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Moment maps

DEFINITION: (M,ω) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms. A moment map µ of this action is a linear map
g−→ C∞M associating to each g ∈ G its Hamiltonian.

REMARK: It is more convenient to consider µ as an element of g∗⊗RC
∞M ,

or (and this is most standard) as a function with values in g∗.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M −→ g∗ is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g∗.

REMARK: M
µ−→ g∗ is a moment map iff for all g ∈ g, 〈dµ, g〉 = iρg(ω).

Therefore, a moment map is defined up to a constant g∗-valued func-
tion. An equivariant moment map is is defined up to a constant g∗-valued
function which is G-invariant.

DEFINITION: A G-invariant c ∈ g∗ is called central.

CLAIM: An equivariant moment map exists whenever H1(G, g∗) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists.
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Symplectic reduction and GIT

DEFINITION: (Weinstein-Marsden) (M,ω) be a symplectic manifold, G a

compact Lie group acting on M by symplectomorphisms, M
µ−→ g∗ an equiv-

ariant moment map, and c ∈ g∗ a central element. The quotient µ−1(c)/G is

called symplectic reduction of M , denoted by M//G.

CLAIM: The symplectic quotient M//G is a symplectic manifold of dimension

dimM − 2 dimG.

THEOREM: Let (M, I, ω) be a Kähler manifold, GC a complex reductive Lie

group acting on M by holomorphic automorphisms, and G is compact form

acting isometrically. Then M//G is a Kähler orbifold.

REMARK: In such a situation, M//G is called the Kähler quotient, or GIT

quotient. The choice of a central element c ∈ g∗ is known as a choice of

stability data.

REMARK: The points of M//G are in bijective correspondence with the

orbits of GC which intersect µ−1(c). Such orbits are called polystable, and

the intersection of a GC-orbit with µ−1(c) is a G-orbit.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

REMARK:

The form Ω := ωJ +
√
−1 ωK is holomorphic and symplectic on (M, I).
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Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler

manifold M by hyperkähler isometries, and g∗ a dual space to its Lie algebra. A

hyperkähler moment map is a G-equivariant smooth map µ : M → g∗ ⊗ R3

such that 〈µi(v), g〉 = ωi(v, dρ(g)), for every v ∈ TM , g ∈ g and i = 1,2,3,

where ωi is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ1, ξ2, ξ3 be three G-invariant vectors in g∗. The quotient

manifold M///G := µ−1(ξ1, ξ2, ξ3)/G is called the hyperkähler quotient of M .

THEOREM: (Hitchin, Karlhede, Lindström, Roček)

The quotient M///G is hyperkaehler.
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Quiver representations

DEFINITION: A quiver is an oriented graph. A quiver representation is

a diagram of complex Hermitian vector spaces and arrows associated with a

quiver:

Here, Vi are vector spaces, and ϕi linear maps.

REMARK: If one fixes the spaces Vi, the space of quiver representations is

a Hermitian vector space.
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Quiver varieties

Starting from a single graph, one can double it up, as follows, obtaining a

Nakajima double quiver.

A Nakajima quiver for the Dynkin diagram D5.

CLAIM: The space M of representations of a Nakajima’s double quiver is a

quaternionic vector space, and the group G := U(V1)×U(V2)× ...×U(Vn) acts

on M preserving the quaternionic structure.

DEFINITION: A Nakajima quiver variety is a quotient M///G.

8



Trisymplectic manifolds M. Verbitsky

Hyperkähler manifolds as quiver varieties

Many non-compact hyperkähler manifolds are obtained as quiver varieties.

EXAMPLE: A 4-dimensional ALE (asymptotically locally Euclidean) space
obtained as a resolution of a du Val singularity, that is, a quotient C2/G,
where G ⊂ SU(2) is a finite group.

REMARK: Since finite subgroups of SU(2) are classified by the Dynkin dia-
grams of type A,D,E, these ALE quotients are called ALE spaces of A-D-E
type.

EXAMPLE: The moduli asymptotically flat Hermitian Yang-Mills connec-
tions on ALE spaces of A-D-E type.

DEFINITION: An instanton on CP2 is a stable bundle B with c1(B) = 0.
A framed instanton is an instanton equipped with a trivialization B|C for a
line C ⊂ CP2.

THEOREM: (Nahm, Atiyah, Hitchin) The space Mr,c of framed instantons
on CP2 is hyperkähler.

This theorem is proved using quivers.

9



Trisymplectic manifolds M. Verbitsky

ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions c

and r, respectively. The ADHM data is maps

A,B ∈ End(V ), I ∈ Hom(W,V ), J ∈ Hom(V,W ).

We say that ADHM data is
stable,

if there is no subspace S ( V such that A(S), B(S) ⊂ S and I(W ) ⊂ S;
costable,

if there is no nontrivial subspace S ⊂ V such that A(S), B(S) ⊂ S and S ⊂
ker J;

regular,
if it is both stable and costable.

The ADHM equation is [A,B] + IJ = 0.

THEOREM: (Atiyah, Drinfeld, Hitchin, Manin) Framed rank r, charge c

instantons on CP2 are in bijective correspondence with the set of equiva-
lence classes of regular ADHM solutions. In other words, the moduli of
instantons on CP2 is identified with moduli of the corresponding quiver
representation.

10



Trisymplectic manifolds M. Verbitsky

ADHM spaces as quiver varieties

Consider the quiver

V
W

The ADHM data is the set Q of representations of the corresponding double
quiver

W
V

The corresponding holomorphic moment map is the ADHM equation
A,B, I, J −→ [A,B] + IJ with values in End(V ).

The set of equivalence classes of ADHM solutions is Q///U(V ).
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Twistor space

DEFINITION: Induced complex structures on a hyperkähler manifold are

complex structures of form S2 ∼= {L := aI + bJ + cK, a2 + b2 + c2 = 1.}
They are usually non-algebraic. Indeed, if M is compact, for generic a, b, c,

(M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a com-

plex manifold obtained by gluing these complex structures into a holo-

morphic family over CP1. More formally:

Let Tw(M) := M ×S2. Consider the complex structure Im : TmM → TmM on

M induced by J ∈ S2 ⊂ H. Let IJ denote the complex structure on S2 = CP1.

The operator ITw = Im ⊕ IJ : TxTw(M) → TxTw(M) satisfies I2
Tw = − Id.

It defines an almost complex structure on Tw(M). This almost complex

structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = Hn, Tw(M) = Tot(O(1)⊕n) ∼= CP2n+1\CP2n−1

REMARK: For M compact, Tw(M) never admits a Kähler structure.
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Hyperholomorphic connections

REMARK: Let M be a hyperkähler manifold. The group SU(2) of unitary

quaternions acts on Λ∗(M) multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle B over

M is a Hermitian connection with SU(2)-invariant curvature Θ ∈ Λ2(M) ⊗
End(B).

REMARK: Since the invariant 2-forms satisfy Λ2(M)SU(2) =
⋂
I∈CP1 Λ1,1

I (M),

a hyperholomorphic connection defines a holomorphic structure on B

for each I induced by quaternions.

REMARK: When dimHM = 1, “hyperholomorphic” is synonymous with

“anti-selfdual”: Λ2(M)SU(2) = Λ−(M).

THEOREM: (Malgrange? Atiyah-Bott?) Let ∂ : V −→ Λ0,1(M) ⊗ V be a

(0,1)-part of connection ∇ satisfying (Θ∇)0,2 = 0. Then B := ker ∂ ⊂ V is

a holomorphic vector bundle of the same rank.
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Twistor transform and hyperholomorphic bundles 1:

direct twistor transform

CLAIM: Let σ : Tw(M)−→M be the standard projection, where M is

hyperkähler and η ∈ Λ2M a 2-form. Then σ∗η is a (1,1)-form iff η is

SU(2)-invariant.

COROLLARY: Let (B,∇) be a bundle with connection, and σ∗B, σ∗∇ its

pullback to Tw(M). Then (σ∗B, σ∗∇) has (1,1)-curvature iff ∇ has SU(2)-

invariant curvature.

REMARK: This construction produces a holomorphic vector bundle on Tw(M)

starting from a connection with SU(2)-invariant curvature. It is called direct

twistor transform. The inverse twistor transform produces a bundle with

connection on M from a holomorphic bundle on Tw(M).

DEFINITION: A non-Hermitian hyperholomorphic connection on a com-

plex vector bundle B is a connection (not necessarily Hermitian) which has

SU(2)-invariant curvature.
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Twistor transform and hyperholomorphic bundles 2:

inverse twistor transform

DEFINITION: Let M be a hyperkähler manifold, and σ : Tw(M)−→M its

twistor space. For each point x ∈ M , σ−1(x) is a holomorphic rational curve

in Tw(M). It is called a horizontal twistor line.

THEOREM: (The inverse twistor transform; Kaledin-V.) Let B be a

holomorphic vector bundle on Tw(M), which is trivial on any horizontal

twistor line. Denote by B0 the C∞-bundle on M with fiber H0(B
∣∣∣σ−1(x))

at x ∈ M . Then B0 admits a unique non-Hermitian hyperholomorphic

connection ∇ such that B is isomorphic (as a holomorphic vector bundle)

to its twistor transform (σ∗B0, (σ
∗∇)0,1).

REMARK: The condition of being trivial on any horizontal twistor line is

open. Therefore, the moduli of holomorphic bundles on a Tw(M) con-

tain an open subset corresponding to non-Hermitian hyperholomorphic

connection on M.
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Rational curves on twistor spaces

DEFINITION: Denote by Sec(M) the space of holomorphic sections of

the twistor fibration Tw(M)
π−→ CP1. For each point m ∈ M , one has a

horizontal section Cm := {m} × CP1 of π. The space of horizontal sections

is denoted Sechor(M) ⊂ Sec(M)

REMARK: The space of horizontal sections of π is identified with M . The

normal bundle NCm = O(1)dimM . Therefore, some neighbourhood of

Sechor(M) ⊂ Sec(M) is a smooth manifold of dimension 2 dimM.

Let B be a (Hermitian) hyperholomorphic bundle on M , and W the defor-

mation space of B, which is known to be hyperkähler. Denote by B̃ the

holomorphic bundle on Tw(M), obtained as a twistor transform of B. Any

deformation B̃1 of B̃ gives a holomorphic map CP1 −→ Tw(W ) mapping

L ∈ CP1 to a bundle B̃1

∣∣∣(M,L) ⊂ Tw(M), considered as a point in (W,L).

THEOREM: (Kaledin-V.) This construction identifies deformations of B̃

(with appropriate stability conditions) and rational curves S ∈ Sec(W ).

The twistor transforms of Hermitian hyperholomorphic bundles on M corre-

spond to Sech(W ) ⊂ Sec(W ).
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Holomorphic bundles on CP3 and twistor sections

DEFINITION: An instanton on CP2 is a stable bundle B with c1(B) = 0.

A framed instanton is an instanton equipped with a trivialization B|C for a

line C ⊂ CP2.

THEOREM: (Nahm, Atiyah, Hitchin) The space Mr,c of framed instantons

on CP2 is smooth, connected, hyperkähler.

THEOREM: (Kaledin-V.) This construction identifies deformations of B̃

(with appropriate stability conditions) and rational curves S ∈ Sec(W ).

The twistor transforms of Hermitian hyperholomorphic bundles on M corre-

spond to Sech(W ) ⊂ Sec(W ).

REMARK: There is a similar correspondence between the holomorphic

bundles on Tw(H) = CP3\CP1, with appropriate stability and framing condi-

tions, and twistor sections in Sec(Mr,c).
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Mathematical instantons

DEFINITION: A mathematical instanton on CP3 is a stable bundle B with

c1(B) = 0 and H0(E(−1)) = H1(E(−2)) = H2(E(−2)) = H3(E(−3)) = 0. A

framed instanton is a mathematical instanton equipped with a trivialization

of B|` for some fixed line ` = CP1 ⊂ CP3.

DEFINITION: An instanton on CP2 is a stable bundle B with c1(B) = 0.

A framed instanton is an instanton equipped with a trivialization B|x for

some fixed point x ∈ CP2.

THEOREM: (Jardim–V.) The space Mr,c of framed mathematical instan-

tons on CP3 is naturally identified with the space of twistor sections

Sec(Mr,c).

REMARK: This correspondence is not surprising, if one realizes that Tw(H) =

CP3\CP1.
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The space of instantons on CP3

THEOREM: (Jardim–V.) The space Mr,c is smooth.

REMARK: To prove that Mr,c is smooth, one could use hyperkähler reduc-

tion. To prove that Mr,c is smooth, we develop trihyperkähler reduction,

which is a reduction defined on trisymplectic manifolds.

We prove that Mr,c is a trihyperkähler quotient of a vector space by a

reductive group action, hence smooth.
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Trisymplectic manifolds

DEFINITION: Let Ω be a 3-dimensional space of holomorphic symplectic

2-forms on a complex manifold. Suppose that

• Ω contains a non-degenerate 2-form

• For each non-zero degenerate Ω ∈ Ω, one has rk Ω = 1
2 dimV .

Then Ω is called a trisymplectic structure on M .

REMARK: The bundles ker Ω are involutive, because Ω is closed.

THEOREM: (Jardim–V.) For any trisymplectic structure on M , M is equipped

with a unique holomorphic, torsion-free connection, preserving the forms Ωi.

It is called the Chern connection of M .

REMARK: The Chern connection has holonomy in Sp(n,C) acting on

C2n ⊗ C2.
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Trisymplectic structure on Sec0(M)

EXAMPLE: Consider a hyperkähler manifold M . Let I ∈ CP1, and evI :

Sec0(M)−→ (M, I) be an evaluation map putting S ∈ Sec0(M) to S(I). De-

note by ΩI the holomorphic symplectic form on (M, I). Then ev∗IΩI, I ∈ CP1

generate a trisymplectic structure.

COROLLARY: Sec0(M) is equipped with a holomorphic, torsion-free

connection with holonomy in Sp(n,C).
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Trihyperkähler reduction

DEFINITION: A trisymplectic moment map µC : M −→ g∗ ⊗R Ω∗ takes

vectors Ω ∈ Ω, g ∈ g = Lie(G) and maps them to a holomorphic function

f ∈ OM , such that df = Ωyg, where Ωyg denotes the contraction of Ω and

the vector field g

DEFINITION: Let (M,Ω, St) be a trisymplectic structure on a complex man-

ifold M . Assume that M is equipped with an action of a compact Lie group

G preserving Ω, and an equivariant trisymplectic moment map

µC : M −→ g∗ ⊗R Ω∗.

Let µ−1
C (0) be the corresponding level set of the moment map. Consider

the action of the complex Lie group GC on µ−1
C (c). Assume that it is proper

and free. Then the quotient µ−1
C (c)/GC is a smooth manifold called the

trisymplectic quotient of (M,Ω, St), denoted by M////G.

THEOREM: Suppose that the restriction of Ω to g ⊂ TM is non-degenerate.

Then M////G is trisymplectic.
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Mathematical instantons and the twistor correspondence

REMARK: Using the monad description of mathematical instantons, we

prove that that the map Sec0(Mr,c)−→Mr,c to the space of mathemat-

ical instantons is an isomorphism (Frenkel-Jardim, Jardim-V.).

REMARK: The smoothness of the space Sec0(Mr,c) = Mr,c follows from

the trihyperkähler reduction procedure:

THEOREM: Let M be flat hyperkähler manifold, and G a compact Lie group

acting on M by hyperkähler automorphisms. Suppose that the hyperkähler

moment map exists, and the hyperkähler quotient M///G is smooth. Then

there exists an open embedding

Sec0(M)////G
Ψ−→ Sec0(M///G),

which is compatible with the trisymplectic structures on Sec0(M)////G and

Sec0(M///G).

THEOREM: If M is the space of quiver representations which gives M///G =

M2,c, Ψ gives an isomorphism Sec0(M)////G = Sec0(M///G).
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The 1-dimensional ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions c

and r, respectively. The 1-dimensional ADHM data is maps

Ak, Bk ∈ End(V ), Ik ∈ Hom(W,V ), Jk ∈ Hom(V,W ), (k = 0,1)

Choose homogeneous coordinates [z0 : z1] on CP1 and define

Ã := A0 ⊗ z0 +A1 ⊗ z1 and B̃ := B0 ⊗ z0 +B1 ⊗ z1.

We say that 1-dimensional ADHM data is

globally regular if (Ãp, B̃p, Ĩp, J̃p) is regular for every p ∈ CP1. The 1-

dimensional ADHM equation is [Ãp, B̃p] + ĨpJ̃p = 0, for all p ∈ CP d

THEOREM: (Marcos Jardim, Igor Frenkel) Let C1(r, c) denote the set of

globally regular solutions of the 1-dimensional ADHM equation. Then there

exists a 1-1 correspondence between equivalence classes of globally

regular solutions of the 1-dimensional ADHM equations and isomor-

phism classes of rank r instanton bundles on CP3 framed at a fixed line

`, where dimW = rk(E) and dimV = c2(E).
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1-dimensional ADHM construction and the trisymplectic moment map

THEOREM: (Jardim, V.) Consider the natural (flat) trisymplectic structure

on the space Ur,c of 1-dimensional ADHM data, and let µ : Ur,c −→H0(OCP1(1)⊗
End(V )) be a map associating to C ∈ Ur,c and p ∈ CP1 the vector [Ãp, B̃p] +

ĨpJ̃p ∈ OCP1(2)⊗End(V )). Then µ is a trisymplectic moment map. This

identifies the set of equivalence classes of solutions of the 1-dimensional

ADHM equation with the trihyperkähler quotient Ur,c////U(V ).
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