Special Holonomy and the ADHM Construction

Misha Verbitsky

November 5, 2012, University of Miami,

Geometry and Physics Seminar

Plan

- 0. GIT, symplectic reduction, hyperkähler reduction
- 1. Quiver varieties and ADHM construction
- 2. Twistor spaces and Ward transform
- 3. Instantons on $\mathbb{C}P^3$ and non-Hermitian ASD connections
- 4. Trihyperkähler reduction and its applications

Moment maps

DEFINITION: (M, ω) be a symplectic manifold, G a Lie group acting on M by symplectomorphisms. A moment map μ of this action is a linear map $\mathfrak{g} \longrightarrow C^{\infty}M$ associating to each $g \in G$ its Hamiltonian.

REMARK: It is more convenient to consider μ as an element of $\mathfrak{g}^* \otimes_{\mathbb{R}} C^{\infty} M$, or (and this is most standard) as a function with values in \mathfrak{g}^* .

REMARK: Moment map always exists if *M* is simply connected.

DEFINITION: A moment map $M \longrightarrow \mathfrak{g}^*$ is called **equivariant** if it is equivariant with respect to the coadjoint action of G on \mathfrak{g}^* .

REMARK: $M \xrightarrow{\mu} \mathfrak{g}^*$ is a moment map iff for all $g \in \mathfrak{g}$, $\langle d\mu, g \rangle = i_{\rho_g}(\omega)$. Therefore, a moment map is defined up to a constant \mathfrak{g}^* -valued function. An equivariant moment map is defined up to a constant \mathfrak{g}^* -valued function which is *G*-invariant.

DEFINITION: A *G*-invariant $c \in \mathfrak{g}^*$ is called **central**.

CLAIM: An equivariant moment map exists whenever $H^1(G, \mathfrak{g}^*) = 0$. In particular, when G is reductive and M is simply connected, an equivariant moment map exists.

Symplectic reduction and GIT

DEFINITION: (Weinstein-Marsden) (M, ω) be a symplectic manifold, G a compact Lie group acting on M by symplectomorphisms, $M \xrightarrow{\mu} \mathfrak{g}^*$ an equivariant moment map, and $c \in \mathfrak{g}^*$ a central element. The quotient $\mu^{-1}(c)/G$ is called symplectic reduction of M, denoted by $M/\!\!/G$.

CLAIM: The symplectic quotient $M/\!\!/G$ is a symplectic manifold of dimension dim $M - 2 \dim G$.

THEOREM: Let (M, I, ω) be a Kähler manifold, $G_{\mathbb{C}}$ a complex reductive Lie group acting on M by holomorphic automorphisms, and G is compact form acting isometrically. Then $M/\!\!/G$ is a Kähler orbifold.

REMARK: In such a situation, $M/\!\!/G$ is called **the Kähler quotient**, or **GIT quotient**. The choice of a central element $c \in \mathfrak{g}^*$ is known as a choice of stability data.

REMARK: The points of $M/\!\!/G$ are in bijective correspondence with the orbits of $G_{\mathbb{C}}$ which intersect $\mu^{-1}(c)$. Such orbits are called **polystable**, and the intersection of a $G_{\mathbb{C}}$ -orbit with $\mu^{-1}(c)$ is a *G*-orbit.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

REMARK:

The form $\Omega := \omega_J + \sqrt{-1} \omega_K$ is holomorphic and symplectic on (M, I).

Hyperkähler reduction

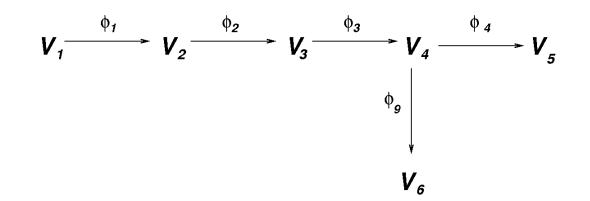
DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler manifold M by hyperkähler isometries, and \mathfrak{g}^* a dual space to its Lie algebra. A hyperkähler moment map is a G-equivariant smooth map $\mu : M \to \mathfrak{g}^* \otimes \mathbb{R}^3$ such that $\langle \mu_i(v), g \rangle = \omega_i(v, d\rho(g))$, for every $v \in TM$, $g \in \mathfrak{g}$ and i = 1, 2, 3, where ω_i is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ_1, ξ_2, ξ_3 be three *G*-invariant vectors in \mathfrak{g}^* . The quotient manifold $M/\!\!/ G := \mu^{-1}(\xi_1, \xi_2, \xi_3)/G$ is called **the hyperkähler quotient** of *M*.

THEOREM: (Hitchin, Karlhede, Lindström, Roček) **The quotient** $M/\!\!/ G$ is hyperkaehler.

Quiver representations

DEFINITION: A **quiver** is an oriented graph. A **quiver representation** is a diagram of complex Hermitian vector spaces and arrows associated with a quiver:

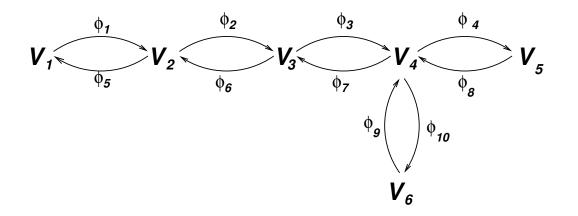


Here, V_i are vector spaces, and φ_i linear maps.

REMARK: If one fixes the spaces V_i , the space of quiver representations is a Hermitian vector space.

Quiver varieties

Starting from a single graph, one can double it up, as follows, obtaining a Nakajima double quiver.



A Nakajima quiver for the Dynkin diagram D_5 .

CLAIM: The space M of representations of a Nakajima's double quiver is a quaternionic vector space, and the group $G := U(V_1) \times U(V_2) \times ... \times U(V_n)$ acts on M preserving the quaternionic structure.

DEFINITION: A Nakajima quiver variety is a quotient $M/\!\!/ G$.

Hyperkähler manifolds as quiver varieties

Many non-compact hyperkähler manifolds are obtained as quiver varieties.

EXAMPLE: A 4-dimensional ALE (asymptotically locally Euclidean) space obtained as a resolution of a du Val singularity, that is, a quotient \mathbb{C}^2/G , where $G \subset SU(2)$ is a finite group.

REMARK: Since finite subgroups of SU(2) are classified by the Dynkin diagrams of type A,D,E, these ALE quotients are called **ALE spaces of A-D-E** type.

EXAMPLE: The moduli asymptotically flat Hermitian Yang-Mills connections on ALE spaces of A-D-E type.

DEFINITION: An instanton on $\mathbb{C}P^2$ is a stable bundle *B* with $c_1(B) = 0$. A framed instanton is an instanton equipped with a trivialization $B|_C$ for a line $C \subset \mathbb{C}P^2$.

THEOREM: (Nahm, Atiyah, Hitchin) The space $\mathcal{M}_{r,c}$ of framed instantons on $\mathbb{C}P^2$ is hyperkähler.

This theorem is proved using quivers.

ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions c and r, respectively. The **ADHM data** is maps

 $A, B \in \text{End}(V), I \in \text{Hom}(W, V), J \in \text{Hom}(V, W).$

We say that ADHM data is

stable,

if there is no subspace $S \subsetneq V$ such that $A(S), B(S) \subset S$ and $I(W) \subset S$;

costable,

if there is no nontrivial subspace $S \subset V$ such that $A(S), B(S) \subset S$ and $S \subset ker J$;

regular,

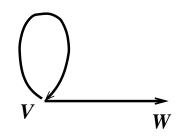
if it is both stable and costable.

The ADHM equation is [A, B] + IJ = 0.

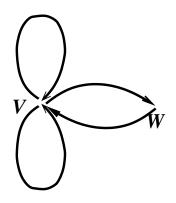
THEOREM: (Atiyah, Drinfeld, Hitchin, Manin) Framed rank r, charge c instantons on $\mathbb{C}P^2$ are in bijective correspondence with the set of equivalence classes of regular ADHM solutions. In other words, the moduli of instantons on $\mathbb{C}P^2$ is identified with moduli of the corresponding quiver representation.

ADHM spaces as quiver varieties

Consider the quiver



The ADHM data is the set Q of representations of the corresponding double quiver



The corresponding holomorphic moment map is the ADHM equation $A, B, I, J \longrightarrow [A, B] + IJ$ with values in End(V).

The set of equivalence classes of ADHM solutions is $Q/\!\!/ U(V)$.

Twistor space

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$ **They are usually non-algebraic**. Indeed, if *M* is compact, for generic *a*, *b*, *c*, (M, L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{TW}} = I_m \oplus I_J : T_x \mathsf{Tw}(M) \to T_x \mathsf{Tw}(M)$ satisfies $I^2_{\mathsf{TW}} = -\operatorname{Id}$. **It defines an almost complex structure on** $\mathsf{Tw}(M)$. This almost complex structure is known to be integrable (Obata, Salamon)

EXAMPLE: If $M = \mathbb{H}^n$, $\mathsf{Tw}(M) = \mathsf{Tot}(\mathcal{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$

REMARK: For *M* compact, $\forall w(M)$ never admits a Kähler structure.

Hyperholomorphic connections

REMARK: Let *M* be a hyperkähler manifold. The group SU(2) of unitary quaternions acts on $\Lambda^*(M)$ multiplicatively.

DEFINITION: A hyperholomorphic connection on a vector bundle *B* over *M* is a Hermitian connection with SU(2)-invariant curvature $\Theta \in \Lambda^2(M) \otimes End(B)$.

REMARK: Since the invariant 2-forms satisfy $\Lambda^2(M)_{SU(2)} = \bigcap_{I \in \mathbb{C}P^1} \Lambda_I^{1,1}(M)$, a hyperholomorphic connection defines a holomorphic structure on *B* for each *I* induced by quaternions.

REMARK: When dim_{III} M = 1, "hyperholomorphic" is synonymous with "anti-selfdual": $\Lambda^2(M)^{SU(2)} = \Lambda^-(M)$.

THEOREM: Let $\overline{\partial}$: $V \longrightarrow \Lambda^{0,1}(M) \otimes V$ be a (0,1)-part of connection ∇ satisfying $(\Theta_{\nabla})^{0,2} = 0$. Then $B := \ker \overline{\partial} \subset V$ is a holomorphic vector bundle of the same rank.

Twistor transform and hyperholomorphic bundles 1: direct twistor transform

CLAIM: Let σ : $\mathsf{Tw}(M) \longrightarrow M$ be the standard projection, where M is hyperkähler and $\eta \in \Lambda^2 M$ a 2-form. Then $\sigma^* \eta$ is a (1,1)-form iff η is SU(2)-invariant.

COROLLARY: Let (B, ∇) be a bundle with connection, and $\sigma^*B, \sigma^*\nabla$ its pullback to $\mathsf{Tw}(M)$. Then $(\sigma^*B, \sigma^*\nabla)$ has (1,1)-curvature iff ∇ has SU(2)-invariant curvature.

REMARK: This construction produces a holomorphic vector bundle on Tw(M) starting from a connection with SU(2)-invariant curvature. It is called **direct twistor transform**. The **inverse twistor transform** produces a bundle with connection on M from a holomorphic bundle on Tw(M).

DEFINITION: A non-Hermitian hyperholomorphic connection on a complex vector bundle B is a connection (not necessarily Hermitian) which has SU(2)-invariant curvature.

Twistor transform and hyperholomorphic bundles 2: inverse twistor transform

DEFINITION: Let M be a hyperkähler manifold, and σ : $\mathsf{Tw}(M) \longrightarrow M$ its twistor space. For each point $x \in M$, $\sigma^{-1}(x)$ is a holomorphic rational curve in $\mathsf{Tw}(M)$. It is called a horizontal twistor section.

THEOREM: (The inverse twistor transform; Kaledin-V.) Let *B* be a holomorphic vector bundle on Tw(M), which is trivial on any horizontal twistor line. Denote by B_0 the C^{∞} -bundle on *M* with fiber $H^0(B|_{\sigma^{-1}(x)})$ at $x \in M$. Then B_0 admits a unique non-Hermitian hyperholomorphic connection ∇ such that *B* is isomorphic (as a holomorphic vector bundle) to its twistor transform ($\sigma^*B_0, (\sigma^*\nabla)^{0,1}$).

REMARK: The condition of being trivial on any horizontal twistor line is **open.** Therefore, **the moduli of holomorphic bundles on a** Tw(M) **contain an open subset corresponding to non-Hermitian hyperholomorphic connection on** M.

Rational curves on twistor spaces

DEFINITION: Denote by Sec(M) the space of holomorphic sections of the twistor fibration $Tw(M) \xrightarrow{\pi} \mathbb{C}P^1$. For each point $m \in M$, one has a horizontal section $C_m := \{m\} \times \mathbb{C}P^1$ of π . The space of horizontal sections is denoted $Sec_{hor}(M) \subset Sec(M)$

REMARK: The space of horizontal sections of π is identified with M. The normal bundle $NC_m = \mathcal{O}(1)^{\dim M}$. Therefore, some neighbourhood of $Sec_{hor}(M) \subset Sec(M)$ is a smooth manifold of dimension $2 \dim M$.

Let B be a (Hermitian) hyperholomorphic bundle on M, and W the deformation space of B, which is known to be hyperkähler. Denote by \tilde{B} the holomorphic bundle on $\mathsf{Tw}(M)$, obtained as a twistor transform of B. Any deformation \tilde{B}_1 of \tilde{B} gives a holomorphic map $\mathbb{C}P^1 \longrightarrow \mathsf{Tw}(W)$ mapping $L \in \mathbb{C}P^1$ to a bundle $\tilde{B}_1|_{(M,L)} \subset \mathsf{Tw}(M)$, considered as a point in (W,L).

THEOREM: (Kaledin-V.) This construction identifies deformations of \tilde{B} (with appropriate stability conditions) and rational curves $S \in Sec(W)$. The twistor transforms of Hermitian hyperholomorphic bundles on M correspond to $Sec_h(W) \subset Sec(W)$.

Holomorphic bundles on $\mathbb{C}P^3$ and twistor sections

DEFINITION: An instanton on $\mathbb{C}P^2$ is a stable bundle *B* with $c_1(B) = 0$. A framed instanton is an instanton equipped with a trivialization $B|_C$ for a line $C \subset \mathbb{C}P^2$.

THEOREM: (Nahm, Atiyah, Hitchin) The space $\mathcal{M}_{r,c}$ of framed instantons on $\mathbb{C}P^2$ is **smooth, connected, hyperkähler.**

REMARK: There is a similar correspondence between the holomorphic bundles on $Tw(\mathbb{H}) = \mathbb{C}P^3 \setminus \mathbb{C}P^1$, with appropriate stability and framing conditions, and twistor sections in $Sec(\mathcal{M}_{r,c})$.

Mathematical instantons

DEFINITION: A mathematical instanton on $\mathbb{C}P^3$ is a stable bundle *B* with $c_1(B) = 0$ and $H^0(E(-1)) = H^1(E(-2)) = H^2(E(-2)) = H^3(E(-3)) = 0$. **A framed instanton** is a mathematical instanton equipped with a trivialization of $B|_{\ell}$ for some fixed line $\ell = \mathbb{C}P^1 \subset \mathbb{C}P^3$.

DEFINITION: An instanton on $\mathbb{C}P^2$ is a stable bundle *B* with $c_1(B) = 0$. A framed instanton is an instanton equipped with a trivialization $B|_x$ for some fixed point $x \in \mathbb{C}P^2$.

THEOREM: (Jardim–V.) The space $M_{r,c}$ of framed mathematical instantons on $\mathbb{C}P^3$ is naturally identified with the space of twistor sections $Sec(\mathcal{M}_{r,c})$.

REMARK: This correspondence is not surprising, if one realizes that $Tw(\mathbb{H}) = \mathbb{C}P^3 \setminus \mathbb{C}P^1$.

The space of instantons on $\mathbb{C}P^3$

THEOREM: (Jardim–V.) The space $M_{r,c}$ is smooth.

REMARK: To prove that $\mathcal{M}_{r,c}$ is smooth, one could use hyperkähler reduction. To prove that $\mathbb{M}_{r,c}$ is smooth, we develop **trihyperkähler reduction**, which is **a reduction defined on trisymplectic manifolds**.

We prove that $M_{r,c}$ is a trihyperkähler quotient of a vector space by a reductive group action, hence smooth.

Trisymplectic manifolds

DEFINITION: Let Ω be a 3-dimensional space of holomorphic symplectic 2-forms on a complex manifold. Suppose that

- Ω contains a non-degenerate 2-form
- For each non-zero degenerate $\Omega \in \Omega$, one has $\operatorname{rk} \Omega = \frac{1}{2} \operatorname{dim} V$.

Then Ω is called a trisymplectic structure on M.

REMARK: The bundles ker Ω are involutive, because Ω is closed.

THEOREM: (Jardim–V.) For any trisymplectic structure on M, M is equipped with a unique holomorphic, torsion-free connection, preserving the forms Ω_i . It is called **the Chern connection** of M.

REMARK: The Chern connection has holonomy in $Sp(n, \mathbb{C})$ acting on $\mathbb{C}^{2n} \otimes \mathbb{C}^2$.

Trisymplectic structure on $Sec_0(M)$

EXAMPLE: Consider a hyperkähler manifold M. Let $I \in \mathbb{C}P^1$, and ev_I : Sec₀(M) \longrightarrow (M,I) be an evaluation map putting $S \in$ Sec₀(M) to S(I). Denote by Ω_I the holomorphic symplectic form on (M,I). Then $ev_I^*\Omega_I$, $I \in \mathbb{C}P^1$ generate a trisymplectic structure.

COROLLARY: Sec₀(M) is equipped with a holomorphic, torsion-free connection with holonomy in $Sp(n, \mathbb{C})$.

Trihyperkähler reduction

DEFINITION: A trisymplectic moment map $\mu_{\mathbb{C}}$: $M \longrightarrow \mathfrak{g}^* \otimes_{\mathbb{R}} \Omega^*$ takes vectors $\Omega \in \Omega, g \in \mathfrak{g} = \text{Lie}(G)$ and maps them to a holomorphic function $f \in \mathcal{O}_M$, such that $df = \Omega \lrcorner g$, where $\Omega \lrcorner g$ denotes the contraction of Ω and the vector field g

DEFINITION: Let (M, Ω, S_t) be a trisymplectic structure on a complex manifold M. Assume that M is equipped with an action of a compact Lie group G preserving Ω , and an equivariant trisymplectic moment map

$$\mu_{\mathbb{C}}: M \longrightarrow \mathfrak{g}^* \otimes_{\mathbb{R}} \Omega^*.$$

Let $\mu_{\mathbb{C}}^{-1}(0)$ be the corresponding level set of the moment map. Consider the action of the complex Lie group $G_{\mathbb{C}}$ on $\mu_{\mathbb{C}}^{-1}(c)$. Assume that it is proper and free. Then the quotient $\mu_{\mathbb{C}}^{-1}(c)/G_{\mathbb{C}}$ is a smooth manifold called the trisymplectic quotient of (M, Ω, S_t) , denoted by $M/\!/\!/G$.

THEOREM: Suppose that the restriction of Ω to $\mathfrak{g} \subset TM$ is non-degenerate. **Then** M///G is trisymplectic.

Mathematical instantons and the twistor correspondence

REMARK: Using the monad description of mathematical instantons, we prove that that the map $Sec_0(\mathcal{M}_{r,c}) \longrightarrow \mathbb{M}_{r,c}$ to the space of mathematical instantons is an isomorphism (Frenkel-Jardim, Jardim-V.).

REMARK: The smoothness of the space $Sec_0(\mathcal{M}_{r,c}) = \mathbb{M}_{r,c}$ follows from the trihyperkähler reduction procedure:

THEOREM: Let M be flat hyperkähler manifold, and G a compact Lie group acting on M by hyperkähler automorphisms. Suppose that the hyperkähler moment map exists, and the hyperkähler quotient $M/\!\!/\!/ G$ is smooth. Then there exists an open embedding

$$\operatorname{Sec}_0(M)/\!\!/\!/ G \xrightarrow{\Psi} \operatorname{Sec}_0(M/\!\!/ G),$$

which is compatible with the trisymplectic structures on $\text{Sec}_0(M)///G$ and $\text{Sec}_0(M///G)$.

THEOREM: If *M* is the space of quiver representations which gives $M/\!\!/ G = \mathcal{M}_{2,c}$, Ψ gives an isomorphism $\operatorname{Sec}_0(M)/\!\!/ G = \operatorname{Sec}_0(M/\!\!/ G)$.

The 1-dimensional ADHM construction

DEFINITION: Let V and W be complex vector spaces, with dimensions c and r, respectively. The 1-dimensional ADHM data is maps

 $A_k, B_k \in \text{End}(V), I_k \in \text{Hom}(W, V), J_k \in \text{Hom}(V, W), (k = 0, 1)$

Choose homogeneous coordinates $[z_0 : z_1]$ on $\mathbb{C}P^1$ and define

$$\tilde{A} := A_0 \otimes z_0 + A_1 \otimes z_1$$
 and $\tilde{B} := B_0 \otimes z_0 + B_1 \otimes z_1$.

We say that 1-dimensional ADHM data is globally regular if $(\tilde{A}_p, \tilde{B}_p, \tilde{I}_p, \tilde{J}_p)$ is regular for every $p \in \mathbb{C}P^1$. The 1dimensional ADHM equation is $[\tilde{A}_p, \tilde{B}_p] + \tilde{I}_p \tilde{J}_p = 0$, for all $p \in \mathbb{C}P^d$

THEOREM: (Marcos Jardim, Igor Frenkel) Let $C_1(r,c)$ denote the set of globally regular solutions of the 1-dimensional ADHM equation. Then **there** exists a 1-1 correspondence between equivalence classes of globally regular solutions of the 1-dimensional ADHM equations and isomorphism classes of rank r instanton bundles on \mathbb{CP}^3 framed at a fixed line ℓ , where dim $W = \operatorname{rk}(E)$ and dim $V = c_2(E)$.

1-dimensional ADHM construction and the trisymplectic moment map

THEOREM: (Jardim, V.) Consider the natural (flat) trisymplectic structure on the space $U_{r,c}$ of 1-dimensional ADHM data, and let $\mu : U_{r,c} \longrightarrow H^0(\mathcal{O}_{\mathbb{C}P^1}(1) \otimes$ $\operatorname{End}(V)$) be a map associating to $C \in U_{r,c}$ and $p \in \mathbb{C}P^1$ the vector $[\tilde{A}_p, \tilde{B}_p] + \tilde{I}_p \tilde{J}_p \in \mathcal{O}_{\mathbb{C}P^1}(2) \otimes \operatorname{End}(V)$). Then μ is a trisymplectic moment map. This identifies the set of equivalence classes of solutions of the 1-dimensional ADHM equation with the trihyperkähler quotient $U_{r,c}/\!/\!/U(V)$.