy of \mathcal{F} is finite. Moreover, the leaf space M/G locally in a neighbourhood of [F] is homeomorphic to \mathbb{R}^n/Γ , where Γ is the holonomy of \mathcal{F} in F.

Holonomy of a foliation with transitive group action on its leaves (reminder)

THEOREM: Let G be a compact Lie group with locally freely acts on a manifold M, and \mathcal{F} the corresponding foliation, with its leaves being the orbits of G. Then the holonomy of \mathcal{F} is finite. Moreover, the leaf space M/G locally in a neighbourhood of [F] is homeomorphic to \mathbb{R}^n/Γ , where Γ is the holonomy of \mathcal{F} in F.

Proof. Step 1: Choose a *G*-invariant Riemannian metric on *M* by taking any Riemannian metric and averaging it with *G*. Then for any $r \in \mathbb{R}^{>0}$, an *r*-neighbourhood *U* of a leaf *F* is *G*-invariant. Therefore, *U* contains the whole leaf F_1 of \mathcal{F} if it contains a point of F_1 .

Let $\pi : U \longrightarrow F$ a smooth retraction, $S := \pi^{-1}(x)$, and Γ the holonomy of \mathcal{F} in F. Consider a leaf F_1 of \mathcal{F} passing through $x_1 \in S$. Then $F_1 \cap S = \Gamma \cdot x_1$, hence $U/G = S/\Gamma$. We proved the second claim of the theorem.

Step 2: To see that Γ is positive, we choose σ inverse to the Riemannian geodesic (exponential) map in the direction orthogonal to F. Consider the map $\mu : S \times G \longrightarrow U$ mapping (s,g) to g(s). This map is by construction surjective and each point $x_1 \in S \cap F_1$ has precisely Γ_{F_1} preimages. Let Γ_F be the subgroup of G fixing $x \in F$. Then $\mu(\Gamma_F)$ maps $S \subset U$ to itself, and this action coincides with Γ . Since G is compact, Γ_F is finite.

Orbifolds

DEFINITION: We say that a topological space has quotient singularities if it is locally homeomorphic to \mathbb{R}^n/Γ , where Γ is a finite group acting on \mathbb{R}^n by diffeomorphisms.

It turns out that all "analysis on manifolds" can be performed on such varieties, if we define **the orbifolds** (but it would take time). In particular,

THEOREM: Let M be a manifold equipped with a locally free action of a Lie group. Then M/G is an orbifold.

Basic forms

DEFINITION: Let $B \subset M$ be an involutive sub-bundle, tangent to a foliation \mathcal{F} on M, and $U \xrightarrow{\pi_U} U/\mathcal{F}$ its leaf space, defined for a sufficiently small $U \subset M$. **A basic form** on (M, \mathcal{F}) is a form $\alpha \in \Lambda^k(M)$ such that for each local leaf space $U \xrightarrow{\pi_U} U/\mathcal{F}$, one can represent α as a pullback, $\alpha = \pi_U^*(\alpha_0)$ for a form α_0 on U/\mathcal{F} .

PROPOSITION: A form $\alpha \in \Lambda^k(M)$ is basic with respect to \mathcal{F} if and only if for any vector field X tangent to \mathcal{F} , one has $i_X(\alpha) = 0$ and $\text{Lie}_X(\alpha) = 0$.

Proof: Let $x_1, ..., x_n, y_1, ..., y_m$ be a coordinate system on U such that π_U maps $(x_1, ..., x_n, y_1, ..., y_m)$ to $(x_1, ..., x_n)$. Then a form α is expressed through a sum of coordinate monomials and functions as $\alpha = \sum f_I \alpha_I$ is basic if and only if the functions f_I are independent from y_i and the coordinate monomials α_I do not contain dy_i .

COROLLARY: Let α be a closed differential form on a manifold M, equipped with a foliation \mathcal{F} . Then α is basic if and only if $i_X(\alpha) = 0$ for any vector field X tangent to \mathcal{F} .

Proof: Cartan's formula gives $\operatorname{Lie}_X \alpha = i_X(d\alpha) + d(i_X\alpha)$; when α is closed, this is equivalent to $\operatorname{Lie}_X \alpha = d(i_X\alpha)$.

Characteristic foliation

DEFINITION: Let (M, ω) be a symplectic manifold. A submanifold $Z \subset M$ is called **coisotropic** if $\dim_{\mathbb{R}} Z \ge \dim_{\mathbb{R}} M$ and $\omega|_Z$ has rank $\dim_{\mathbb{R}} M - \dim_{\mathbb{R}} Z$ (minimal possible), or, equivalently, $(TZ)^{\perp \omega} \subset TZ$, where $(TZ)^{\perp \omega} := \{x \in TZ \mid i_x \omega = 0\}$

DEFINITION: Let $Z \subset (M, \omega)$ be a coisotropic submanifold. The bundle $(TZ)^{\perp_{\omega}}$ is called **the characteristic bundle of** Z.

THEOREM: Let $Z \subset (M, \omega)$ be a coisotropic submanifold, and $K \subset TM$ its characteristic bundle. Then $[K, K] \subset K$, hence K is tangent to a foliation \mathcal{F} which is called the characteristic foliation of Z. Moreover, the restriction $\omega|_Z$ is basic, and symplectic on the leaf space of the characteristic foliation.

Characteristic foliation (2)

THEOREM: Let $Z \subset (M, \omega)$ be a coisotropic submanifold, and $K \subset TM$ its characteristic bundle. Then $[K, K] \subset K$, hence K is tangent to a foliation \mathcal{F} which is called the characteristic foliation of Z. Moreover, the restriction $\omega|_Z$ is basic, and symplectic on the leaf space of the characteristic foliation.

Proof: To see that $[K, K] \subset K$, we use Cartan's formula for de Rham differential

$$0 = d\omega(X, Y, Z) = \omega([X, Y], Z) + \omega([Y, Z], X) + \omega([Z, X], Y) + + \operatorname{Lie}_X \omega(Y, Z) + \operatorname{Lie}_Y \omega(Z, X) + \operatorname{Lie}_Z \omega(X, Y).$$

If $X, Y \in K$, all terms in this sum vanish, except, possibly,

 $0 = d\omega(X, Y, Z) = \omega([X, Y], Z),$

hence $[X, Y] \in K$.

Now, ω is *K*-basic because it is closed and vanishes on *K*, and symplectic on the leaf space M/\mathcal{F} because it has rank $\dim_{\mathbb{R}} M - \dim_{\mathbb{R}} Z$, and $\dim M/\mathcal{F} = \dim_{\mathbb{R}} M - \dim_{\mathbb{R}} Z$.

Cartan's formula and symplectomorphisms (reminder)

We denote the Lie derivative along a vector field as $\operatorname{Lie}_x : \Lambda^i M \longrightarrow \Lambda^i M$, and contraction with a vector field by $i_x : \Lambda^i M \longrightarrow \Lambda^{i-1} M$.

Cartan's formula: $d \circ i_x + i_x \circ d = \text{Lie}_x$.

REMARK: Let (M, ω) be a symplectic manifold, G a Lie group acting on M by symplectomorphisms, and \mathfrak{g} its Lie algebra. For any $g \in \mathfrak{g}$, denote by ρ_g the corresponding vector field. Then $\operatorname{Lie}_{\rho_g} \omega = 0$, giving $d(i_{\rho_g}(\omega)) = 0$. We obtain that $i_{\rho_q}(\omega)$ is closed, for any $g \in \mathfrak{g}$.

DEFINITION: A Hamiltonian of $g \in \mathfrak{g}$ is a function h on M such that $dh = i_{\rho_g}(\omega)$.

M. Verbitsky

Moment maps

DEFINITION: (M, ω) be a symplectic manifold, and G a Lie group acting on M by symplectomorphisms. A moment map μ of this action is a linear map $\mathfrak{g} \longrightarrow C^{\infty}M$ associating to each $g \in G$ its Hamiltonian.

REMARK: It is more convenient to consider μ as an element of $\mathfrak{g}^* \otimes_{\mathbb{R}} C^{\infty} M$, or (and this is most standard) as a function with values in \mathfrak{g}^* .

REMARK: Moment map always exists if *M* is simply connected.

DEFINITION: A moment map $M \longrightarrow \mathfrak{g}^*$ is called **equivariant** if it is equivariant with respect to the coadjoint action of G on \mathfrak{g}^* .

REMARK: $M \xrightarrow{\mu} \mathfrak{g}^*$ is a moment map iff for all $g \in \mathfrak{g}$, $\langle d\mu, g \rangle = i_{\rho_g}(\omega)$. Therefore, a moment map is defined up to a constant \mathfrak{g}^* -valued function. An equivariant moment map is is defined up to a constant \mathfrak{g}^* -valued function which is *G*-invariant, that is, up to addition of a central (that is, *G*-invariant) vector $c \in \mathfrak{g}^*$.

CLAIM: An equivariant moment map exists whenever $H^1(G, \mathfrak{g}^*) = 0$. In particular, when G is reductive and M is simply connected, an equivariant moment map exists. Further on, all moment maps will be tacitly considered equivariant.

Weinstein-Marsden theorem

DEFINITION: (Weinstein-Marsden) (M, ω) be a symplectic manifold, G a compact Lie group freely acting on M by symplectomorphisms, $M \xrightarrow{\mu} \mathfrak{g}^*$ an equivariant moment map, and $c \in \mathfrak{g}^*$ a central element. The quotient $\mu^{-1}(c)/G$ is called symplectic reduction of M, denoted by $M/\!\!/G$.

CLAIM: The symplectic quotient $M/\!\!/G$ is a symplectic manifold of dimension dim $M - 2 \dim G$. Proof. Step 1: $T_x(\mu^{-1}(c)) = d\mu^{-1}(0)$. However, the space $\langle d\mu, g \rangle \subset \Lambda^1 M$ is ω -dual to the space $\tau(\mathfrak{g})$ of vector fields tangent to the *G*-action, hence $d\mu^{-1}(c) = \tau(\mathfrak{g})^{\perp}$.

Step 2: Since μ is *G*-equivariant, *G* preserves $\mu^{-1}(c)$, hence $\tau(\mathfrak{g}) \subset d\mu^{-1}(0)$. This implies that $\tau(\mathfrak{g}) \subset TM$ is isotropic (that is, $\omega|_{\tau(\mathfrak{g})} = 0$). Its ω -orthogonal complement in T_xM is $T_x(\mu^{-1}(c))$ (Step 1).

Step 3: Consider the characteristic foliation \mathcal{F} on $\mu^{-1}(c)$. It is a bundle because $\mu^{-1}(c) \subset M$ is coisotropic. From Step 2 we obtain that $\mathcal{F} = \tau(\mathfrak{g})$.

Step 4: Since $\omega|_{\mu^{-1}(c)}$ is closed, it satisfies $\operatorname{Lie}_v(\omega) = 0$ for all $v \in \mathcal{F}$. This implies that it is *basic*, that is, lifted from the leaf space of characteristic foliation, identified with $M/\!\!/G$.