Hyperkähler reduction and ALE spaces

Misha Verbitsky

Estruturas geométricas em variedades,

IMPA, July 21, 2022

M. Verbitsky

Moment maps

DEFINITION: (M, ω) be a symplectic manifold, G a Lie group acting on M by symplectomorphisms. A moment map μ of this action is a linear map $\mathfrak{g} \longrightarrow C^{\infty}M$ associating to each $g \in G$ its Hamiltonian.

REMARK: It is more convenient to consider μ as an element of $\mathfrak{g}^* \otimes_{\mathbb{R}} C^{\infty} M$, or (and this is most standard) as a function with values in \mathfrak{g}^* .

REMARK: Moment map always exists if *M* is simply connected.

DEFINITION: A moment map $M \longrightarrow \mathfrak{g}^*$ is called **equivariant** if it is equivariant with respect to the coadjoint action of G on \mathfrak{g}^* .

REMARK: $M \xrightarrow{\mu} \mathfrak{g}^*$ is a moment map iff for all $g \in \mathfrak{g}$, $\langle d\mu, g \rangle = i_{\rho_g}(\omega)$. Therefore, a moment map is defined up to a constant \mathfrak{g}^* -valued function. An equivariant moment map is is defined up to a constant \mathfrak{g}^* -valued function which is *G*-invariant.

CLAIM: An equivariant moment map exists whenever $H^1(G, \mathfrak{g}^*) = 0$. In particular, when G is reductive and M is simply connected, an equivariant moment map exists. Further on, all moment maps will be tacitly considered equivariant.

Weinstein-Marsden theorem

DEFINITION: (Weinstein-Marsden) (M, ω) be a symplectic manifold, G a compact Lie group acting on M by symplectomorphisms, $M \xrightarrow{\mu} \mathfrak{g}^*$ an equivariant moment map, and $c \in \mathfrak{g}^*$ a central element. The quotient $\mu^{-1}(c)/G$ is called symplectic reduction of M, denoted by $M/\!\!/G$.

CLAIM: The symplectic quotient $M/\!\!/G$ is a symplectic manifold of dimension dim $M - 2 \dim G$.

Proof. Step 1: $T_x(\mu^{-1}(c)) = d\mu^{-1}(0)$, however, $d\mu$ is ω -dual to the space $\tau(\mathfrak{g})$ of vector fields tangent to the *G*-action, hence $d\mu^{-1}(0) = \tau(\mathfrak{g})^{\perp}$.

Step 2: Since μ is *G*-equivariant, *G* preserves $\mu^{-1}(c)$, hence $\tau(\mathfrak{g}) \subset d\mu^{-1}(0)$. This implies that $\tau(\mathfrak{g}) \subset TM$ is isotropic (that is, $\omega|_{\tau(\mathfrak{g})} = 0$.) Its ω -orthogonal complement in T_xM is $T_x(\mu^{-1}(c))$ (Step 1).

Step 3: Consider the characteristic foliation \mathcal{F} on $\mu^{-1}(c)$, that is, the set of all $v \in T_x(\mu^{-1}(c))$ such that $\omega(v, w) = 0$ for all $w \in T_x(\mu^{-1}(c))$ From Step 2 we obtain that $\mathcal{F} = \tau(\mathfrak{g})$.

Step 4: Since $\omega|_{\mu^{-1}(c)}$ is closed, it satisfies $\operatorname{Lie}_v(\omega) = 0$ for all $v \in \mathcal{F}$. This implies that it is lifted from the leaf space of characteristic foliation, identified with $M/\!\!/G$.

Symplectic reduction and GIT

THEOREM: Let (M, I, ω) be a Kähler manifold, $G_{\mathbb{C}}$ a complex reductive Lie group acting on M by holomorphic automorphisms, and G its compact form acting isometrically. Then $M/\!\!/G$ is a Kähler manifold.

Proof: Since the orbits of the $G_{\mathbb{C}}$ -action are complex subvarieties, they are symplectic. Since the orbits of $G \subset G_{\mathbb{C}}$ are isotropic, and their dimension is half of dimension of orbits of $G_{\mathbb{C}}$, they are actially Lagrangian subvarieties in orbits of $G_{\mathbb{C}}$. Therefore, $\mu^{-1}(c)$ intersects each orbit of $G_{\mathbb{C}}$ in a *G*-orbit. We have identified $M/\!\!/ G$ with a space of $G_{\mathbb{C}}$ -orbits which intersect $\mu^{-1}(c)$.

REMARK: In such a situation, $M/\!\!/G$ is called **the Kähler quotient**, or **GIT quotient**. The choice of a central element $c \in \mathfrak{g}^*$ is known as a choice of stability data.

REMARK: The points of $M/\!/G$ are in bijective correspondence with the orbits of $G_{\mathbb{C}}$ which intersect $\mu^{-1}(c)$. Such orbits are called **polystable**, and the intersection of a $G_{\mathbb{C}}$ -orbit with $\mu^{-1}(c)$ is a *G*-orbit.

Kähler reduction and a Kähler potential

DEFINITION: Kähler potential on a Kähler manifold (M, ω) is a function ψ such that $dd^c\psi = \omega$.

PROPOSITION: Let G be a real Lie group acting on a Kähler manifold M by holomorphic isometries, and ψ be a G-invariant Kähler potential. Then the moment map $\mathfrak{g} \times M \xrightarrow{\mu g} \mathbb{R}$ can be written as $g, m \longrightarrow -\operatorname{Lie}_{Iv} \psi$, where $v = \tau(g) \in TM$ is the tangent vector field associated with $g \in \mathfrak{g}$.

Proof: Since ψ is *G*-invariant, and *I* is *G*-invariant, we have $0 = \operatorname{Lie}_v d^c \psi = (dd^c \psi) \lrcorner v + d(\langle d^c \psi, v \rangle)$. Using $\omega = dd^c \psi$, we rewrite this equation as $\omega \lrcorner v = -d(\langle d^c \psi, v \rangle)$, giving an equation for the moment map $\mu_g = -\langle d^c \psi, v \rangle$. Acting by *I* on both sides, we obtain $\mu_g = -\langle d\psi, Iv \rangle = -\operatorname{Lie}_{Iv} \psi$.

COROLLARY: Let *V* be a Hermitian representation of a compact Lie group *G*. Then the corresponding moment map can be written as $\mu_g(v) = -\text{Lie}_{Ig} |v|^2 = -\frac{1}{2} \langle v, Ig(v) \rangle$.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

REMARK:

The form $\Omega := \omega_J + \sqrt{-1} \omega_K$ is holomorphic and symplectic on (M, I).

Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler manifold M by hyperkähler isometries, and \mathfrak{g}^* a dual space to its Lie algebra. A hyperkähler moment map is a G-equivariant smooth map $\mu : M \to \mathfrak{g}^* \otimes \mathbb{R}^3$ such that $\langle \mu_i(v), g \rangle = \omega_i(v, d\rho(g))$, for every $v \in TM$, $g \in \mathfrak{g}$ and i = 1, 2, 3, where ω_i is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ_1, ξ_2, ξ_3 be three *G*-invariant vectors in \mathfrak{g}^* . The quotient manifold $M/\!\!/ G := \mu^{-1}(\xi_1, \xi_2, \xi_3)/G$ is called **the hyperkähler quotient** of *M*.

THEOREM: (Hitchin, Karlhede, Lindström, Roček) **The quotient** $M/\!\!/ G$ is hyperkaehler.

Holomorphic moment map

Let $\Omega := \omega_J + \sqrt{-1} \omega_K$. This is a holomorphic symplectic (2,0)-form on (M, I).

The proof of HKLR theorem. Step 1: Let μ_J, μ_K be the moment map associated with ω_J, ω_K , and $\mu_{\mathbb{C}} := \mu_J + \sqrt{-1} \mu_K$. Then $\langle d\mu_{\mathbb{C}}, g \rangle = i_{\rho_g}(\Omega)$. Therefore, $d\mu_{\mathbb{C}} \in \Lambda^{1,0}(M, I) \otimes \mathfrak{g}^*$.

Step 2: This implies that the map $\mu_{\mathbb{C}}$ is holomorphic. It is called **the** holomorphic moment map.

Step 3: By definition, $M/\!\!/ G = \mu_{\mathbb{C}}^{-1}(c)/\!/ G$, where $c \in \mathfrak{g}^* \otimes_{\mathbb{R}} \mathbb{C}$ is a central element. **This is a Kähler manifold**, because it is a Kähler quotient of a Kähler manifold.

Step 4: We obtain 3 complex structures I, J, K on the hyperkähler quotient $M/\!\!/ G$. They are compatible in the usual way (an easy exercise).

Quiver representations

DEFINITION: A **quiver** is an oriented graph. A **quiver representation** is a diagram of complex Hermitian vector spaces and arrows associated with a quiver:

Here, V_i are vector spaces, and φ_i linear maps.

REMARK: If one fixes the spaces V_i , the space of quiver representations is a Hermitian vector space.

Quiver varieties

Starting from a single graph, one can double it up, as follows, obtaining a Nakajima double quiver.

A Nakajima quiver for the Dynkin diagram D_5 .

CLAIM: The space M of representations of a Nakajima's double quiver is a quaternionic vector space, and the group $G := U(V_1) \times U(V_2) \times ... \times U(V_n)$ acts on M preserving the quaternionic structure.

DEFINITION: A Nakajima quiver variety is a quotient $M/\!\!/ G$.

Hyperkähler manifolds as quiver varieties

Many non-compact hyperkähler manifolds are obtained as quiver varieties.

EXAMPLE: A 4-dimensional ALE (asymptotically locally Euclidean) space obtained as a resolution of **a du Val singularity**, that is, a quotient \mathbb{C}^2/G , where $G \subset SU(2)$ is a finite group.

REMARK: Since finite subgroups of SU(2) are classified by the Dynkin diagrams of type A,D,E, these ALE quotients are called **ALE spaces of A-D-E** type.

DEFINITION: A metric on a complete manifold M is asymptotically flat if its curvature satisfies $|R| = O(r^{-3})$, where r is a distance from a point.

EXAMPLE: Any ALE space *M* admit an asymptotically flat hyperkähler metric. Moreover, all asymptotically flat hyperkähler metrics on *M* are obtained through the Nakajima quiver constructuion (Kronheimer, later interpreted by Nakajima)

EXAMPLE: The moduli asymptotically flat Hermitian Yang-Mills connections on ALE spaces is a complete hyperkähler space, **also obtained through the Nakajima quiver constructuion** (Kronheimer, Nakajima).

Quaternion action on $P = Q \otimes_{\mathbb{R}} \mathfrak{u}(R)$

Let $\Gamma \subset SU(2)$ be a finite subgroup; a posteriori, Γ is of ADE type, that is, cyclic, dihedral, or a group of symmetries of a Platonic body in \mathbb{R}^3 . Denote by Q is fundamental 2-dimensional representation, and by R its regular representation, $R = \mathbb{C}[\Gamma]$. Let $P := Q \otimes_{\mathbb{C}} \operatorname{End}_{\mathbb{C}}(R)$ and $M := P^{\Gamma}$ be the space of Γ -invariant vectors in P.

CLAIM: Choose a Γ -invariant Hermitian structure on R such that $End(R) = \mathfrak{u}(R) \otimes_{\mathbb{R}} \mathbb{C}$. Then the space $P = Q \otimes_{\mathbb{R}} \mathfrak{u}(R)$ is equipped with a natural Γ -invariant \mathbb{H} -action.

Proof: Q is \mathbb{C}^2 , real and imaginary parts of the \mathbb{C} -linear symplectic form define a Γ -invariant \mathbb{H} -action on Q, hence $P = Q \otimes_{\mathbb{R}} \mathfrak{u}(R)$ is a quaternionic vector space, with $\Gamma \subset \mathfrak{u}(P, \mathbb{H})$.

ALE spaces as quiver varieties

PROPOSITION: Denote by $F \subset U(R)$ the centralizer of Γ acting on R. Let $X := M /\!\!/ U(R) := \frac{\mu^{-1}(0)}{F}$ be the result of hyperkähler reduction, associated with the $0 \in (\mathfrak{f}^*)^3$. Then $X = \frac{\mathbb{C}^2}{\Gamma}$.

Proof: Soon. ■

REMARK: This result gives a combinatorial description of $X_r := \frac{\mu_{\mathbb{C}}^{-1}(r)}{F}$ which is understood as a smooth deformation of $\frac{\mathbb{C}^2}{\Gamma}$. This puts a hyperkähler metric on X. A standard argument ("symplectic blow-up") implies that the space X is a holomorphic symplectic resolution of singularities of $\frac{\mathbb{C}^2}{\Gamma}$.

REMARK: Consider an extended Dynkin diagram for the A, D, E root system as a graph. Using an appropriate set of vector spaces, we obtain M as a quiver space for these graphs.

Hyperkähler reduction of $\mathbb{C}^2 \otimes_{\mathbb{R}} \mathfrak{u}(R)$.

Claim 1: Consider an action of U(R) on $\mathbb{C}^2 \otimes_{\mathbb{R}} \mathfrak{u}(R)^2$. Then the moment map $\mu_{\mathbb{C}}$ can be written as $\mu_{\mathbb{C}}(\alpha,\beta) = [\alpha,\alpha^*] + [\beta,\beta^*] + \sqrt{-1}[\alpha,\beta]$. Moreover, $\mu^{-1}(0)$ is the set of all $(\alpha,\beta) \in \mathfrak{gl}(R)^2$ which can be simultaneously diagonalized in the same orthonormal basis.

Proof. Step 1: The formula for the moment map follows because the Kähler potential on $\mathfrak{gl}(R)$ is $A \mapsto Tr(AA^*)$.

Step 2: For any $(\alpha, \beta) \in \mu_{\mathbb{C}}^{-1}(0)$, we have $[\alpha, \beta] = [\alpha, \alpha^*] + [\beta, \beta^*] = 0$. This gives $[\operatorname{ad}_{\alpha^*} \operatorname{ad}_{\alpha} + \operatorname{ad}_{\beta^*} \operatorname{ad}_{\beta}](\alpha^*) = 0$ Since $\operatorname{ad}_{\alpha^*} \operatorname{ad}_{\alpha}$ and $\operatorname{ad}_{\beta^*} \operatorname{ad}_{\beta}$ are positive operators, we obtain $[\alpha, \alpha^*] = 0$, hence $[\beta, \beta^*] = 0$ and α and β can be both diagonalized in the same orthonormal basis.

Hyperkähler reduction of $M = Q \otimes_{\mathbb{R}} \mathfrak{u}(R)^{\Gamma}$.

CLAIM: Let $\{e_{\gamma}, \gamma \in \Gamma\}$ be the standard basis in $R = \mathbb{C}[\Gamma]$, and $L \subset M$ the set of all pairs $(\alpha, \beta) \in \mathfrak{u}(R)^2 = P$ such that α and β are diagonal in this basis. Denote by $\mu_{\mathbb{C}} : P \longrightarrow \mathfrak{f} \otimes_{\mathbb{R}} \mathbb{C}$ the complex moment map. Then $L \cap \mu_{\mathbb{C}}^{-1}(0)$ is an orbit of Γ .

Proof. Step 1: By Claim 1, α and β can be both diagonalized in the same orthonormal basis.

Step 2: Take a Γ -invariant orthonormal basis in R. Since F acts on the space of such bases freely and transitively, the intersection $L \cap \mu_{\mathbb{C}}^{-1}(0)$ contains a pair of matrices which are diagonal in the basis e_1, e_{γ_1}, \dots Since Γ acts transitively on e_1, e_{γ_1}, \dots , the matrices α and β are uniquely determined by the coefficients a, b in $\alpha(e_1) = ae_1$ and $\beta(e_1) = be_1$. The group Γ acts on the pairs (a, b)mapping e_1 to e_{γ} , and the coefficients (a, b) are transformed as points in Q.

Step 3: Two points of *L* lie in the same orbit of *F* if and only if they lie in the same orbit of Γ .

COROLLARY:
$$\frac{\mu_{\mathbb{C}}^{-1}(0)}{F} = \frac{\mathbb{C}}{\Gamma}.$$