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Complexification of a manifold

DEFINITION: Let M be a complex manifold, equipped with an anticom-

plex involution ι. The fixed point set MR of ι is called a real analytic

manifold, and a germ of M in MR is called a complexification of MR.

QUESTION: What is a complexification of a Kähler manifold (con-

sidered as real analytic variety)?

THEOREM: (D. Kaledin, B. Feix) Let M be a real analytic Kähler mani-

fold, and MC its complexification. Then MC admits a hyperkähler struc-

ture, determined uniquely and functorially by the Kähler structure on M .

QUESTION: What is a complexification of a hyperkähler manifold?

THIS IS THE MAIN SUBJECT OF TODAY’S TALK.

(A joint work with Marcos Jardim).
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Plan of the talk:

1. Trisymplectic structures on a vector space (linear algebra).

2. Trisymplectic structures on a manifold (differential geometry).

3. Trisymplectic structure on the space of rational lines in the twistor

space (hyperkähler geometry).

4. Applications to the instanton spaces.
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Trisymplectic structure on a vector space

DEFINITION: A trisymplectic structure on a complex vector space of
dimension 2n is a 3-dimensional space Ω ⊂ Λ2V of complex linear 2-forms,
such that any η ∈ Ω has rank 2n, n or 0.

REMARK: It is easy to see that Ω contains a symplectic form.

PROPOSITION: Given two symplectic forms ω1, ω2 ∈ Ω, consider the
map ϕΩ1,Ω2

:= ω1 ◦ ω−1
2 ∈ End(V ). Then ϕΩ1,Ω2

can be expressed in an
appropriate basis by the matrix

ϕω1,ω2 =



λ 0 0 . . . 0 0 0
0 λ 0 . . . 0 0 0
0 0 λ . . . 0 0 0
... ... ... . . . ... ... ...
0 0 0 . . . λ′ 0 0
0 0 0 . . . 0 λ′ 0
0 0 0 . . . 0 0 λ′


,

with the eigenspaces of equal dimension.

THEOREM: Let (V,Ω) be a be a trisymplectic vector space, and H ⊂
End(V ) the algebra generated by ϕΩ1,Ω2

, for all ω1, ω2 ∈ Ω. Then H is
isomorphic to the matrix algebra Mat(2), acting on V in a standard
way.

4



Trisymplectic manifolds M. Verbitsky

Trisymplectic structures as Mat(2)-representations

DEFINITION: Let V be a complex vector space with the standard action

of the matrix algebra Mat(2), i.e. V ∼= V0⊗C2 and Mat(2) acts only through

the second factor.

CLAIM: Consider the natural SL(2)-action on V induced by Mat(2), and

extend it multiplicatively to all tensor powers of V . Let g ∈ Sym2
C(V ) be an

SL(2)-invariant, non-degenerate 2-form on V , and {I, J,K} a quaternionic

basis in Mat(2) Then

g(x, Iy) = g(Ix, I2y) = −g(Ix, y)

hence the form ΩI(·, ·) := g(·, I·) is a symplectic form, obviously non-

degenerate; the forms ΩJ, ΩK have the same properties. Let Ω :=

〈ΩI ,ΩJ ,ΩK〉. It turns out that this construction gives a trisymplec-

tic structure, and all trisymplectic structures can be obtained in this

way.
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Trisymplectic structures as Mat(2)-representations II

THEOREM: Let V be a vector space equipped with a standard action

of the matrix algebra H ∼= Mat(2), and {I, J,K} a quaternionic basis in

Mat(2). Consider the corresponding action of SL(2) on the tensor powers

of V . Then, for any SL(2)-invariant symmetric form g, denote by Ω the

space generated by ΩI := g(·, I·), ΩJ, ΩK Then Ω is a trisymplectic

structure on V , with the operators Ω−1
K ◦ ΩJ, Ω−1

K ◦ ΩI generating

H. Moreover, for each trisymplectic structure Ω on V , there exists a

unique (up to a constant) SL(2)-invariant non-degenerate quadratic

form g inducing Ω as above.
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Trisymplectic manifold

DEFINITION: A trisymplectic structure on a complex 2n-manifold M is
a triple of holomorphic symplectic forms Ω1, Ω2, Ω3, such that any linear
combination of these forms has rank 2n, n or 0. We denote by Ω the
3-dimensional space generated by Ωi. Obviously, Ω defines a trisymplectic
structure at each point of M .

REMARK: Let Ω1,Ω2 ∈ Ω. Consider P (t) := det(Ω1 + tΩ2) as a poly-
nomial of t. Since the eigenvalues of Ω1 + tΩ2 occur in n-tuples, P (t) =
Q(t)n/2, where Q is a quadratic polynomial.

CLAIM: There exists a non-degenerate quadratic form Q on Ω, unique up
to a constant, such that Ω ∈ Ω is degenerate if and only if Q(Ω,Ω) = 0.

COROLLARY: For each degenerate Ω ∈ Ω, its radical ker Ω is a sub-
bundle of codimension n in TM . Moreover, for all non-proportional
degenerate Ω,Ω′ ∈ Ω, one has TM = ker Ω⊕ ker Ω′.

REMARK: Since Ω is closed, ker Ω is involutive: [ker Ω, ker Ω] ⊂ ker Ω.

REMARK: Similar to web geometry!
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Holomorphic 3-webs.

DEFINITION: Let M be a complex manifold, and S1, S2, S3 integrable,

pairwise transversal holomorphic sub-bundles in TM , of dimension 1
2 dimM .

Then (S1, S2, S3) is called a holomorphic 3-web on M .

REMARK: On smooth manifolds, the theory of 3-webs is due to Chern

and Blaschke (1930-ies).

THEOREM: (Ph. D. thesis of Chern, 1936) Let S1, S2, S3 be a holo-

morphic 3-web on a complex manifold M . Then there exists a unique

holomorphic connection ∇ on M which preserves the sub-bundles Si,

and such that its torsion T satisfies T (S1, S2) = 0.
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Holomorphic SL(2)-webs.

DEFINITION: A holomorphic 3-web S1, S2, S3 on a complex manifold

M is called an SL(2)-web if

• the projection operators Pi,j of TM to Si along Sj generate the

standard action of Mat(2) on C2 ⊗ Cn,

• for any nilpotent v ∈Mat(2), the bundle v(TM) ⊂ TM is involutive.

REMARK: The set of v ∈Mat(2) with rk v = 1 satisfies PV = CP1, hence

the sub-bundles v(TM) ⊂ TM are parametrized by CP1. An SL(2)-web

is determined by a set of sub-bundles St ⊂ TM, t ∈ CP1, which are

pairwise transversal and involutive.

THEOREM: (Jardim–V.) Let St ⊂ TM , t ∈ CP1 be an SL(2)-web on

M , and t1, t2, t3 ∈ CP1 distinct points. Then the Chern connection of a

3-web St1, St2, St3 is a torsion-free affine holomorphic connection with

holonomy in GL(n,C) acting on C2n = Cn ⊗ C2, and independent from

the choice of ti.
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Trisymplectic manifolds

THEOREM: (Jardim–V.) For any trisymplectic structure on M , the bun-

dles ker Ω ⊂ TM define an SL(2)-web. Moreover, the Chern connection

of this SL(2)-web preserves all forms in Ω.

REMARK: In this case, the Chern connection has holonomy in Sp(n,C)

acting on C2n ⊗ C2.

REMARK: For a trisymplectic structure Ω, it is just the Levi-Civita

connection of the holomorphic Riemannian form associated with Ω.

THE REST OF TODAY’S TALK IS EXAMPLES AND APPLICA-

TIONS OF TRISYMPLECTIC GEOMETRY
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel trans-

lation along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths)

is called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold

which has holonomy in Sp(n) (the group of all endomorphisms preserving

I, J,K).
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Twistor space

DEFINITION: Induced complex structures on a hyperkähler manifold
are complex structures of form S2 ∼= {L := aI+bJ+cK, a2 +b2 +c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic
a, b, c, (M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a
complex manifold obtained by gluing these complex structures into
a holomorphic family over CP1. More formally:

Let Tw(M) := M × S2. Consider the complex structure Im : TmM → TmM

on M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on
S2 = CP1.

The operator ITw = Im⊕ IJ : TxTw(M)→ TxTw(M) satisfies I=
Tw− Id. It

defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = Hn, Tw(M) = Tot(O(1)⊕n) ∼= CP2n+1\CP2n−1

REMARK: For M compact, Tw(M) never admits a Kähler structure.

12



Trisymplectic manifolds M. Verbitsky

Rational curves on Tw(M).

REMARK: The twistor space has many rational curves. In fact, it is
rationally connected (Campana).

DEFINITION: Denote by Sec(M) the space of holomorphic sections
of the twistor fibration Tw(M)

π−→ CP1.

DEFINITION: For each point m ∈ M , one has a horizontal section
Cm := {m} × CP1 of π. The space of horizontal sections is denoted
Sechor(M) ⊂ Sec(M)

REMARK: The space of horizontal sections of π is identified with M .
The normal bundle NCm = O(1)dimM . Therefore, some neighbourhood
of Sechor(M) ⊂ Sec(M) is a smooth manifold of dimension 2 dimM.

DEFINITION: A twistor section C ⊂ Tw(M) is called regular,
if NC = O(1)dimM .

CLAIM: For any I 6= J ∈ CPn, consider the evaluation map Sec(M)
EI,J−→

(M, I) × (M,J), s−→ s(I) × s(J). Then EI,J is an isomorphism around
the set Sec0(M) of regular sections.
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Complexification of a hyperkähler manifold.

REMARK: Consider an anticomplex involution Tw(M)
ι−→ Tw(M) map-

ping (m, t) to (m, i(t)), where i : CP1 −→ CP1 is a central symmetry. Then

Sechor(M) = M is a component of the fixed set of ι.

COROLLARY: Sec(M) is a complexification of M.

QUESTION: What are geometric structures on Sec(M)?

Answer 1: For compact M , Sec(M) is holomorphically convex (Stein if

dimM = 2).

Answer 2: . Let I ∈ CP1, and evI : Sec0(M)−→ (M, I) be an evaluation

map putting S ∈ Sec0(M) to S(I). Then the 2-forms ev∗IΩI, I ∈ CP1

generate a trisymplectic structure on Sec0(M).

Answer 3: The space Sec0(M) admits a holomorphic, torsion-free

connection with holonomy Sp(n,C) acting on C2n ⊗ C2.

14



Trisymplectic manifolds M. Verbitsky

Holomorphic bundles on CP3 and twistor sections

DEFINITION: An instanton on CP2 is a stable bundle B with c1(B) = 0.
A framed instanton is an instanton equipped with a trivialization B|C for
a line C ⊂ CP2.

THEOREM: (Nahm, Atiyah, Hitchin) The space Mr,c of framed instan-
tons on CP2 is smooth, connected, hyperkähler.

THEOREM: There is a correspondence between the holomorphic bun-
dles on Tw(H) = CP3\CP1, with appropriate stability and framing condi-
tions, and twistor sections in Sec(Mr,c).

It is used to prove the following longstanding conjecture.

THEOREM: (Jardim–V.) The space Mr,c of framed mathematical
instantons on CP3 is smooth.

REMARK: To prove that Mr,c is smooth, one could use hyperkähler
reduction. To prove that Mr,c is smooth, we develop trihyperkähler re-
duction, which is a reduction defined on trisymplectic manifolds.
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Mathematical instantons

DEFINITION: A mathematical instanton bundle on CPn is a locally
free coherent sheaf E on CPn with c1(E) = 0 satisfying the following
cohomological conditions:
1. for n > 2, H0(E(−1)) = Hn(E(−n)) = 0;
2. for n > 3, H1(E(−2)) = Hn−1(E(1− n)) = 0;
3. for n > 4, Hp(E(k)) = 0, 2 6 p 6 n− 2 and ∀k;
The integer c = −χ(E(−1)) = h1(E(−1)) = c2(E) is called the charge
of E. A framed instanton is a mathematical instanton equipped with a
trivialization of B|` for some fixed line ` = CP1 ⊂ CPn.

REMARK: Mathematical instantons of rank 2 are always stable (follows
from the monad description below).

REMARK: The space Mr,c of framed instantons with charge c and rank r
is a principal SL(2)-bundle over the space of all mathematical instantons
trivial on `.

THEOREM: (Jardim–V.) The space Mc of framed rank r mathematical
instantons on CP3 is naturally identified with the space of twistor
sections Sec(Mr,c).
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Monads and mathematical instantons

DEFINITION: A monad is a sequence of vector bundles 0−→A
i−→

B
j−→ C −→ 0 which is exact in the first and the last term. The coho-

mology of a monad is ker j/ im i.

THEOREM: Let B be a holomorphic bundle of rank 2 on CPn, c1(B) = 0,

c2(B) = c. Then the following conditions are equivalent.

(i) B is a mathematical instanton.

(ii) B is a cohomology of a monad

0−→ V ⊗C OCP k(−1)−→W ⊗C OCP k −→ U ⊗C OCP k(1)−→ 0

with dimV = dimU = c and dimW = 2c+ 2.
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ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions
c and r, respectively. The ADHM data is maps

A,B ∈ End(V ), I ∈ Hom(W,V ), J ∈ Hom(V,W ).

We say that ADHM data is
stable,

if there is no subspace S ( V such that A(S), B(S) ⊂ S and I(W ) ⊂ S;
costable,

if there is no nontrivial subspace S ⊂ V such that A(S), B(S) ⊂ S and
S ⊂ ker J;

regular,
if it is both stable and costable.

The ADHM equation is [A,B] + IJ = 0.

THEOREM: (Atiyah, Drinfeld, Hitchin, Manin) Framed rank r, charge c

instantons on CP2 are in bijective correspondence with the set of equiv-
alence classes of regular ADHM solutions. In other words, the moduli
of instantons on CP2 is identified with moduli of the corresponding
quiver representation.
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The multi-dimensional ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions

c and r, respectively. The d-dimensional ADHM data is maps

Ak, Bk ∈ End(V ), Ik ∈ Hom(W,V ), Jk ∈ Hom(V,W ), (k = 0, . . . , d)

Choose homogeneous coordinates [z0 : · · · : zd] on CP d and define

Ã := A0 ⊗ z0 + · · ·+Ad ⊗ zd and B̃ := B0 ⊗ z0 + · · ·+Bd ⊗ zd.

We say that d-dimensional ADHM data is

globally regular, if (Ãp, B̃p, Ĩp, J̃p) is regular for every p ∈ CP d. The d-

dimensional ADHM equation is [Ãp, B̃p] + ĨpJ̃p = 0, for all p ∈ CP d

THEOREM: (Marcos Jardim, Igor Frenkel) Let Cd(r, c) denote the set

of globally regular solutions of the d-dimensional ADHM equation. Then

there exists a 1-1 correspondence between equivalence classes of

globally regular solutions of the d-dimensional ADHM equations and

isomorphism classes of rank r instanton bundles on CPd+2 framed at

a fixed line `, where dimW = rk(E) and dimV = c2(E).
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The multi-dimensional ADHM construction for d = 1

For d = 1, we obtain that the d-dimensional ADHM solutions are families of

solutions of ADHM parametrized by CP3. Also, the space of 1-dimensional

ADHM data is the space of sections of

O(1)⊗C

[
Hom(W,V )⊕Hom(V,W )⊕ End(V )⊕ End(V )

]

over CP1, that is, the twistor space of a qquaternionic vector space U =

Hom(W,V )⊕Hom(V,W )⊕End(V )⊕End(V ). Now, the hyperkähler struc-

ture on 0-dimensional ADHM solutions for each p ∈ CP1 is compatible with

the hyperkähler structure on U , because the space of 0-dimensional ADHM

solutions is obtained from U by hyperkähler reduction. This is used to

prove the theorem about instantons on CP3 and twistor sections.
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