Stable bundles on $\mathbb{C}P^3$ and special holonomies

Misha Verbitsky

Géométrie des variétés complexes IV

CIRM, Luminy, Oct 26, 2010

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I \cdot, \cdot), \ \omega_J := g(J \cdot, \cdot), \ \omega_K := g(K \cdot, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

EXAMPLE: An even-dimensional complex torus.

REMARK: Take a symmetric square Sym² T, with a natural action of T, and let $T^{[2]}$ be a blow-up of a singular divisor. Then $T^{[2]}$ is naturally isomorphic to the Kummer surface $T/\pm 1$.

DEFINITION: A K3 surface is a complex 2-manifold obtained as a deformation of a Kummer surface.

REMARK: A K3 surface is always hyperkähler. Any hyperkähler manifold of real dimension 4 is isomorphic to a torus or a K3 surface.

Complexification of a manifold

DEFINITION: Let M be a complex manifold, equipped with an anticomplex involution ι . The fixed point set $M_{\mathbb{R}}$ of ι is called a real analytic manifold, and a germ of M in $M_{\mathbb{R}}$ is called a complexification of $M_{\mathbb{R}}$.

QUESTION: What is a complexification of a Kähler manifold (considered as real analytic variety)?

THEOREM: (D. Kaledin, B. Feix) Let M be a real analytic Kähler manifold, and $M_{\mathbb{C}}$ its complexification. Then $M_{\mathbb{C}}$ admits a hyperkähler structure ture, determined uniquely and functorially by the Kähler structure on M.

QUESTION: What is a complexification of a hyperkähler manifold?

THIS IS THE MAIN SUBJECT OF TODAY'S TALK.

(A joint work with Marcos Jardim).

Twistor space

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$ **They are usually non-algebraic**. Indeed, if *M* is compact, for generic *a*, *b*, *c*, (*M*, *L*) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{T}\mathsf{W}} = I_m \oplus I_J : T_x \mathsf{T}\mathsf{W}(M) \to T_x \mathsf{T}\mathsf{W}(M)$ satisfies $I_{\mathsf{T}\mathsf{W}}^{=} - \mathsf{Id}$. It **defines an almost complex structure on** $\mathsf{T}\mathsf{W}(M)$. This almost complex structure is known to be integrable (Obata, Salamon)

EXAMPLE: If
$$M = \mathbb{H}^n$$
, $\mathsf{Tw}(M) = \mathsf{Tot}(\mathcal{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$

REMARK: For *M* compact, Tw(M) never admits a Kähler structure.

Rational curves on Tw(M).

REMARK: The twistor space has many rational curves. In fact, it is rationally connected (Campana).

DEFINITION: Denote by Sec(M) the space of holomorphic sections of the twistor fibration $Tw(M) \xrightarrow{\pi} \mathbb{C}P^1$.

DEFINITION: For each point $m \in M$, one has a horizontal section $C_m := \{m\} \times \mathbb{C}P^1$ of π . The space of horizontal sections is denoted $Sec_{hor}(M) \subset Sec(M)$

REMARK: The space of horizontal sections of π is identified with M. The normal bundle $NC_m = \mathcal{O}(1)^{\dim M}$. Therefore, **some neighbourhood** of $Sec_{hor}(M) \subset Sec(M)$ is a smooth manifold of dimension $2 \dim M$.

DEFINITION: A twistor section $C \subset \mathsf{Tw}(M)$ is called **regular**, if $NC = \mathcal{O}(1)^{\dim M}$.

CLAIM: For any $I \neq J \in \mathbb{C}P^n$, consider the evaluation map $Sec(M) \xrightarrow{E_{I,J}} (M,I) \times (M,J)$, $s \longrightarrow s(I) \times s(J)$. Then $E_{I,J}$ is an isomorphism around the set $Sec_0(M)$ of regular sections.

Complexification of a hyperkähler manifold.

REMARK: Consider an anticomplex involution $\mathsf{Tw}(M) \xrightarrow{\iota} \mathsf{Tw}(M)$ mapping (m,t) to (m,i(t)), where $i : \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ is a central symmetry. Then $\mathsf{Sec}_{hor}(M) = M$ is a component of the fixed set of ι .

COROLLARY: Sec(M) is a complexification of M.

QUESTION: What are geometric structures on Sec(M)?

Answer 1: For compact M, Sec(M) is holomorphically convex (Stein if dim M = 2).

Answer 2: The space $Sec_0(M)$ admits a holomorphic, torsion-free connection with holonomy $Sp(n, \mathbb{C})$ acting on $\mathbb{C}^{2n} \otimes \mathbb{C}^2$. This is the "special holonomy" mentioned in the title of the talk.

REMARK: Merkulov, Schwachhöfer: classification of irreducible special holonomy. $Sp(n, \mathbb{C})$ -action on $\mathbb{C}^{2n} \otimes \mathbb{C}^2$ is **non-irreducible**.

Mathematical instantons

DEFINITION: A mathematical instanton on $\mathbb{C}P^3$ is a stable rank 2 bundle *B* with $c_1(B) = 0$ and $H^1(B(-1)) = 0$. A framed instanton is a mathematical instanton equipped with a trivialization of $B|_{\ell}$ for some fixed line $\ell = \mathbb{C}P^1 \subset \mathbb{C}P^3$.

REMARK: The space \mathbb{M}_c of framed instantons with $c_2 = c$ is a principal SL(2)-bundle over the space of all mathematical instantons trivial on ℓ .

DEFINITION: An instanton on $\mathbb{C}P^2$ is a stable bundle *B* with $c_1(B) = 0$. A framed instanton is an instanton equipped with a trivialization $B|_x$ for some fixed point $x \in \mathbb{C}P^2$.

THEOREM: (Atiyah-Drinfeld-Hitchin-Manin) The space $\mathcal{M}_{r,c}$ of framed instantons on $\mathbb{C}P^2$ is **smooth**, **connected**, **hyperkähler**.

THEOREM: (Jardim–V.) The space \mathbb{M}_c of framed mathematical instantons on $\mathbb{C}P^3$ is naturally identified with the space of twistor sections $Sec(\mathcal{M}_{2,c})$.

The space of instantons on $\mathbb{C}P^3$

CONJECTURE: The space of mathematical instantons is smooth and connected.

THEOREM: (Grauert-Müllich, Hauzer-Langer) **Every mathematical in**stanton on $\mathbb{C}P^3$ is trivial on some line $\ell \subset \mathbb{C}P^3$.

COROLLARY: The space of mathematical instantons is covered by **Zariski open, dense subvarieties** which take form $\mathbb{M}_c/SL(2,\mathbb{C})$.

COROLLARY: To prove that the space of mathematical instantons is smooth and connected it would suffice to prove it for M_c .

THEOREM: (Jardim–V.) The space M_c is smooth and connected.

REMARK: To prove that $\mathcal{M}_{r,c}$ is smooth, one could use hyperkähler reduction. To prove that \mathbb{M}_c is smooth and connected, we develop **trihy**-**perkähler reduction**, which is a reduction defined on manifolds with holonomy in $Sp(n, \mathbb{C})$ acting $\mathbb{C}^{2n} \otimes \mathbb{C}^2$.

We prove that M_c is a trihyperkähler quotient of a vector space by a reductive group action, hence smooth.

Holomorphic 3-webs.

DEFINITION: Let M be a complex manifold, and S_1 , S_2 , S_3 integrable, pairwise transversal holomorphic sub-bundles in TM, of dimension $\frac{1}{2} \dim M$. Then (S_1, S_2, S_3) is called a holomorphic 3-web on M.

REMARK: On smooth manifolds, the theory of 3-webs is due to Chern and Blaschke (1930-ies).

THEOREM: (Ph. D. thesis of Chern, 1936) Let S_1, S_2, S_3 be a holomorphic 3-web on a complex manifold M. Then there exists a unique holomorphic connection ∇ on M which preserves the sub-bundles S_i , and such that its torsion T satisfies $T(S_1, S_2) = 0$.

M. Verbitsky

Holomorphic SL(2)-webs.

DEFINITION: A holomorphic 3-web on a complex manifold M is called an SL(2)-web if

- the projection operators $P_{i,j}$ of TM to S_i along S_j generate the standard action of Mat(2) on $\mathbb{C}^2 \otimes \mathbb{C}^n$,
- for any nilpotent $v \in Mat(2)$, the bundle $v(TM) \subset TM$ is involutive.

REMARK: The set of $v \in Mat(2)$ with $\operatorname{rk} v = 1$ satisfies $\mathbb{P}V = \mathbb{C}P^1$, hence the sub-bundles $v(TM) \subset TM$ are parametrized by $\mathbb{C}P^1$. An SL(2)-web is determined by a set of sub-bundles $S_t \subset TM$, $t \in \mathbb{C}P^1$, which are pairwise transversal and involutive.

EXAMPLE: Consider a hyperkähler manifold M. Let $I \in \mathbb{C}P^1$, and ev_I : Sec₀(M) \longrightarrow (M,I) be an evaluation map putting $S \in$ Sec₀(M) to S(I). Then ker Dev_I , $I \in \mathbb{C}P^1$ is an SL(2)-web.

THEOREM: (Jardim–V.) Let $S_t \subset TM$, $t \in \mathbb{C}P^1$ be an SL(2)-web on M, and $t_1, t_2, t_3 \in \mathbb{C}P^1$ distinct points. Then the Chern connection of a 3-web S_{t_1} , S_{t_2} , S_{t_3} is a torsion-free affine holomorphic connection with holonomy in $GL(n, \mathbb{C})$ acting on $\mathbb{C}^{2n} = \mathbb{C}^n \otimes \mathbb{C}^2$, and independent from the choice of t_i .

M. Verbitsky

Trisymplectic manifolds

DEFINITION: Let Ω be a 3-dimensional space of holomorphic symplectic 2-forms on a manifold. Suppose that

- Ω contains a non-degenerate 2-form
- For each non-zero degenerate $\Omega \in \Omega$, one has $\operatorname{rk} \Omega = \frac{1}{2} \operatorname{dim} V$.

Then Ω is called a trisymplectic structure on M.

REMARK: The bundles ker Ω are involutive, because Ω is closed.

REMARK: This notion is similar to **hypersymplectic structures** (which are a triple of closed forms on a real manifold with the same rank condition).

THEOREM: (Jardim–V.) For any trisymplectic structure on M, the bundles ker $\Omega \subset TM$ define an SL(2)-web. Moreover, the Chern connection of this SL(2)-web preserves all forms in Ω .

REMARK: In this case, the Chern connection has holonomy in $Sp(n, \mathbb{C})$ acting on $\mathbb{C}^{2n} \otimes \mathbb{C}^2$.

Trisymplectic structure on $Sec_0(M)$

EXAMPLE: Consider a hyperkähler manifold M. Let $I \in \mathbb{C}P^1$, and ev_I : Sec₀(M) \longrightarrow (M,I) be an evaluation map putting $S \in$ Sec₀(M) to S(I). Denote by Ω_I the holomorphic symplectic form on (M,I). Then $ev_I^*\Omega_I$, $I \in \mathbb{C}P^1$ generate a trisymplectic structure.

COROLLARY: Sec₀(M) is equipped with a holomorphic, torsion-free connection with holonomy in $Sp(n, \mathbb{C})$.

Hyperkähler reduction

DEFINITION: Let G be a compact Lie group acting on a hyperkähler manifold M by hyperkähler isometries. **A hyperkähler moment map** is a G-equivariant smooth map $\mu : M \to \mathfrak{g} \otimes \mathbb{R}^3$ such that $\langle d\mu_i(v), \xi \rangle = \omega_i(\xi^*, v)$, for every $v \in TM$, $\xi \in \mathfrak{g}$ and i = 1, 2, 3, where ω_i is one the the Kähler forms associated with the hyperkähler structure.

DEFINITION: The quotient manifold $M/\!\!/ G := \mu^{-1}(\xi_1, \xi_2, \xi_3)/G$ is called **the hyperkähler quotient** of M.

THEOREM: (Hitchin, Karlhede, Lindström, Roček)**The quotient** $M/\!\!/ G$ is hyperkaehler.

Trihyperkähler reduction

DEFINITION: A trisymplectic moment map $\mu_{\mathbb{C}}$: $M \longrightarrow \mathfrak{g}^* \otimes_{\mathbb{R}} \Omega^*$ takes vectors $\Omega \in \Omega, g \in \mathfrak{g} = \text{Lie}(G)$ and maps them to a holomorphic function $f \in \mathcal{O}_M$, such that $df = \Omega \lrcorner g$, where $\Omega \lrcorner g$ denotes the contraction of Ω and the vector field g

DEFINITION: Let (M, Ω, S_t) be a trisymplectic structure on a complex manifold M. Assume that M is equipped with an action of a compact Lie group G preserving Ω , and an equivariant trisymplectic moment map

$$\mu_{\mathbb{C}}$$
: $M \longrightarrow \mathfrak{g}^* \otimes_{\mathbb{R}} \Omega^*$.

Let $\mu_{\mathbb{C}}^{-1}(0)$ be the corresponding level set of the moment map. Consider the action of the complex Lie group $G_{\mathbb{C}}$ on $\mu_{\mathbb{C}}^{-1}(c)$. Assume that it is proper and free. Then the quotient $\mu_{\mathbb{C}}^{-1}(c)/G_{\mathbb{C}}$ is a smooth manifold called the trisymplectic quotient of (M, Ω, S_t) , denoted by M///G.

THEOREM: Suppose that the restriction of Ω to $\mathfrak{g} \subset TM$ is non-degenerate. **Then** M///G **trisymplectic.** Hyperholomorphic connections

REMARK: Let *M* be a hyperkähler manifold. The group SU(2) of unitary quaternions acts on $\Lambda^*(M)$ multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle *B* over *M* is a Hermitian connection with SU(2)-invariant curvature $\Theta \in \Lambda^2(M) \otimes \text{End}(B)$.

REMARK: Since the invariant 2-forms satisfy $\Lambda^2(M)_{SU(2)} = \bigcap_{I \in \mathbb{C}P^1} \Lambda_I^{1,1}(M)$, a hyperholomorphic connection defines a holomorphic structure on *B* for each *I* induced by quaternions.

REMARK: Let M be a compact hyperkähler manifold. Then SU(2) preserves harmonic forms, hence **acts on cohomology.**

Hyperholomorphic bundles and twistor sections

THEOREM: (V., 1995) Let *B* be a stable bundle on a compact hyperkähler manifold with $c_1(B)$ and $c_2(B)$ SU(2)-invariant. Then *B* admits a unique hyperholomorphic connection.

DEFINITION: A stable bundle with $c_1(B)$ and $c_2(B)$ SU(2)-invariant is called hyperholomorphic.

COROLLARY: The space of deformations of a hyperholomorphic bundle is a hyperkähler manifold.

COROLLARY: A hyperholomorphic bundle can be lifted to a holomorphic bundle \mathcal{B} on a twistor space.

THEOREM: (Kaledin–V., 1996) The space $Sec_0(Def(B))$ admits an open embedding to a space Def(B) of deformations of B on Tw(M), and its image is Zariski dense.

REMARK: Let $\mathcal{M}_{2,c}$ be the space of framed instantons on \mathbb{C}^2 . The above theorem gives an embedding from $\operatorname{Sec}_0(\mathcal{M}_{2,c})$ to the space of holomorphic bundles on $\operatorname{Tw}(\mathbb{C}^2) = \mathbb{C}P^3 \setminus \mathbb{C}P^1$.

M. Verbitsky

Hyperholomorphic bundles and mathematical instantons

REMARK: Using the monad description of mathematical instantons, we prove that that the map $Sec_0(\mathcal{M}_{2,c}) \longrightarrow \mathbb{M}_c$ to the space of mathematical instantons is an isomorphism (Frenkel-Jardim, Jardim-V.).

REMARK: The smoothness of the space $Sec_0(\mathcal{M}_{2,c}) = \mathbb{M}_c$ follows from the trihyperkähler reduction procedure:

THEOREM: Let M be flat hyperkähler manifold, and G a compact Lie group acting on M by hyperkähler automorphisms. Suppose that the hyperkähler moment map exists, and the hyperkähler quotient $M/\!\!/ G$ is smooth. Then there exists an open embedding

$$\operatorname{Sec}_0(M)//// G \xrightarrow{\Psi} \operatorname{Sec}_0(M/// G),$$

which is compatible with the trisymplectic structures on $\text{Sec}_0(M)///G$ and $\text{Sec}_0(M///G)$.

THEOREM: If *M* is the quiver space which gives $M/\!\!/ G = \mathcal{M}_{2,c}$, Ψ gives an isomorphism $\operatorname{Sec}_0(M)/\!\!/ G = \operatorname{Sec}_0(M/\!\!/ G)$.