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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= g(Ia)! Wy .= g(J7)’ WK = g(K7)

REMARK: This is equivalent to VI = VJ = VK = 0: the parallel trans-
lation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, x € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths)
is called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold
which has holonomy in Sp(n) (the group of all endomorphisms preserving
I,J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
QR =wj+ vV—1wg is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

EXAMPLE: An even-dimensional complex torus.

REMARK: Take a symmetric square SmeT, with a natural action of T,
and let T12l be a blow-up of a singular divisor. Then T2l is naturally
isomorphic to the Kummer surface 7/+1.

DEFINITION: A K3 surface is a complex 2-manifold obtained as a de-
formation of a Kummer surface.

REMARK: A K3 surface is always hyperkahler. Any hyperkahler man-
ifold of real dimension 4 is isomorphic to a torus or a K3 surface.
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Complexification of a manifold

DEFINITION: Let M be a complex manifold, equipped with an anticom-
plex involution . The fixed point set My of ¢ is called a real analytic
manifold, and a germ of M in Mgy is called a complexification of Mp.

QUESTION: What is a complexification of a Kahler manifold (con-
sidered as real analytic variety)?

THEOREM: (D. Kaledin, B. Feix) Let M be a real analytic Kahler mani-

fold, and M its complexification. Then M admits a hyperkahler struc-
ture, determined uniquely and functorially by the Kahler structure on M.

QUESTION: What is a complexification of a hyperkahler manifold?
THIS IS THE MAIN SUBJECT OF TODAY'S TALK.

(A joint work with Marcos Jardim).
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Twistor space

DEFINITION: Induced complex structures on a hyperkahler manifold
are complex structures of form S2 2 {[ ;= al +bJ+cK, a?+b2+c2=1.}
They are usually non-algebraic. Indeed, if M is compact, for generic
a,b,c, (M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a
complex manifold obtained by gluing these complex structures into
a holomorphic family over cPl. More formally:

Let Tw(M) := M x S2. Consider the complex structure Iy, : TynM — TyM
on M induced by J € S2 ¢ H. Let I; denote the complex structure on
S2 = CP1.

The operator I7y = Im®1;: Tp TW(M) — T Tw(M) satisfies IF,, —Id. It

defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = H?, Tw(M) = Tot(O(1)®n) & cp2r+1\cp2n-1

REMARK: For M compact, Tw(M) never admits a Kahler structure.
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Rational curves on Tw(M).

REMARK: The twistor space has many rational curves. In fact, it is
rationally connected (Campana).

DEFINITION: Denote by Sec(M) the space of holomorphic sections
of the twistor fibration Tw(M) —— CP1.

DEFINITION: For each point m € M, one has a horizontal section
Cm = {m} x CP! of n. The space of horizontal sections is denoted
Secy,, (M) C Sec(M)

REMARK: The space of horizontal sections of = is identified with M.
The normal bundle NCy, = O(1)4MM = Therefore, some neighbourhood
of Secy,. (M) C Sec(M) is a smooth manifold of dimension 2dim M.

DEFINITION: A twistor section C' C Tw(M) is called regular,
if NC = ©(1)dimM,

E
CLAIM: For any I = J € CP"™, consider the evaluation map Sec(M) !
(M,I) x (M,J), s—s(I) xs(J). Then E; ; is an isomorphism around
the set Secy(M) of regular sections.
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Complexification of a hyperkahler manifold.

REMARK: Consider an anticomplex involution Tw(M) — Tw(M) map-
ping (m,t) to (m,i(t)), where i : CP1 — CP1 is a central symmetry. Then
Secy,,-(M) = M is a component of the fixed set of ..

COROLLARY: Sec(M) is a complexification of M.
QUESTION: What are geometric structures on Sec(M)?

Answer 1: For compact M, Sec(M) is holomorphically convex (Stein if
dim M = 2).

Answer 2: The space Secg(M) admits a holomorphic, torsion-free
connection with holonomy Sp(n,C) acting on C2"™ @ C2. This is the
“special holonomy” mentioned in the title of the talk.

REMARK: Merkulov, Schwachhofer: classification of irreducible special
holonomy. Sp(n,C)-action on C2" g C? is non-irreducible.
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Mathematical instantons

DEFINITION: A mathematical instanton on CP3 is a stable rank 2
bundle B with ¢1(B) = 0 and H}(B(-1)) = 0. A framed instanton is a
mathematical instanton equipped with a trivialization of B|, for some fixed
line ¢ = CP! c CP3.

REMARK: The space M, of framed instantons with ¢» = c is a principal
SL(2)-bundle over the space of all mathematical instantons trivial on £.

DEFINITION: An instanton on CP?2 is a stable bundle B with ¢1(B) = 0.
A framed instanton is an instanton equipped with a trivialization B|, for
some fixed point z € CP2.

THEOREM: (Atiyah-Drinfeld-Hitchin-Manin) The space M, . of framed
instantons on CP2 is smooth, connected, hyperkahler.

THEOREM: (Jardim—=V.) The space M. of framed mathematical instan-
tons on CP3 is naturally identified with the space of twistor sections

Sec(Mo ).
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The space of instantons on CP3

CONJECTURE: The space of mathematical instantons is smooth
and connected.

THEOREM: (Grauert-Miillich, Hauzer-Langer) Every mathematical in-
stanton on CP3 is trivial on some line ¢ C CP3.

COROLLARY: The space of mathematical instantons is covered by
Zariski open, dense subvarieties which take form M./SL(2,C).

COROLLARY: To prove that the space of mathematical instantons is
smooth and connected it would suffice to prove it for M.

THEOREM: (Jardim—V.) The space M. is smooth and connected.

REMARK: To prove that M. is smooth, one could use hyperkahler
reduction. To prove that M. is smooth and connected, we develop trihy-
perkahler reduction, which is a reduction defined on manifolds with
holonomy in Sp(n,C) acting C2" @ C2.

We prove that M. is a trihyperkahler quotient of a vector space by a
reductive group action, hence smooth.
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Holomorphic 3-webs.

DEFINITION: Let M be a complex manifold, and S1, So, S3 integrable,
pairwise transversal holomorphic sub-bundles in T'M, of dimension %dim M.
Then (S1,55,S3) is called a holomorphic 3-web on M.

REMARK: On smooth manifolds, the theory of 3-webs is due to Chern
and Blaschke (1930-ies).

THEOREM: (Ph. D. thesis of Chern, 1936) Let S1,S5,53 be a holo-
morphic 3-web on a complex manifold M. Then there exists a unique
holomorphic connection V on M which preserves the sub-bundles S,
and such that its torsion T satisfies T'(S1,S>) = 0.
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Holomorphic SL(2)-webs.

DEFINITION: A holomorphic 3-web on a complex manifold M is called
an SL(2)-web if

e the projection operators P, ; of T'M to S; along S; generate the standard
action of Mat(2) on C2® C",

e for any nilpotent v € Mat(2), the bundle v(TM) C TM is involutive.

REMARK: The set of v € Mat(2) with rkv = 1 satisfies PV = CP1, hence
the sub-bundles v(T'M) C TM are parametrized by CPl. An SL(2)-web
IS determined by a set of sub-bundles S C T'M, t € CcPl, which are
pairwise transversal and involutive.

EXAMPLE: Consider a hyperkidhler manifold M. Let I € CP1, and evy
Seco(M) — (M,I) be an evaluation map putting S € Secog(M) to S(I).
Then ker Devy, I € CP! is an SL(2)-web.

THEOREM: (Jardim—V.) Let S; ¢ TM, t € CP! be an SL(2)-web on
M, and tq,to,t3 € CPl distinct points. Then the Chern connection of a
3-web 5S¢, St,, St; 1S @ torsion-free affine holomorphic connection with
holonomy in GL(n,C) acting on C2" = C" ® C2, and independent from
the choice of ¢,.
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Trisymplectic manifolds

DEFINITION: Let €2 be a 3-dimensional space of holomorphic symplectic
2-forms on a manifold. Suppose that

e () contains a non-degenerate 2-form

e For each non-zero degenerate 2 € €2, one has rk2 = %dim V.

Then € is called a trisymplectic structure on M.

REMARK: The bundles ker 2 are involutive, because €2 is closed.

REMARK: This notion is similar to hypersymplectic structures (which
are a triple of closed forms on a real manifold with the same rank condi-
tion).

THEOREM: (Jardim—V.) For any trisymplectic structure on M, the bun-
dles kerQ2 C T'M define an SL(2)-web. Moreover, the Chern connection
of this SL(2)-web preserves all forms in (2.

REMARK: In this case, the Chern connection has holonomy in Sp(n, C)
acting on C2" @ C=2.
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Trisymplectic structure on Secyg(M)

EXAMPLE: Consider a hyperkdhler manifold M. Let I € CP1, and ev; :
Seco(M) — (M,I) be an evaluation map putting S € Seco(M) to S(I).
Denote by €2; the holomorphic symplectic form on (M, I). Then ev;<y,
I € CPl generate a trisymplectic structure.

COROLLARY: Secg(M) is equipped with a holomorphic, torsion-free
connection with holonomy in Sp(n,C).
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Hyperkahler reduction

DEFINITION: Let G be a compact Lie group acting on a hyperkahler
manifold M by hyperkahler isometries. A hyperkahler moment map is a
G-equivariant smooth map u: M — g® R3 such that (du;(v),€) = w;(£*,v),
for every v € TM, £ € g and ¢+ = 1,2,3, where w; is one the the Kahler
forms associated with the hyperkahler structure.

DEFINITION: The quotient manifold M /G = n=1(&1,£0,€3)/G is called
the hyperkahler quotient of M.

THEOREM: (Hitchin, Karlhede, Lindstrom, RocCek) The quotient M /G
IS hyperkaehler.
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Trihyperkahler reduction

DEFINITION: A trisymplectic moment map pu¢ : M — g*®Qp 2" takes
vectors Q € Q,g9g € g = Lie(G) and maps them to a holomorphic function
f € Oz, such that df = 2.9, where €219 denotes the contraction of £2 and
the vector field g

DEFINITION: Let (M,(2,S;) be a trisymplectic structure on a complex
manifold M. Assume that M is equipped with an action of a compact Lie
group G preserving €2, and an equivariant trisymplectic moment map

ne - M—>g*®RQ*

Let ;1,(_:1(0) be the corresponding level set of the moment map. Consider
the action of the complex Lie group G¢ on uél(c). Assume that it is proper
and free. Then the quotient uél(c)/G@ is @ smooth manifold called the
trisymplectic quotient of (M, €, S;), denoted by M J/G.

THEOREM: Suppose that the restriction of {2 to g C T'M is non-degenerate.
Then M /G trisymplectic.
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Hyperholomorphic connections

REMARK: Let M be a hyperkahler manifold. The group SU(2) of
unitary quaternions acts on A*(M) multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle B
over M is a Hermitian connection with SU(2)-invariant curvature © ¢
A2(M) ® End(B).

REMARK: Since the invariant 2-forms satisfy /\Q(M)SU(Q) = Nrecpl A}’l(M),
a hyperholomorphic connection defines a holomorphic structure on

B for each I induced by quaternions.

REMARK: Let M be a compact hyperkahler manifold. Then SU(2) pre-
serves harmonic forms, hence acts on cohomology.
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Hyperholomorphic bundles and twistor sections

THEOREM: (V., 1995) Let B be a stable bundle on a compact hy-
perkdhler manifold with ¢1(B) and c»(B) SU(2)-invariant. Then B admits
a unique hyperholomorphic connection.

DEFINITION: A stable bundle with ¢1(B) and c»(B) SU(2)-invariant is
called hyperholomorphic.

COROLLARY: The space of deformations of a hyperholomorphic
bundle is a hyperkahler manifold.

COROLLARY: A hyperholomorphic bundle can be lifted to a holo-
morphic bundle 5 on a twistor space.

THEOREM: (Kaledin—V., 1996) The space Secg(Def(B)) admits an
open embedding to a space Def(B) of deformations of B on Tw(M),
and its image is Zariski dense.

REMARK: Let M5 . be the space of framed instantons on C2. The
above theorem gives an embedding from Secg(Mo> ) to the space of
holomorphic bundles on Tw(C?) = CP3\CP!.
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Hyperholomorphic bundles and mathematical instantons

REMARK: Using the monad description of mathematical instantons, we
prove that that the map Secp(Msy ) — M. to the space of mathe-
matical instantons is an isomorphism (Frenkel-Jardim, Jardim-V.).

REMARK: The smoothness of the space Secg(Mo ) = M, follows from
the trihyperkahler reduction procedure:

THEOREM: Let M be flat hyperkahler manifold, and G a compact Lie
group acting on M by hyperkahler automorphisms. Suppose that the
hyperkdahler moment map exists, and the hyperkahler quotient M /G is
smooth. Then there exists an open embedding

Seco(M) /)G LN Seco(M )| G),

which is compatible with the trisymplectic structures on Secq(M) /)G and
Secog(M J|G).

THEOREM: If M is the quiver space which gives M /G = M5 ., W gives
an isomorphism Secqg(M) /J)/G = Secog(M /| G).
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