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Moment maps

DEFINITION: (M,w) be a symplectic manifold, G a Lie group acting on M
by symplectomorphisms. A moment map p of this action is a linear map
g — C°°M associating to each g € GG its Hamiltonian.

REMARK: It is more convenient to consider p as an element of g* Qr C°°M,
or (and this is most standard) as a function with values in g*.

REMARK: Moment map always exists if M is simply connected.

DEFINITION: A moment map M — g* is called equivariant if it is equiv-
ariant with respect to the coadjoint action of G on g*.

REMARK: M -2 g* is a moment map iff for all g € g, (dp, g) = ip,(w).

Therefore, a moment map is defined up to a constant g*-valued func-
tion. An equivariant moment map is is defined up to a constant g*-valued
function which is G-invariant.

CLAIM: An equivariant moment map exists whenever H!(G,g*) = 0.
In particular, when G is reductive and M is simply connected, an equivariant
moment map exists. Further on, all moment maps will be tacitly considered

equivariant.
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Weinstein-Marsden theorem

DEFINITION: (Weinstein-Marsden) (M,w) be a symplectic manifold, G a
compact Lie group acting on M by symplectomorphisms, M LN g* an equiv-
ariant moment map, and ¢ € g* a central element. The quotient 1~ 1(¢)/G is
called symplectic reduction of M, denoted by M //G.

CLAIM: The symplectic quotient M /G is a symplectic manifold of di-
mension dimM —2dimG.

Proof. Step 1: T:(p 1(¢)) = dp~1(0), however, du is w-dual to the space
r(g) of vector fields tangent to the G-action, hence dup~1(0) = 7(g)=+.

Step 2: Since u is G-equivariant, G preserves u~1(¢), hence 7(g) C du—1(0).
This implies that 7(g) C TM is isotropic (that is, w|7(g) = 0.) Its w-

orthogonal complement in T M is T (" 1(¢)) (Step 1).

Step 3: Consider the characteristic foliation F on p~1(¢), that is, the set
of all v € Tu (= 1(e)) such that w(v,w) = 0 for all w € Tx(x"1(c)) From Step
2 we obtain that 7 = 7(g).

Step 4: Since wllfl o) is closed, it satisfies Liey(w) = 0 for all v € F. This
implies that it is lifted from the leaf space of characteristic foliation, identified
with M /G. m
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Svymplectic reduction and GIT

THEOREM: Let (M, I,w) be a Kahler manifold, G¢ a complex reductive Lie
group acting on M by holomorphic automorphisms, and G its compact form
acting isometrically. Then M /G is a Kahler manifold.

Proof: Since the orbits of the G¢-action are complex subvarieties, they are
symplectic. Since the orbits of G C G¢ are isotropic, and their dimension is
half of dimension of orbits of G¢, they are actially Lagrangian subvarieties in
orbits of G¢. Therefore, p~1(¢) intersects each orbit of G¢ in a G-orbit. We
have identified M /G with a space of Gg-orbits which intersect p~1(c).
H

REMARK: In such a situation, M /G is called the Kahler quotient, or GIT
quotient. The choice of a central element ¢ € g* is known as a choice of
stability data.

REMARK: The points of M /G are in bijective correspondence with the
orbits of G¢ which intersect x~1(¢). Such orbits are called polystable, and
the intersection of a Gg-orbit with = 1(¢) is a G-orbit.
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Kahler reduction and a Kahler potential

DEFINITION: Kahler potential on a Kahler manifold (M,w) is a function
1 such that dd“y = w.

PROPOSITION: Let G be a real Lie group acting on a Kahler manifold M
by holomorphic isometries, and ¥ be a G-invariant Kahler potential. Then
the moment map gx M 9, R can be written as g,m — — Lier, ¥, where
v =17(g) € TM is the tangent vector field associated with g € g.

Proof: Since ¢ is G-invariant, and I is G-invariant, we have 0 = Liey d®y
(dd®y) ov + d({d“y,v)). Using w = dd“), we rewrite this equation as wiv =
—d((d“p,v)), giving an equation for the moment map pug = —(d“p,v). Acting
by I on both sides, we obtain ug = —(dy, Iv) = — Liej,¢. =

COROLLARY: Let V be a Hermitian representation of a compact Lie group
G. Then the corresponding moment map can be written as p4(v) =
—Liegg [v]? = =5 (v, Ig(v)). m
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations T oJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
wy .= 9(17)’ Wy .= g(Ja)’ WK = g(Kv)

REMARK: This is equivalent to VI = VJ = VK = 0: the parallel translation
along the connection preserves I, J, K.

REMARK:
The form Q ;= w; + v—1wg is holomorphic and symplectic on (M, ).
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Hyperkahler reduction

DEFINITION: Let G be a compact Lie group, p its action on a hyperkahler
manifold M by hyperkdhler isometries, and g* a dual space to its Lie algebra. A
hyperkahler moment map is a G-equivariant smooth map p: M — g* @ R3
such that (u;(v),9) = w;(v,dp(g)), for every v € TM, g € g and i = 1,2,3,
where w; is one three Kahler forms associated with the hyperkahler structure.

DEFINITION: Let &1,&0,&3 be three G-invariant vectors in g*. The quotient
manifold M /G := pn~1(&1,65,£3) /G is called the hyperkahler quotient of M.

THEOREM: (Hitchin, Karlhede, Lindstrom, RocCek)
The quotient M //G is hyperkaehler.
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Holomorphic moment map

Let Q:=w;+ v—1wg. This is a holomorphic symplectic (2,0)-form on
(M, I).

The proof of HKLR theorem. Step 1: Let upj,ux be the moment map

associated with wj,wg, and uc ‘= py+ v—1pug. Then (duc,g) = ip,(£2).
Therefore, duc € AVO(M, 1) ® g*.

Step 2: This implies that the map pc is holomorphic. It is called the
holomorphic moment map.

Step 3: By definition, M )/G = uél(c)//G, where ¢ € g* ®gr C is a central
element. This iIs a Kahler manifold, because it is a Kahler quotient of a
Kahler manifold.

Step 4: We obtain 3 complex structures I,J, K on the hyperkahler quotient
M //G. They are compatible in the usual way (an easy exercise). =
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Quiver representations

DEFINITION: A quiver is an oriented graph. A quiver representation is
a diagram of complex Hermitian vector spaces and arrows associated with a

quiver:

Here, V; are vector spaces, and ; linear maps.

REMARK: If one fixes the spaces V;, the space of quiver representations is
a Hermitian vector space.
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Quiver varieties

Starting from a single graph, one can double it up, as follows, obtaining a
Nakajima double quiver.

A Nakajima quiver for the Dynkin diagram Ds.
CLAIM: The space M of representations of a Nakajima’'s double quiver is a
quaternionic vector space, and the group G :=U (V1) xU(V5) x...xU(Vy) acts

on M preserving the quaternionic structure.

DEFINITION: A Nakajima quiver variety is a quotient M //G.
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Hyperkahler manifolds as quiver varieties
Many non-compact hyperkahler manifolds are obtained as quiver varieties.

EXAMPLE: A 4-dimensional ALE (asymptotically locally Euclidean) space
obtained as a resolution of a du Val singularity, that is, a quotient CQ/G,
where G C SU(2) is a finite group.

REMARK: Since finite subgroups of SU(2) are classified by the Dynkin dia-
grams of type A,D,E, these ALE quotients are called ALE spaces of A-D-E

type.

DEFINITION: A metric on a complete manifold M is asymptotically flat
if its curvature satisfies |R| = O(r_?’), where r is a distance from a point.

EXAMPLE: Any ALE space M admit an asymptotically flat hyperkahler
metric. Moreover, all asymptotically flat hyperkahler metrics on M are ob-
tained through the Nakajima quiver constructuion (Kronheimer, later
interpreted by Nakajima)

EXAMPLE: The moduli asymptotically flat Hermitian Yang-Mills connec-
tions on ALE spaces is a complete hyperkahler space, also obtained through
the Nakajima quiver constructuion (Kronheimer, Nakajima).
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Quaternion action on P = Q ®p u(R)

Let T C SU(2) be a finite subgroup; a posteriori, I is of ADE type, that is,
cyclic, dihedral, or a group of symmetries of a Platonic body in R3. Denote
by @ is fundamental 2-dimensional representation, and by R its regular rep-
resentation, R = C[I]. Let P := Q ®c End¢(R) and M := P' be the space of
[ -invariant vectors in P.

CLAIM: Choose a lN-invariant Hermitian structure on R such that End(R) =
u(R) g C. Then the space P = Q ®r u(R) is equipped with a natural
[ -invariant H-action.

Proof: @ is C2 real and imaginary parts of the C-linear symplectic form define
a -invariant H-action on @, hence P = @ ®r u(R) is a quaternionic vector
space, with ' Cu(P,H). =
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ALE spaces as quiver varieties

PROPOSITION: Denote by ' C U(R) the centralizer of ' acting on R. Let
—1
X = MJJU(R) := “T(O) be the result of hyperkahler reduction, associated

- 3 __C?
with the 0 € (f)°. Then X = .

Proof: Soon. m

-1
REMARK: This result gives a combinatorial description of X, := u@F(?") which

2 -
IS understood as a smooth deformation of %. This puts a hyperkahler
metric on X. A standard argument ( “symplectic blow-up”) implies that the
2
space X is a holomorphic symplectic resolution of singularities of %.

REMARK: Consider an extended Dynkin diagram for the A, D, £ root system

as a graph. Using an appropriate set of vector spaces, we obtain M as
a quiver space for these graphs.
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Hyperkahler reduction of C2 @z u(R).

Claim 1: Consider an action of U(R) on C? ®p u(R)2. Then the moment

map uc can be written as uc(a, ) = [o, a*|+ 8, 8*] ++v—1[a, B]. Moreover,
u~1(0) is the set of all («,8) € gl(R)2 which can be simultaneously

diagonalized in the same orthonormal basis.

Proof. Step 1: The formula for the moment map follows because the Kahler
potential on gl(R) is A~ Tr(AA*).

Step 2: For any (a,f8) € ugt(0), we have [o,f8] = [a,a*] + [8,8*] = O.
This gives [ad,+adq + adg«adg](a™) = 0 Since ad,+ada and adg«adg are positive
operators, we obtain [a,a*] = 0, hence [5,3*] = 0 and « and B8 can be both
diagonalized in the same orthonormal basis. m
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Hyperkahler reduction of M = Q @ u(R)".

CLAIM: Let {ey,y € '} be the standard basis in R = C[l'], and L C M the
set of all pairs (a,8) € u(R)? = P such that a and 8 are diagonal in this basis.
Denote by puc: P— f®r C the complex moment map. Then L ﬂuél(O) IS
an orbit of .

Proof. Step 1: By Claim 1, « and 3 can be both diagonalized in the
same orthonormal basis.

Step 2: Take a l-invariant orthonormal basis in R. Since F' acts on the space
of such bases freely and transitively, the intersection Lﬁ,uél(O) contains a pair
of matrices which are diagonal in the basis ey, eyq,... Since [ acts transitively
on e, ey, ..., the matrices o and g8 are uniquely determined by the coefficients
a,b in a(e1) = aey and B(e1) = bey. The group ' acts on the pairs (a,b)
mapping e; to ey, and the coefficients (a,b) are transformed as points in Q.

Step 3: Two points of L lie in the same orbit of F' if and only if they lie in
the same orbit of . =

~1
COROLLARY: {9 —

e
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