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Trisymplectic structure on a vector space

DEFINITION: A trisymplectic structure on a complex vector space of
dimension 2n is a 3-dimensional space 2 C A2V of complex linear 2-forms,
such that any n € €2 has rank 2n, n or O.

REMARK: It is easy to see that {2 contains a symplectic form.

PROPOSITION: Given two symplectic forms wi,wo € 2, consider the
map ¢q, ., ‘= w1 ow2_1 € End(V). Then pq, o, can be expressed in an
appropriate basis by the matrix

()\ O O O O O
O X O O 0 O
O 0 A O O O
Cuonws = |+ ¢+ &+ . &+ 1+ 1|,
O 00O ... VX0 o
O 00O ... 0OXN O
\0 0 0 0 0 N

with the eigenspaces of equal dimension.

THEOREM: Let (V,Q2) be a be a trisymplectic vector space, and H C
End(V) the algebra generated by o, o, for all wi,wy € 2. Then H is
isomorphic to the matrix algebra Mat(2), acting on V in a standard
way.
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Trisymplectic structures as Mat(2)-representations

DEFINITION: Let V be a complex vector space with the standard action
of the matrix algebra Mat(2), i.e. V = V3®C2 and Mat(2) acts only through
the second factor.

REMARK: Consider the natural SL(2)-action on V induced by Mat(2),
and extend it multiplicatively to all tensor powers of V. Let g € Sym(%(V)
be an SL(2)-invariant, non-degenerate 2-form on V, and {I, J, K} a quater-
nionic basis in Mat(2) Then

g(z, Iy) = g(Iz, I*y) = —g(Iz,y)

hence the form Q;(-,-) := g¢(-,I-) is a symplectic form, obviously non-
degenerate; the forms 25, 2 have the same properties. Let Q =
(7,27, ). It turns out that this construction gives a trisymplec-
tic structure, and all trisymplectic structures can be obtained in this
way.
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Trisymplectic structures as Mat(2)-representations II

THEOREM: Let V be a vector space equipped with a standard action
of the matrix algebra H = Mat(2), and {I,J, K} a quaternionic basis in
Mat(2). Consider the corresponding action of SL(2) on the tensor powers
of V. Then, for any SL(2)-invariant symmetric form g, denote by €2 the
space generated by Q27 = g(-,1-), 25, Qi Then Q is a trisymplectic
structure on V, with the operators Q! o Q;, Q' o Q; generating
H. Moreover, for each trisymplectic structure (2 on V, there exists a
unique (up to a constant) SL(2)-invariant non-degenerate quadratic
form ¢ inducing (2 as above.
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Trisymplectic manifold

DEFINITION: A trisymplectic structure on a complex 2n-manifold M is
a triple of holomorphic symplectic forms €21, €25, €23, such that any linear
combination of these forms has rank 2n, n or 0. We denote by (2 the
3-dimensional space generated by €2;. Obviously, 2 defines a trisymplectic
structure at each point of M.

REMARK: Let Q1,95 € Q. Consider P(t) := det(£21 4+ t25) as a poly-
nomial of t. Since the eigenvalues of 21 + t2> occur in n-tuples, P(t) =
Q(t)"/2, where Q is a quadratic polynomial.

CLAIM: There exists a non-degenerate quadratic form @ on €2, unique up
to a constant, such that 2 € Q2 is degenerate if and only if Q(2,Q2) = 0.

COROLLARY: For each degenerate 2 € (1, its radical ker<2 is a sub-
bundle of codimension n in T'M. Moreover, for all non-proportional
degenerate 2,0’ € Q, one has TM = ker Q2 @ ker 2’

REMARK: Since 2 is closed, ker 2 is involutive: [ker 2, ker Q2] C ker 2.

REMARK: Similar to web geometry!
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Holomorphic 3-webs.

DEFINITION: Let M be a complex manifold, and S1, So, S3 integrable,
pairwise transversal holomorphic sub-bundles in T'M, of dimension %dim M.
Then (S1,55,S3) is called a holomorphic 3-web on M.

REMARK: On smooth manifolds, the theory of 3-webs is due to Chern
and Blaschke (1930-ies).

THEOREM: (Ph. D. thesis of Chern, 1936) Let S1,S>,53 be a holo-
morphic 3-web on a complex manifold M. Then there exists a unique
holomorphic connection V on M which preserves the sub-bundles S,
and such that its torsion T satisfies T'(S1,S>) = 0.
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Holomorphic SL(2)-webs.

DEFINITION: A holomorphic 3-web S7, S, S3 on a complex manifold
M is called an SL(2)-web if

e the projection operators P;; of T'M to S; along S; generate the
standard action of Mat(2) on C2® C™,

e fOr any nilpotent v € Mat(2), the bundle v(T'M) C T M is involutive.

REMARK: The set of v € Mat(2) with rkv = 1 satisfies PV = CP1, hence
the sub-bundles v(T'M) C TM are parametrized by CPl. An SL(2)-web
is determined by a set of sub-bundles S; ¢ TM, t € CP1, which are
pairwise transversal and involutive.

THEOREM: (Jardim—V.) Let S; ¢ TM, t € CP! be an SL(2)-web on
M, and tq,to,t3 € CPl distinct points. Then the Chern connection of a
3-web St,, St,, St3 IS a torsion-free affine holomorphic connection with
holonomy in GL(n,C) acting on C2" = C" ® C2, and independent from
the choice of ¢,.
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Trisymplectic manifolds

THEOREM: (Jardim—=V.) For any trisymplectic structure on M, the bun-
dles kerQ2 ¢ T'M define an SL(2)-web. Moreover, the Chern connection
of this SL(2)-web preserves all forms in (2.

REMARK: In this case, the Chern connection has holonomy in Sp(n,C)
acting on C2" ® C=2.

REMARK: For a trisymplectic structure €2, it is just the Levi-Civita
connection of the holomorphic Riemannian form associated with ().

THE REST OF TODAY'’S TALK IS EXAMPLES AND APPLICA-
TIONS OF TRISYMPLECTIC GEOMETRY
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations I oJ = —J oI = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
Wy .= g(Ia)! Wy .= g(J7)’ WK = g(K7)

REMARK: This is equivalent to VI = VJ = VK = 0: the parallel trans-
lation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, x € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths)
is called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold
which has holonomy in Sp(n) (the group of all endomorphisms preserving
I,J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkahler manifolds are holomorphically symplectic. Indeed,
QR =wj+ v—1wg is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kahler, holomorphically symplectic
manifold admits a unique hyperkahler metric in any Kahler class.

EXAMPLE: An even-dimensional complex torus.

REMARK: Take a symmetric square SmeT, with a natural action of T,
and let T12l be a blow-up of a singular divisor. Then T2l is naturally
isomorphic to the Kummer surface 7/+1.

DEFINITION: A K3 surface is a complex 2-manifold obtained as a de-
formation of a Kummer surface.

REMARK: A K3 surface is always hyperkahler. Any hyperkahler man-
ifold of real dimension 4 is isomorphic to a torus or a K3 surface.
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Complexification of a manifold

DEFINITION: Let M be a complex manifold, equipped with an anticom-
plex involution . The fixed point set My of . is called a real analytic
manifold, and a germ of M in My is called a complexification of Mp.

QUESTION: What is a complexification of a Kahler manifold (con-
sidered as real analytic variety)?

THEOREM: (D. Kaledin, B. Feix) Let M be a real analytic Kahler mani-
fold, and Mg its complexification. Then My admits a hyperkahler struc-

ture, determined uniquely and functorially by the Kahler structure on M.

QUESTION: What is a complexification of a hyperkahler manifold?
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Twistor space

DEFINITION: Induced complex structures on a hyperkahler manifold
are complex structures of form S2 £ {[ ;= al +bJ+cK, a?+b2+c2=1.}
They are usually non-algebraic. Indeed, if M is compact, for generic
a,b,c, (M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a
complex manifold obtained by gluing these complex structures into
a holomorphic family over cPrl. More formally:

Let Tw(M) := M x S2. Consider the complex structure Iy, : TynM — TyM
on M induced by J € S2 c H. Let I; denote the complex structure on
S2 =cpl.

The operator I7y = Im®1;: Tp TW(M) — T Tw(M) satisfies IF,, —Id. It

defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = H?, Tw(M) = Tot(0(1)®n) & cp2r+1\cp2n-1

REMARK: For M compact, Tw(M) never admits a Kahler structure.
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Rational curves on Tw(M).

REMARK: The twistor space has many rational curves. In fact, it is
rationally connected (Campana).

DEFINITION: Denote by Sec(M) the space of holomorphic sections
of the twistor fibration Tw(M) - CP1.

DEFINITION: For each point m € M, one has a horizontal section
Cm = {m} x CP! of =. The space of horizontal sections is denoted
Secy,, (M) C Sec(M)

REMARK: The space of horizontal sections of = is identified with M.
The normal bundle NCy, = O(1)4MM  Therefore, some neighbourhood
of Secy,,. (M) C Sec(M) is a smooth manifold of dimension 2dim M.

DEFINITION: A twistor section C' C Tw(M) is called regular,
if NC = ©(1)dimM

E
CLAIM: For any I = J € CP"™, consider the evaluation map Sec(M) 1
(M,I) x (M,J), s—s(I) xs(J). Then E; ; is an isomorphism around
the set Secqg(M) of regular sections.
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Complexification of a hyperkahler manifold.
REMARK: Consider an anticomplex involution Tw(M) — Tw(M) map-

ping (m,t) to (m,i(t)), where i : CP! — CP! is a central symmetry. Then
Secy,,-(M) = M is a component of the fixed set of ..

COROLLARY: Sec(M) is a complexification of M.
QUESTION: What are geometric structures on Sec(M)?

Answer 1: For compact M, Sec(M) is holomorphically convex (Stein if
dimM = 2).

Answer 2: . Let I € CP!, and ev;: Secg(M) — (M, I) be an evaluation
map putting S € Secg(M) to S(I). Then the 2-forms eviQ2;, I € CP?
generate a trisymplectic structure on Secy(M).

Answer 3: The space Secg(M) admits a holomorphic, torsion-free
connection with holonomy Sp(n,C) acting on C2" g C=2.
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Mathematical instantons

DEFINITION: A mathematical instanton on CP3 is a stable rank 2
bundle B with ¢1(B) = 0 and H}(B(-1)) = 0. A framed instanton is a
mathematical instanton equipped with a trivialization of B|, for some fixed
line ¢ = CPl c CP3.

REMARK: The space M. of framed instantons with co = c is a principal
SL(2)-bundle over the space of all mathematical instantons trivial on £.

DEFINITION: An instanton on CP? is a stable bundle B with ¢1(B) = 0.
A framed instanton is an instanton equipped with a trivialization B|, for
some fixed point x € CP2.

THEOREM: (Atiyah-Drinfeld-Hitchin-Manin) The space M, . of framed
instantons on CP?2 is smooth, connected, hyperkahler.

THEOREM: (Jardim—V.) The space M, of framed mathematical instan-
tons on CP3 is naturally identified with the space of twistor sections

Sec(Mo.).
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The space of instantons on CP3

CONJECTURE: The space of mathematical instantons is smooth
and connected.

THEOREM: (Grauert-Miillich, Hauzer-Langer) Every mathematical in-
stanton on CP3 is trivial on some line ¢ C CP3.

COROLLARY: The space of mathematical instantons iIs covered by
Zariski open, dense subvarieties which take form M./SL(2,C).

COROLLARY: To prove that the space of mathematical instantons is
smooth and connected it would suffice to prove it for M..

THEOREM: (Jardim—V.) The space M. is smooth.

REMARK: To prove that M. is smooth, one could use hyperkahler
reduction. To prove that M. is smooth and connected, we develop tri-
hyperkahler reduction, which is a trisymplectic reduction defined on
manifolds of rational lines in a twistor space.

We prove that M. is a trihyperkahler quotient of a vector space by a
reductive group action, hence smooth.

16



