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Symplectic geometry, lecture 15 M. Verbitsky
Moment maps (reminder)

DEFINITION: (M,w) be a symplectic manifold, and G a Lie group acting
on M by symplectomorphisms. A moment map p of this action is a linear
map g — C°°M associating to each g € G its Hamiltonian.

REMARK: It is more convenient to consider p as an element of g* Qr C°M,
or (and this is most standard) as a function with values in g*.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M — g* is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g*.

REMARK: M - g* is a moment map iff for all g € g, (du,g) = ip,(w).

Therefore, a moment map is defined up to a constant g*-valued func-
tion. An equivariant moment map is is defined up to a constant g*-valued
function which is G-invariant, that is, up to addition of a central vector
c € gr.

CLAIM: An equivariant moment map exists whenever H!(G,g*) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists. Further on, all moment maps will be tacitly considered
equivariant.
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Weinstein-Marsden theorem (reminder)

DEFINITION: (Weinstein-Marsden) (M,w) be a symplectic manifold, G a
compact Lie group freely acting on M by symplectomorphisms, M LN g*
an equivariant moment map, and ¢ € g* a central element. The quotient

;rl(c)/G is called symplectic reduction of M, denoted by M /G.

CLAIM: The symplectic quotient M /G is a symplectic manifold of di-
mension dimM — 2dimdG.

Proof. Step 1: T,(u 1(c)) = du1(0). However, the space (du,g) C A'M
is w-dual to the space 7(g) of vector fields tangent to the G-action, hence
dp~t(c) = 7(g)*.

Step 2: Since u is G-equivariant, G preserves u~1(¢), hence 7(g) C du—1(0).
This implies that 7(g) C TM is isotropic (that is, w‘T(g) = 0). Its w-

orthogonal complement in T M is Tx(n"1(c)) (Step 1).

Step 3: Consider the characteristic foliation F on p~1(¢). It is a bundle
because u~1(¢) C M is coisotropic. From Step 2 we obtain that F = 7(jg).

Step 4: Since w|u—1(c) is closed, it satisfies Liey(w) = 0 for all v € F. This
implies that it is basic, that is, lifted from the leaf space of characteristic
foliation, identified with M /G. =
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Holomorphic vector fields

DEFINITION: A holomorphic vector field is a vector field X € T'M sat-
isfying Liex I = 0O, that is, such that the corresponding diffeomorphism flow
etX is holomorphic.

REMARK: Let (M,I) be a compact complex manifold. Then the group of
biholomorphisms of M is a Lie group whose Lie algebra is the space of (real)
holomorphic vector fields.

REMARK: It is not hard to see that I(X) is holomorphic whenever X is
holomorphic (prove this). Then X — I(X) defines the complex struc-
ture on the Lie algebra of holomorphic vector fields.
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Symplectic reduction and a Kahler potential (reminder)

DEFINITION: Let d¢ := IdI~!. Kahler potential on a Kihler manifold
(M,w) is a function 1 such that dd“ = w.

PROPOSITION: Let G be a real Lie group acting on a Kahler manifold
M by holomorphic isometries, and ¥ a G-invariant Kahler potential. Then
the moment map g x M M9, R can be written as g, m — Lier, v, where
v =17(g) € TM is the tangent vector field associated with g € g.

Proof: Since ¢ is G-invariant, and I is G-invariant, we have 0 = Lieydy
tw(ddy) 4+ d(iyd©yp). Using w = dd%), we rewrite this equation as i,w =
—d((d“p,v)), giving an equation for the moment map pug = —(d“p,v). Acting
by I on both sides, we obtain ug = (dy, Iv) = Liey, .

COROLLARY: Let V be a Hermitian representation of a compact Lie group
G. Then the corresponding moment map can be written as p4(v) =
Liergv]? = (v, Ig(v)). m
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Moment map and extrema on 1-parametric orbit

REMARK: Let G C U(n) be a Lie group acting on a complex vector space
V = C", equipped with the standard Hermitian structure h, and G¢ C GL(n,C)
its complexification. Denote by p: V — g* the moment map. Since ug(v) =
Lies, |v|[?, a vector z € V belongs to p~1(0) if and only if the function
l: Gc-z— R, I(2) = |z|2 on the orbit G¢ has extremum in z. It turns
own that z — I(z) is convex, in the following sense.

CLAIM: Let V = C", A € uw(V) be an anti-Hermitian endomorphism, and

Gy = et ¢ GL(V), t € C the corresponding 1-parametric subgroup. Then
#\AHUM(Z)P = 4| A(e!4(2))|2, when u € /—1R.

Proof: Let A be diagonalized in an orthonormal basis z1,...,zn € R, such that
A(z;) = V=1 w;x;, w; € R, and h the Hermitian form. The operator et4(z;) =
e\/——ltwimi IS an isometry when t is real, and is Hermitian self-adjoint when ¢
is imaginary. This gives %|e(t+“)f4(z)|2 = 2h(AeMA(2), e(DA(2)). Taking the

derivative in u once again, we obtain d‘i—é|e(’5+“)14(z)|2 = 2h(AeDA(2), AcA(2)).
=

COROLLARY: The function [ is convex on G4, and strictly convex in
iImaginary direction, unless A =0. m
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Moment map and extrema on 1-parametric orbit

COROLLARY: Let A be diagonalized in an orthonormal basis z1,...,xn € R,
such that A(z;) = vV—-1w;z;, w; € R, and z = Y o;x;, with all o; # 0. Then
the function [ has a minimum on the line e\/—_lRA(z) if and only if there
are two basis vectors z;, ;. such that w; < 0 and w;, > 0. Moreover, [ has
no other extrema on ¢V—1RA(%), unless 4 = 0.

Proof: The function u— |e(tT®WA(2)|2 is strictly convex along the imag-
inary axis, and constant along the real axis. Therefore, it has at most
one extremum, and it is the minimum. It has minimum if and only if
Iim|e(t+f’“b)f4(z)|2 = oo as t— =+ oo, which happens if and only if w; < O
and wy, > 0 for some k,[. =
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Extrema of the length function on Gc-orbits

THEOREM: Let G C U(n) be a Lie group acting on a complex vector space
V = C", equipped with the standard Hermitian structure h, and G¢ C GL(n,C)
its complexification. Let go = Lie(Gg) = g ®r C. Consider the function
¢ . gc — R taking g to I(e9z). Then ¢ is constant in real direction,
convex in imaginary direction, and satisfies 5| (u)(2)[2 = 4h(u(z), u(2))
where u € imgc.

Proof: Write v € I(u(n)) in an appropriate orthonormal basis zq,....,zn as

u(x;) = wir;, w; € R. Let z = Y azx;. Then %|go(u)(z)|2 = 2 w;|z;]? =
2

2h(u(2), 2), and L5 |o(u)(2)[? = 4h(u(z),u(z)).

COROLLARY 1: Either the function [ has no extremal points on the
orbit G¢ -z, or [ has a minimum. In the second case, the set of points on
Gc where [ has a minimum is an orbit of G. =
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Stable and unstable orbits

DEFINITION: Let G Cc U(n) be a Lie group acting on a complex vector space
V = C", equipped with the standard Hermitian structure, and G¢ C GL(n,C)
its complexification. An orbit G¢ -2z, z # 0 is called stable if [ reaches
minimum on G¢-z, unstable if O belongs to the closure of G¢-z, and (strictly)
semistable if if it is not stable and not unstable.

THEOREM: Let G C U(V) be a group acting on a complex Hermitian vector
space V = C", and z € V\O. Then an orbit G¢ - z is stable if and only
If it intersects the zero set of the moment map u(v,z) = Liey,(1)(2).
Moreover, G acts on G¢ - zNp~1(0) transitively.

Proof: Extrema of [ on G¢-z are its minima because [ is convex. The extrema
of [ are zero set of u because u(v,z) = Liey,(I)(z). The set of extrema is one
G-orbit by Corollary 1. m
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Hilbert-Mumford criterion of stability

EXERCISE: Let p: U(1) — End(V), V = C" be a complex Hermitian
representation of U(1). Then there exists an orthonormal basis z1, ...,z
in V such that ¢(z;) = /-1 27w,;z;, where w; € Z are integer numbers called
the weights of the action.

Proof: Since the action is unitary, p(t) is diagonalizable. The numbers w; are
integer because p|\/_—1R factorizes through U(1). =

THEOREM: Let G = U(1) act on a complex Hermitian vector space (V =
C" h), Gc = C* the corresponding complex Lie group, and z € V a non-
zero vector, z = ) oy x;,, where o are all non-zero. Consider the weight
decomposition of the generator of this action: A(z;) = /-1 27mw;z;. Then

e Gc -z Is unstable if and only if all w;, are positive or negative,

e G -z Is stable if and only If some w;, are positive while others are
negative.

10



Symplectic geometry, lecture 15 M. Verbitsky

e GG¢-z is strictly semistable if some wy, vanish and all others are positive
or negative.

Proof: If some w;, are positive while others are negative, one has liMjm 4 etv=14(2)| =
oo, hence [ reaches the minimum somewhere on the imaginary axis.

If all weights are positive or negative, one has liMim o0 |etY "1 4(2)| = o and
iMim s oo €Y1 4(2) = 0 or vice versa, and the orbit is unstable.

If all weights are > 0 or < 0, with one of the weights equal to 0, one has

iMim o €V ™14(2)] = o0 and limims o etV 14(2) = 2, and the orbit is
strictly semistable. =
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Set of stable orbits

For G0 = C*, the following theorem immediately follows from the
Hilbert-Mumford criterion.

PROPOSITION: Let G C U(n) be a Lie group acting on a complex Hermi-
tian vector space (V =C"™ h), and G¢ C GL(n,C) its complexification, and Vj
the set of all z € V such that the orbit G¢ -z is stable. Then Vs C V is open.

Proof. Step 1: Let Bp C V be a closed ball of radius R. The orbit z €
Vs is stable if and only if for each R & R>O, the intersection ER N Ge - 2
is compact for all R € R>9. Indeed, if it is compact, I reaches minimum
somewhere on G¢ - z. On the other hand, of [ reaches its minimum, one
has liMim s tos eV 1A(2)| = oo for all /=1 A € v/—1g, hence BrN Ge - z is
compact.

Step 2: If liMimiotosletY 1 4(2)] = oo for all /=1 A € /=1 g, one has
iMim s too €tV 1 A(z + u)| = oo for u sufficiently small, hence this condition
isopeninzeV. m
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Geometric Invariant Theory

REMARK: The following theorem is identifies “the GIT reduction” (taking
a Ge-quotient of the union of all stable orbits) and the symplectic reduction.

THEOREM: Let G C U(n) be a Lie group acting on a complex Hermitian
vector space (V =C", h), and G¢ C GL(n,C) its complexification. Denote by
p V. — g" the moment map, u(g,z) := (Liey,1)(2). Then an orbit G¢ -2
is stable if and only if G¢-znNp~1(0) #= 0. Moreover, G¢ - z N p~1(0) is
precisely one G-orbit, and ;~1(0)/G = Vs/G¢, where Vs C V is the union of
all stable orbits.

Proof: G¢-z is stable if and only if Ge-zNp~1(0) #% 0 because p~1(0) intersects
the orbit in the points where the length [ is minimal. This intersection set is
precisely one Gorbit, which gives 1~1(0)/G = V5/Gc. =
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