
Hyperkähler reduction M. Verbitsky

Hyperkähler reduction and ALE spaces

Misha Verbitsky

Estruturas geométricas em variedades,

IMPA, July 21, 2022

1



Hyperkähler reduction M. Verbitsky

Moment maps

DEFINITION: (M,ω) be a symplectic manifold, G a Lie group acting on M

by symplectomorphisms. A moment map µ of this action is a linear map
g−→ C∞M associating to each g ∈ G its Hamiltonian.

REMARK: It is more convenient to consider µ as an element of g∗⊗RC
∞M ,

or (and this is most standard) as a function with values in g∗.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M −→ g∗ is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g∗.

REMARK: M
µ−→ g∗ is a moment map iff for all g ∈ g, 〈dµ, g〉 = iρg(ω).

Therefore, a moment map is defined up to a constant g∗-valued func-
tion. An equivariant moment map is is defined up to a constant g∗-valued
function which is G-invariant.

CLAIM: An equivariant moment map exists whenever H1(G, g∗) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists. Further on, all moment maps will be tacitly considered
equivariant.
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Weinstein-Marsden theorem

DEFINITION: (Weinstein-Marsden) (M,ω) be a symplectic manifold, G a
compact Lie group acting on M by symplectomorphisms, M

µ−→ g∗ an equiv-
ariant moment map, and c ∈ g∗ a central element. The quotient µ−1(c)/G is
called symplectic reduction of M , denoted by M//G.

CLAIM: The symplectic quotient M//G is a symplectic manifold of di-
mension dimM − 2 dimG.

Proof. Step 1: Tx(µ−1(c)) = dµ−1(0), however, dµ is ω-dual to the space
τ(g) of vector fields tangent to the G-action, hence dµ−1(0) = τ(g)⊥.

Step 2: Since µ is G-equivariant, G preserves µ−1(c), hence τ(g) ⊂ dµ−1(0).
This implies that τ(g) ⊂ TM is isotropic (that is, ω

∣∣∣τ(g) = 0.) Its ω-

orthogonal complement in TxM is Tx(µ−1(c)) (Step 1).

Step 3: Consider the characteristic foliation F on µ−1(c), that is, the set
of all v ∈ Tx(µ−1(c)) such that ω(v, w) = 0 for all w ∈ Tx(µ−1(c)) From Step
2 we obtain that F = τ(g).

Step 4: Since ω
∣∣∣µ−1(c) is closed, it satisfies Liev(ω) = 0 for all v ∈ F. This

implies that it is lifted from the leaf space of characteristic foliation, identified
with M//G.
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Symplectic reduction and GIT

THEOREM: Let (M, I, ω) be a Kähler manifold, GC a complex reductive Lie

group acting on M by holomorphic automorphisms, and G its compact form

acting isometrically. Then M//G is a Kähler manifold.

Proof: Since the orbits of the GC-action are complex subvarieties, they are

symplectic. Since the orbits of G ⊂ GC are isotropic, and their dimension is

half of dimension of orbits of GC, they are actially Lagrangian subvarieties in

orbits of GC. Therefore, µ−1(c) intersects each orbit of GC in a G-orbit. We

have identified M//G with a space of GC-orbits which intersect µ−1(c).

REMARK: In such a situation, M//G is called the Kähler quotient, or GIT

quotient. The choice of a central element c ∈ g∗ is known as a choice of

stability data.

REMARK: The points of M//G are in bijective correspondence with the

orbits of GC which intersect µ−1(c). Such orbits are called polystable, and

the intersection of a GC-orbit with µ−1(c) is a G-orbit.
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Kähler reduction and a Kähler potential

DEFINITION: Kähler potential on a Kähler manifold (M,ω) is a function

ψ such that ddcψ = ω.

PROPOSITION: Let G be a real Lie group acting on a Kähler manifold M

by holomorphic isometries, and ψ be a G-invariant Kähler potential. Then

the moment map g×M
µg−→ R can be written as g,m−→ −LieIv ψ, where

v = τ(g) ∈ TM is the tangent vector field associated with g ∈ g.

Proof: Since ψ is G-invariant, and I is G-invariant, we have 0 = Liev dcψ =

(ddcψ)yv + d(〈dcψ, v〉). Using ω = ddcψ, we rewrite this equation as ωyv =

−d(〈dcψ, v〉), giving an equation for the moment map µg = −〈dcψ, v〉. Acting

by I on both sides, we obtain µg = −〈dψ, Iv〉 = −LieIv ψ.

COROLLARY: Let V be a Hermitian representation of a compact Lie group

G. Then the corresponding moment map can be written as µg(v) =

−LieIg |v|2 = −1
2〈v, Ig(v)〉.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

REMARK:

The form Ω := ωJ +
√
−1 ωK is holomorphic and symplectic on (M, I).
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Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler

manifold M by hyperkähler isometries, and g∗ a dual space to its Lie algebra. A

hyperkähler moment map is a G-equivariant smooth map µ : M → g∗ ⊗ R3

such that 〈µi(v), g〉 = ωi(v, dρ(g)), for every v ∈ TM , g ∈ g and i = 1,2,3,

where ωi is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ1, ξ2, ξ3 be three G-invariant vectors in g∗. The quotient

manifold M///G := µ−1(ξ1, ξ2, ξ3)/G is called the hyperkähler quotient of M .

THEOREM: (Hitchin, Karlhede, Lindström, Roček)

The quotient M///G is hyperkaehler.
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Holomorphic moment map

Let Ω := ωJ +
√
−1 ωK. This is a holomorphic symplectic (2,0)-form on

(M, I).

The proof of HKLR theorem. Step 1: Let µJ , µK be the moment map

associated with ωJ , ωK, and µC := µJ +
√
−1 µK. Then 〈dµC, g〉 = iρg(Ω).

Therefore, dµC ∈ Λ1,0(M, I)⊗ g∗.

Step 2: This implies that the map µC is holomorphic. It is called the

holomorphic moment map.

Step 3: By definition, M///G = µ−1
C (c)//G, where c ∈ g∗ ⊗R C is a central

element. This is a Kähler manifold, because it is a Kähler quotient of a

Kähler manifold.

Step 4: We obtain 3 complex structures I, J,K on the hyperkähler quotient

M///G. They are compatible in the usual way (an easy exercise).
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Quiver representations

DEFINITION: A quiver is an oriented graph. A quiver representation is

a diagram of complex Hermitian vector spaces and arrows associated with a

quiver:

Here, Vi are vector spaces, and ϕi linear maps.

REMARK: If one fixes the spaces Vi, the space of quiver representations is

a Hermitian vector space.
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Quiver varieties

Starting from a single graph, one can double it up, as follows, obtaining a

Nakajima double quiver.

A Nakajima quiver for the Dynkin diagram D5.

CLAIM: The space M of representations of a Nakajima’s double quiver is a

quaternionic vector space, and the group G := U(V1)×U(V2)× ...×U(Vn) acts

on M preserving the quaternionic structure.

DEFINITION: A Nakajima quiver variety is a quotient M///G.
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Hyperkähler manifolds as quiver varieties

Many non-compact hyperkähler manifolds are obtained as quiver varieties.

EXAMPLE: A 4-dimensional ALE (asymptotically locally Euclidean) space
obtained as a resolution of a du Val singularity, that is, a quotient C2/G,
where G ⊂ SU(2) is a finite group.

REMARK: Since finite subgroups of SU(2) are classified by the Dynkin dia-
grams of type A,D,E, these ALE quotients are called ALE spaces of A-D-E
type.

DEFINITION: A metric on a complete manifold M is asymptotically flat
if its curvature satisfies |R| = O(r−3), where r is a distance from a point.

EXAMPLE: Any ALE space M admit an asymptotically flat hyperkähler
metric. Moreover, all asymptotically flat hyperkähler metrics on M are ob-
tained through the Nakajima quiver constructuion (Kronheimer, later
interpreted by Nakajima)

EXAMPLE: The moduli asymptotically flat Hermitian Yang-Mills connec-
tions on ALE spaces is a complete hyperkähler space, also obtained through
the Nakajima quiver constructuion (Kronheimer, Nakajima).
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Quaternion action on P = Q⊗R u(R)

Let Γ ⊂ SU(2) be a finite subgroup; a posteriori, Γ is of ADE type, that is,

cyclic, dihedral, or a group of symmetries of a Platonic body in R3. Denote

by Q is fundamental 2-dimensional representation, and by R its regular rep-

resentation, R = C[Γ]. Let P := Q⊗C EndC(R) and M := PΓ be the space of

Γ-invariant vectors in P .

CLAIM: Choose a Γ-invariant Hermitian structure on R such that End(R) =

u(R) ⊗R C. Then the space P = Q ⊗R u(R) is equipped with a natural

Γ-invariant H-action.

Proof: Q is C2, real and imaginary parts of the C-linear symplectic form define

a Γ-invariant H-action on Q, hence P = Q ⊗R u(R) is a quaternionic vector

space, with Γ ⊂ u(P,H).
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ALE spaces as quiver varieties

PROPOSITION: Denote by F ⊂ U(R) the centralizer of Γ acting on R. Let

X := M///U(R) := µ−1(0)
F be the result of hyperkähler reduction, associated

with the 0 ∈ (f∗)3. Then X = C2

Γ .

Proof: Soon.

REMARK: This result gives a combinatorial description of Xr :=
µ−1
C (r)
F which

is understood as a smooth deformation of C2

Γ . This puts a hyperkähler

metric on X. A standard argument (“symplectic blow-up”) implies that the

space X is a holomorphic symplectic resolution of singularities of C2

Γ .

REMARK: Consider an extended Dynkin diagram for the A,D,E root system

as a graph. Using an appropriate set of vector spaces, we obtain M as

a quiver space for these graphs.
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Hyperkähler reduction of C2 ⊗R u(R).

Claim 1: Consider an action of U(R) on C2 ⊗R u(R)2. Then the moment

map µC can be written as µC(α, β) = [α, α∗]+[β, β∗]+
√
−1[α, β]. Moreover,

µ−1(0) is the set of all (α, β) ∈ gl(R)2 which can be simultaneously

diagonalized in the same orthonormal basis.

Proof. Step 1: The formula for the moment map follows because the Kähler

potential on gl(R) is A 7→ Tr(AA∗).

Step 2: For any (α, β) ∈ µ−1
C (0), we have [α, β] = [α, α∗] + [β, β∗] = 0.

This gives [adα∗ adα+ adβ∗ adβ](α∗) = 0 Since adα∗ adα and adβ∗ adβ are positive

operators, we obtain [α, α∗] = 0, hence [β, β∗] = 0 and α and β can be both

diagonalized in the same orthonormal basis.
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Hyperkähler reduction of M = Q⊗R u(R)Γ.

CLAIM: Let {eγ, γ ∈ Γ} be the standard basis in R = C[Γ], and L ⊂ M the

set of all pairs (α, β) ∈ u(R)2 = P such that α and β are diagonal in this basis.

Denote by µC : P −→ f⊗R C the complex moment map. Then L ∩ µ−1
C (0) is

an orbit of Γ.

Proof. Step 1: By Claim 1, α and β can be both diagonalized in the

same orthonormal basis.

Step 2: Take a Γ-invariant orthonormal basis in R. Since F acts on the space

of such bases freely and transitively, the intersection L∩µ−1
C (0) contains a pair

of matrices which are diagonal in the basis e1, eγ1, ... Since Γ acts transitively

on e1, eγ1, ..., the matrices α and β are uniquely determined by the coefficients

a, b in α(e1) = ae1 and β(e1) = be1. The group Γ acts on the pairs (a, b)

mapping e1 to eγ, and the coefficients (a, b) are transformed as points in Q.

Step 3: Two points of L lie in the same orbit of F if and only if they lie in

the same orbit of Γ.

COROLLARY:
µ−1
C (0)
F = C

Γ.
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