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Frobenius theorem and foliations (reminder)

Frobenius Theorem: Let B ⊂ TM be a sub-bundle. Then [B,B] ⊂ B

if and only if each point x ∈ M has a neighbourhood U 3 x and a smooth

submersion U
π−→ V such that B is its vertical tangent space: B = TπM.

DEFINITION: The fibers of π are called leaves, or integral submanifolds

of the distribution B. Globally on M , a leaf of B is a maximal connected

manifold Z ↪→ M which is immersed to M and tangent to B at each point.

A distribution for which Frobenius theorem holds is called integrable. If B is

integrable, the set of its leaves is called a foliation. The leaves are manifolds

which are immersed to M , but not necessarily closed.
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Holonomy of a foliation with compact leaves (reminder)

DEFINITION: Let F be a smooth foliation on M . Suppose that all leaves
of F are compact (in this case F is called a foliation with compact leaves).

Let F ⊂M be a compact leaf of F, and U its tubular neighbourhood. Denote
by π a smooth retraction of U to F . For U sufficiently small, we may assume
that π is locally a diffeomorphism on each leaf of F. Then π restricted to
a compact leaf F1 ⊂ F is a covering. In particular, every path γ ⊂ F can
be lifted to a covering γ1 ∈ F1. Let S := π−1(x), where x is the starting
point of a loop γ : [0,1]−→ F . Then γ1 is uniquely determined by γ1(0) and
gives a Hγ : S −→ S mapping γ1(0) to γ1(1). This construction defines a
group homomorphism π1(F )−→ Diffx(Sx), where Sx is a germ of S in x,
and Diffx(Sx) denotes the group of diffeomorphisms of this germ.

DEFINITION: (Ehresmann)
The homomorphism π1(F )−→ Diffx(Sx) is called the holonomy of the fo-
liation F in F .

REMARK: Holonomy is well defined for any leaf of a foliation, compactness
of its leaves is not necessary. Moreover, a germ of a foliation in a
neighbourhood of a closed leaf is uniquely (up to a diffeo) determined by
its holonomy.
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Holonomy of a foliation with compact leaves (reminder)

REMARK: Holonomy of a foliation with compact leaves is finite in dimension

3, by a theorem of D. B. A. Epstein. However, in dimension 5 D. Sullivan

produced an S1-foliation on S5 with infinite holonomy.

EXERCISE: Let G be a compact Lie group acting on a manifold M . Prove

that all orbits have dimension dimG if and only if for some basis g1, ...gn ∈
LieG the corresponding vector fields on M are linearly independent

everywhere.

DEFINITION: In this case, the action of G on M is called locally free.

THEOREM: Let G be a compact Lie group which locally freely acts on

a manifold M , and F the corresponding foliation, with its leaves being the

orbits of G. Then the holonomy of F is finite. Moreover, the leaf space

M/G locally in a neighbourhood of [F ] is homeomorphic to Rn/Γ, where Γ

is the holonomy of F in F .
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Holonomy of a foliation with transitive group action on its leaves (re-
minder)

THEOREM: Let G be a compact Lie group with locally freely acts on a
manifold M , and F the corresponding foliation, with its leaves being the
orbits of G. Then the holonomy of F is finite. Moreover, the leaf space
M/G locally in a neighbourhood of [F ] is homeomorphic to Rn/Γ, where Γ
is the holonomy of F in F .

Proof. Step 1: Choose a G-invariant Riemannian metric on M by taking
any Riemannian metric and averaging it with G. Then for any r ∈ R>0, an
r-neighbourhood U of a leaf F is G-invariant. Therefore, U contains the
whole leaf F1 of F if it contains a point of F1.

Let π : U −→ F a smooth retraction, S := π−1(x), and Γ the holonomy of F
in F . Consider a leaf F1 of F passing through x1 ∈ S. Then F1 ∩ S = Γ · x1,
hence U/G = S/Γ. We proved the second claim of the theorem.

Step 2: To see that Γ is positive, we choose σ inverse to the Riemannian
geodesic (exponential) map in the direction orthogonal to F . Consider the
map µ : S × G−→ U mapping (s, g) to g(s). This map is by construction
surjective and each point x1 ∈ S ∩ F1 has precisely ΓF1

preimages. Let ΓF be
the subgroup of G fixing x ∈ F . Then µ(ΓF ) maps S ⊂ U to itself, and this
action coincides with Γ. Since G is compact, ΓF is finite.
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Orbifolds

DEFINITION: We say that a topological space has quotient singularities

if it is locally homeomorphic to Rn/Γ, where Γ is a finite group acting on Rn

by diffeomorphisms.

It turns out that all “analysis on manifolds” can be performed on such vari-

eties, if we define the orbifolds (but it would take time). In particular,

THEOREM: Let M be a manifold equipped with a locally free action of a

Lie group. Then M/G is an orbifold.
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Basic forms

DEFINITION: Let B ⊂M be an involutive sub-bundle, tangent to a foliation
F on M , and U

πU−→ U/F its leaf space, defined for a sufficiently small U ⊂M .
A basic form on (M,F) is a form α ∈ Λk(M) such that for each local leaf
space U

πU−→ U/F, one can represent α as a pullback, α = π∗U(α0) for a form
α0 on U/F.

PROPOSITION: A form α ∈ Λk(M) is basic with respect to F if and
only if for any vector field X tangent to F, one has iX(α) = 0 and
LieX(α) = 0.

Proof: Let x1, ..., xn, y1, ..., ym be a coordinate system on U such that πU maps
(x1, ..., xn, y1, ..., ym) to (x1, ..., xn). Then a form α is expressed through a sum
of coordinate monomials and functions as α =

∑
fIαI is basic if and only if

the functions fI are independent from yi and the coordinate monomials αI do
not contain dyi.

COROLLARY: Let α be a closed differential form on a manifold M , equipped
with a foliation F. Then α is basic if and only if iX(α) = 0 for any vector
field X tangent to F.

Proof: Cartan’s formula gives LieX α = iX(dα) + d(iXα); when α is closed,
this is equivalent to LieX α = d(iXα).
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Characteristic foliation

DEFINITION: Let (M,ω) be a symplectic manifold. A submanifold Z ⊂ M

is called coisotropic if dimRZ > dimRM and ω|Z has rank dimRM − dimRZ

(minimal possible), or, equivalently, (TZ)⊥ω ⊂ TZ, where (TZ)⊥ω := {x ∈
TZ | ixω = 0}

DEFINITION: Let Z ⊂ (M,ω) be a coisotropic submanifold. The bundle

(TZ)⊥ω is called the characteristic bundle of Z.

THEOREM: Let Z ⊂ (M,ω) be a coisotropic submanifold, and K ⊂ TM

its characteristic bundle. Then [K,K] ⊂ K, hence K is tangent to a

foliation F which is called the characteristic foliation of Z. Moreover,

the restriction ω|Z is basic, and symplectic on the leaf space of the

characteristic foliation.
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Characteristic foliation (2)

THEOREM: Let Z ⊂ (M,ω) be a coisotropic submanifold, and K ⊂ TM

its characteristic bundle. Then [K,K] ⊂ K, hence K is tangent to a

foliation F which is called the characteristic foliation of Z. Moreover,

the restriction ω|Z is basic, and symplectic on the leaf space of the

characteristic foliation.

Proof: To see that [K,K] ⊂ K, we use Cartan’s formula for de Rham differ-

ential

0 = dω(X,Y, Z) = ω([X,Y ], Z) + ω([Y, Z], X) + ω([Z,X], Y )+

+ LieX ω(Y, Z) + LieY ω(Z,X) + LieZ ω(X,Y ).

If X,Y ∈ K, all terms in this sum vanish, except, possibly,

0 = dω(X,Y, Z) = ω([X,Y ], Z),

hence [X,Y ] ∈ K.

Now, ω is K-basic because it is closed and vanishes on K, and symplectic

on the leaf space M/F because it has rank dimRM −dimRZ, and dimM/F =

dimRM − dimRZ.
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Cartan’s formula and symplectomorphisms (reminder)

We denote the Lie derivative along a vector field as Liex : ΛiM −→ ΛiM , and

contraction with a vector field by ix : ΛiM −→ Λi−1M .

Cartan’s formula: d ◦ ix + ix ◦ d = Liex.

REMARK: Let (M,ω) be a symplectic manifold, G a Lie group acting on M

by symplectomorphisms, and g its Lie algebra. For any g ∈ g, denote by ρg

the corresponding vector field. Then Lieρg ω = 0, giving d(iρg(ω)) = 0. We

obtain that iρg(ω) is closed, for any g ∈ g.

DEFINITION: A Hamiltonian of g ∈ g is a function h on M such that

dh = iρg(ω).
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Moment maps

DEFINITION: (M,ω) be a symplectic manifold, and G a Lie group acting
on M by symplectomorphisms. A moment map µ of this action is a linear
map g−→ C∞M associating to each g ∈ G its Hamiltonian.

REMARK: It is more convenient to consider µ as an element of g∗⊗RC
∞M ,

or (and this is most standard) as a function with values in g∗.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M −→ g∗ is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g∗.

REMARK: M
µ−→ g∗ is a moment map iff for all g ∈ g, 〈dµ, g〉 = iρg(ω).

Therefore, a moment map is defined up to a constant g∗-valued func-
tion. An equivariant moment map is is defined up to a constant g∗-valued
function which is G-invariant, that is, up to addition of a central (that is,
G-invariant) vector c ∈ g∗.

CLAIM: An equivariant moment map exists whenever H1(G, g∗) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists. Further on, all moment maps will be tacitly considered
equivariant.
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Weinstein-Marsden theorem

DEFINITION: (Weinstein-Marsden) (M,ω) be a symplectic manifold, G a
compact Lie group freely acting on M by symplectomorphisms, M

µ−→ g∗

an equivariant moment map, and c ∈ g∗ a central element. The quotient
µ−1(c)/G is called symplectic reduction of M , denoted by M//G.

CLAIM: The symplectic quotient M//G is a symplectic manifold of di-
mension dimM − 2 dimG.
Proof. Step 1: Tx(µ−1(c)) = dµ−1(0). However, the space 〈dµ, g〉 ⊂ Λ1M

is ω-dual to the space τ(g) of vector fields tangent to the G-action, hence
dµ−1(c) = τ(g)⊥.

Step 2: Since µ is G-equivariant, G preserves µ−1(c), hence τ(g) ⊂ dµ−1(0).
This implies that τ(g) ⊂ TM is isotropic (that is, ω

∣∣∣τ(g) = 0). Its ω-

orthogonal complement in TxM is Tx(µ−1(c)) (Step 1).

Step 3: Consider the characteristic foliation F on µ−1(c). It is a bundle
because µ−1(c) ⊂M is coisotropic. From Step 2 we obtain that F = τ(g).

Step 4: Since ω
∣∣∣µ−1(c) is closed, it satisfies Liev(ω) = 0 for all v ∈ F. This

implies that it is basic, that is, lifted from the leaf space of characteristic
foliation, identified with M//G.
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