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Moment maps (reminder)

DEFINITION: (M,ω) be a symplectic manifold, and G a Lie group acting
on M by symplectomorphisms. A moment map µ of this action is a linear
map g−→ C∞M associating to each g ∈ G its Hamiltonian.

REMARK: It is more convenient to consider µ as an element of g∗⊗RC
∞M ,

or (and this is most standard) as a function with values in g∗.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M −→ g∗ is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g∗.

REMARK: M
µ−→ g∗ is a moment map iff for all g ∈ g, 〈dµ, g〉 = iρg(ω).

Therefore, a moment map is defined up to a constant g∗-valued func-
tion. An equivariant moment map is is defined up to a constant g∗-valued
function which is G-invariant, that is, up to addition of a central vector
c ∈ g∗.

CLAIM: An equivariant moment map exists whenever H1(G, g∗) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists. Further on, all moment maps will be tacitly considered
equivariant.
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Weinstein-Marsden theorem (reminder)

DEFINITION: (Weinstein-Marsden) (M,ω) be a symplectic manifold, G a
compact Lie group freely acting on M by symplectomorphisms, M

µ−→ g∗

an equivariant moment map, and c ∈ g∗ a central element. The quotient
µ−1(c)/G is called symplectic reduction of M , denoted by M//G.

CLAIM: The symplectic quotient M//G is a symplectic manifold of di-
mension dimM − 2 dimG.
Proof. Step 1: Tx(µ−1(c)) = dµ−1(0). However, the space 〈dµ, g〉 ⊂ Λ1M

is ω-dual to the space τ(g) of vector fields tangent to the G-action, hence
dµ−1(c) = τ(g)⊥.

Step 2: Since µ is G-equivariant, G preserves µ−1(c), hence τ(g) ⊂ dµ−1(0).
This implies that τ(g) ⊂ TM is isotropic (that is, ω

∣∣∣τ(g) = 0). Its ω-

orthogonal complement in TxM is Tx(µ−1(c)) (Step 1).

Step 3: Consider the characteristic foliation F on µ−1(c). It is a bundle
because µ−1(c) ⊂M is coisotropic. From Step 2 we obtain that F = τ(g).

Step 4: Since ω
∣∣∣µ−1(c) is closed, it satisfies Liev(ω) = 0 for all v ∈ F. This

implies that it is basic, that is, lifted from the leaf space of characteristic
foliation, identified with M//G.
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Holomorphic vector fields

DEFINITION: A holomorphic vector field is a vector field X ∈ TM sat-

isfying LieX I = 0, that is, such that the corresponding diffeomorphism flow

etX is holomorphic.

REMARK: Let (M, I) be a compact complex manifold. Then the group of

biholomorphisms of M is a Lie group whose Lie algebra is the space of (real)

holomorphic vector fields.

REMARK: It is not hard to see that I(X) is holomorphic whenever X is

holomorphic (prove this). Then X −→ I(X) defines the complex struc-

ture on the Lie algebra of holomorphic vector fields.
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Symplectic reduction and a Kähler potential (reminder)

DEFINITION: Let dc := IdI−1. Kähler potential on a Kähler manifold

(M,ω) is a function ψ such that ddcψ = ω.

PROPOSITION: Let G be a real Lie group acting on a Kähler manifold

M by holomorphic isometries, and ψ a G-invariant Kähler potential. Then

the moment map g ×M
µg−→ R can be written as g,m−→ LieIv ψ, where

v = τ(g) ∈ TM is the tangent vector field associated with g ∈ g.

Proof: Since ψ is G-invariant, and I is G-invariant, we have 0 = Liev dcψ =

iv(ddcψ) + d(ivdcψ). Using ω = ddcψ, we rewrite this equation as ivω =

−d(〈dcψ, v〉), giving an equation for the moment map µg = −〈dcψ, v〉. Acting

by I on both sides, we obtain µg = 〈dψ, Iv〉 = LieIv ψ.

COROLLARY: Let V be a Hermitian representation of a compact Lie group

G. Then the corresponding moment map can be written as µg(v) =

LieIg |v|2 = 1
4〈v, Ig(v)〉.
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Moment map and extrema on 1-parametric orbit

REMARK: Let G ⊂ U(n) be a Lie group acting on a complex vector space
V = Cn, equipped with the standard Hermitian structure h, and GC ⊂ GL(n,C)
its complexification. Denote by µ : V −→ g∗ the moment map. Since µg(v) =
LieIg |v|2, a vector z ∈ V belongs to µ−1(0) if and only if the function
l : GC · z −→ R, l(z) = |z|2 on the orbit GC has extremum in z. It turns
own that z −→ l(z) is convex, in the following sense.

CLAIM: Let V = Cn, A ∈ u(V ) be an anti-Hermitian endomorphism, and
GA := etA ⊂ GL(V ), t ∈ C the corresponding 1-parametric subgroup. Then
d2

du2|e(t+u)A(z)|2 = 4|A(etA(z))|2, when u ∈
√
−1 R.

Proof: Let A be diagonalized in an orthonormal basis x1, ..., xn ∈ R, such that
A(xi) =

√
−1wixi, wi ∈ R, and h the Hermitian form. The operator etA(xi) =

e
√
−1 twixi is an isometry when t is real, and is Hermitian self-adjoint when t

is imaginary. This gives d
du|e

(t+u)A(z)|2 = 2h(Ae(t)A(z), e(t)A(z)). Taking the

derivative in u once again, we obtain d2

du2|e(t+u)A(z)|2 = 2h(Ae(t)A(z), Ae(t)A(z)).

COROLLARY: The function l is convex on GA, and strictly convex in
imaginary direction, unless A = 0.
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Moment map and extrema on 1-parametric orbit

COROLLARY: Let A be diagonalized in an orthonormal basis x1, ..., xn ∈ R,

such that A(xi) =
√
−1 wixi, wi ∈ R, and z =

∑
αixi, with all αi 6= 0. Then

the function l has a minimum on the line e
√
−1 RA(z) if and only if there

are two basis vectors xl, xk such that wl < 0 and wk > 0. Moreover, l has

no other extrema on e
√
−1 RA(z), unless A = 0.

Proof: The function u−→ |e(t+u)A(z)|2 is strictly convex along the imag-

inary axis, and constant along the real axis. Therefore, it has at most

one extremum, and it is the minimum. It has minimum if and only if

lim |e(t+u)A(z)|2 = ∞ as t−→ ± ∞, which happens if and only if wl < 0

and wk > 0 for some k, l.
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Extrema of the length function on GC-orbits

THEOREM: Let G ⊂ U(n) be a Lie group acting on a complex vector space

V = Cn, equipped with the standard Hermitian structure h, and GC ⊂ GL(n,C)

its complexification. Let gC = Lie(GC) = g ⊗R C. Consider the function

ϕ : gC −→ R taking g to l(egz). Then ϕ is constant in real direction,

convex in imaginary direction, and satisfies d2

du2|ϕ(u)(z)|2 = 4h(u(z), u(z))

where u ∈ im gC.

Proof: Write u ∈ I(u(n)) in an appropriate orthonormal basis x1, ...., xn as

u(xi) = wixi, wi ∈ R. Let z =
∑
αixi. Then d

du|ϕ(u)(z)|2 = 2
∑
wi|xi|2 =

2h(u(z), z), and d2

du2|ϕ(u)(z)|2 = 4h(u(z), u(z)).

COROLLARY 1: Either the function l has no extremal points on the

orbit GC · z, or l has a minimum. In the second case, the set of points on

GC where l has a minimum is an orbit of G.
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Stable and unstable orbits

DEFINITION: Let G ⊂ U(n) be a Lie group acting on a complex vector space

V = Cn, equipped with the standard Hermitian structure, and GC ⊂ GL(n,C)

its complexification. An orbit GC · z, z 6= 0 is called stable if l reaches

minimum on GC·z, unstable if 0 belongs to the closure of GC·z, and (strictly)

semistable if if it is not stable and not unstable.

THEOREM: Let G ⊂ U(V ) be a group acting on a complex Hermitian vector

space V = Cn, and z ∈ V \0. Then an orbit GC · z is stable if and only

if it intersects the zero set of the moment map µ(v, z) = LieIv(l)(z).

Moreover, G acts on GC · z ∩ µ−1(0) transitively.

Proof: Extrema of l on GC ·z are its minima because l is convex. The extrema

of l are zero set of µ because µ(v, z) = LieIv(l)(z). The set of extrema is one

G-orbit by Corollary 1.
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Hilbert-Mumford criterion of stability

EXERCISE: Let ρ : U(1)−→ End(V ), V = Cn be a complex Hermitian

representation of U(1). Then there exists an orthonormal basis x1, ..., xn

in V such that g(xi) =
√
−1 2πwixi, where wi ∈ Z are integer numbers called

the weights of the action.

Proof: Since the action is unitary, ρ(t) is diagonalizable. The numbers wi are

integer because ρ
∣∣∣√−1 R factorizes through U(1).

THEOREM: Let G = U(1) act on a complex Hermitian vector space (V =

Cn, h), GC = C∗ the corresponding complex Lie group, and z ∈ V a non-

zero vector, z =
∑
αlkxlk, where αlk are all non-zero. Consider the weight

decomposition of the generator of this action: A(xi) =
√
−1 2πwixi. Then

• GC · z is unstable if and only if all wlk are positive or negative,

• GC · z is stable if and only if some wlk are positive while others are

negative.
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• GC ·z is strictly semistable if some wlk vanish and all others are positive

or negative.

Proof: If some wlk are positive while others are negative, one has limim t→±∞ |et
√
−1A(z)| =

∞, hence l reaches the minimum somewhere on the imaginary axis.

If all weights are positive or negative, one has limim t→∞ |et
√
−1A(z)| =∞ and

limim t→−∞ e
t
√
−1A(z) = 0 or vice versa, and the orbit is unstable.

If all weights are > 0 or 6 0, with one of the weights equal to 0, one has

limim t→∞ |et
√
−1A(z)| = ∞ and limim t→−∞ e

t
√
−1A(z) = z, and the orbit is

strictly semistable.
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Set of stable orbits

For GC = C∗, the following theorem immediately follows from the

Hilbert-Mumford criterion.

PROPOSITION: Let G ⊂ U(n) be a Lie group acting on a complex Hermi-

tian vector space (V = Cn, h), and GC ⊂ GL(n,C) its complexification, and Vs

the set of all z ∈ V such that the orbit GC · z is stable. Then Vs ⊂ V is open.

Proof. Step 1: Let BR ⊂ V be a closed ball of radius R. The orbit z ∈
Vs is stable if and only if for each R ∈ R>0, the intersection BR ∩ GC · z
is compact for all R ∈ R>0. Indeed, if it is compact, l reaches minimum

somewhere on GC · z. On the other hand, of l reaches its minimum, one

has limim t→±∞ |et
√
−1A(z)| = ∞ for all

√
−1 A ∈

√
−1 g, hence BR ∩ GC · z is

compact.

Step 2: If limim t→±∞ |et
√
−1A(z)| = ∞ for all

√
−1 A ∈

√
−1 g, one has

limim t→±∞ |et
√
−1A(z + u)| = ∞ for u sufficiently small, hence this condition

is open in z ∈ V .
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Geometric Invariant Theory

REMARK: The following theorem is identifies “the GIT reduction” (taking

a GC-quotient of the union of all stable orbits) and the symplectic reduction.

THEOREM: Let G ⊂ U(n) be a Lie group acting on a complex Hermitian

vector space (V = Cn, h), and GC ⊂ GL(n,C) its complexification. Denote by

µ : V −→ g∗ the moment map, µ(g, z) := (LieIg l)(z). Then an orbit GC · z
is stable if and only if GC · z ∩ µ−1(0) 6= 0. Moreover, GC · z ∩ µ−1(0) is

precisely one G-orbit, and µ−1(0)/G = Vs/GC, where Vs ⊂ V is the union of

all stable orbits.

Proof: GC·z is stable if and only if GC·z∩µ−1(0) 6= 0 because µ−1(0) intersects

the orbit in the points where the length l is minimal. This intersection set is

precisely one Gorbit, which gives µ−1(0)/G = Vs/GC.
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