The Ahlfors current

Misha Verbitsky

Estruturas geométricas em variedades February 2, 2023. IMPA

Schwartz lemma

CLAIM: (maximum principle) Let f be a holomorphic function defined on an open set U. Then f cannot have strict maxima in U. If f has non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let $f: \Delta \longrightarrow \Delta$ be a map from disk to itself fixing 0. Then $|f'(0)| \le 1$, and equality can be realized only if $f(z) = \alpha z$ for some $\alpha \in \mathbb{C}$, $|\alpha| = 1$.

Proof: Consider the function $\varphi := \frac{f(z)}{z}$. Since f(0) = 0, it is holomorphic, and since $f(\Delta) \subset \Delta$, on the boundary $\partial \Delta$ we have $|\varphi||_{\partial \Delta} \leqslant 1$. Now, the maximum principle implies that $|f'(0)| = |\varphi(0)| \leqslant 1$, and equality is realized only if $\varphi = const$.

Conformal automorphisms of the disk

CLAIM: Let $\Delta \subset \mathbb{C}$ be the unit disk. Then the group $Aut(\Delta)$ of its holomorphic automorphisms acts on Δ transitively.

Proof: Let $V_a(z) = \frac{z-a}{1-\overline{a}z}$ for some $a \in \Delta$. Then $V_a(0) = -a$. To prove transitivity, it remains to show that $V_a(\Delta) = \Delta$, which is implied from

$$|V_a(z)| = |V_a(z)||z| = \left|\frac{z\overline{z} - a\overline{z}}{1 - \overline{a}z}\right| = \left|\frac{1 - a\overline{z}}{1 - \overline{a}z}\right| = 1,$$

when |z| = 1.

REMARK: The group $PU(1,1) \subset PGL(2,\mathbb{C})$ of unitary matrices preserving a pseudo-Hermitian form h of signature (1,1) acts on a disk $\{l \in \mathbb{C}P^1 \mid h(l,l) > 0\}$ by holomorphic automorphisms.

COROLLARY: Let $\Delta \subset \mathbb{C}$ be the unit disk, $\operatorname{Aut}(\Delta)$ the group of its conformal automorphisms, and $\Psi: PU(1,1) \longrightarrow \operatorname{Aut}(\Delta)$ the map constructed above. Then Ψ is an isomorphism.

COROLLARY: Let h be a homogeneous metric on $\Delta = PU(1,1)/S^1$. Then (Δ, h) is conformally equivalent to $(\Delta, flat metric)$.

Upper half-plane

REMARK: The map $z \longrightarrow -\sqrt{-1} (z-1)^{-1}$ induces a diffeomorphism from the unit disc in $\mathbb C$ to the upper half-plane $\mathbb H$.

PROPOSITION: The group $\operatorname{Aut}(\Delta)$ acts on the upper half-plane $\mathbb H$ as $z \xrightarrow{A} \frac{az+b}{cz+d}$, where $a,b,c,d \in \mathbb R$, and $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} > 0$.

REMARK: The group of such A is naturally identified with $PSL(2,\mathbb{R}) \subset PSL(2,\mathbb{C})$. Since $PSL(2,\mathbb{R})$ acts on its Lie algebra preserving the Killing form, $PSL(2,\mathbb{R})$ embeds to SO(1,2). Both of these groups are 3-dimensional, since they are isomorphic.

REMARK: We have shown that $\mathbb{H} = SO(1,2)/S^1$. This gives a **natural** isomorphism of \mathbb{H} and the hyperbolic space. Under this isomorphism, holomorphic automorphisms correspond to isometries.

Poincaré metric on disk

DEFINITION: Poincaré metric on a unit disk $\Delta \subset \mathbb{C}$ is an Aut(Δ)-invariant metric (it is unique up to a constant multiplier).

DEFINITION: Let $f: M \longrightarrow M_1$ be a map of metric spaces. Then f is called C-Lipschitz if $d(x,y) \geqslant Cd(f(x),f(y))$. A map is called Lipschitz if it is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map $\varphi: \Delta \longrightarrow \Delta$ from a unit disk to itself is 1-Lipschitz with respect to Poincaré metric.

Proof. Step 1: We need to prove that for each $x \in \Delta$ the norm of the differential satisfies $|D\varphi_x| \le 1$. Since the automorphism group acts on Δ transitively, it suffices to prove that $|D\varphi_x| \le 1$ when x = 0 and $\varphi(x) = 0$.

Step 2: This is Schwartz lemma. ■

Kobayashi pseudometric

DEFINITION: Pseudometric on M is a function $d: M \times M \longrightarrow \mathbb{R}^{\geqslant 0}$ which is symmetric: d(x,y) = d(y,x) and satisfies the triangle inequality $d(x,y) + d(y,z) \geqslant d(x,z)$.

REMARK: Let \mathfrak{D} be a set of pseudometrics. Then $d_{\mathsf{max}}(x,y) := \sup_{d \in \mathfrak{D}} d(x,y)$ is also a pseudometric.

DEFINITION: The **Kobayashi pseudometric** on a complex manifold M is d_{max} for the set $\mathfrak D$ of all pseudometrics such that any holomorphic map from the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points x, y in Kobayashi pseudometric is infimum of the Poincaré distance over all sets of Poincaré disks connecting x to y.

EXAMPLE: The Kobayashi pseudometric on \mathbb{C} vanishes.

CLAIM: Any holomorphic map $X \stackrel{\varphi}{\longrightarrow} Y$ is 1-Lipschitz with respect to the Kobayashi pseudometric.

Proof: If $x \in X$ is connected to x' by a sequence of Poincare disks $\Delta_1, ..., \Delta_n$, then $\varphi(x)$ is connected to $\varphi(x')$ by $\varphi(\Delta_1), ..., \varphi(\Delta_n)$.

Kobayashi hyperbolic manifolds

COROLLARY: Let $B \subset \mathbb{C}^n$ be a unit ball, and $x, y \in B$ points with coordinates $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$. Since x_i, y_i belongs to Δ , it makes sense to compute the Poincare distance $d_P(x_i, y_i)$. Then $d_K(x, y) \geqslant \max_i d_P(x_i, y_i)$.

Proof: Each of projection maps $\Pi_i: B \longrightarrow \Delta$ is 1-Lipschitz.

DEFINITION: A variety is called **Kobayashi hyperbolic** if the Kobayashi pseudometric d_K is non-degenerate.

DEFINITION: A domain in \mathbb{C}^n is an open subset. A bounded domain is an open subset contained in a ball.

COROLLARY: Any bounded domain Ω in \mathbb{C}^n is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that $\Omega \subset B$ where B is an open ball. Then the Kobayashi distance in Ω is \geqslant that in B. However, the Kobayashi distance in B is bounded by the metric $d(x,y) := \max_i d_P(x_i,y_i)$ as follows from above. \blacksquare

Brody curves and Brody maps

DEFINITION: Let M be a complex Hermitian manifold. Brody curve is a non-constant holomorphic map $f: \mathbb{C} \longrightarrow M$ such that $|df| \leqslant C$ for some constant C. Here |df| is understood as an operator norm of $df: T_z\mathbb{C} \longrightarrow TM$, where \mathbb{C} is equipped with the standard Euclidean metric.

THEOREM: (Brody lemma)

Let M be a compact complex manifold which is not Kobayashi hyperbolic. Then M contains a Brody curve.

Currents and generalized functions

DEFINITION: Let F be a Hermitian bundle with connection ∇ , on a Riemannian manifold M with Levi-Civita connection, and

$$||f||_{C^k} := \sup_{x \in M} \left(|f| + |\nabla f| + \dots + |\nabla^k f| \right)$$

the corresponding C^k -norm defined on smooth sections with compact support. The C^k -topology is independent from the choice of connection and metrics.

DEFINITION: A generalized function is a functional on top forms with compact support, which is continuous in one of C^i -topologies.

DEFINITION: A k-current is a functional on $(\dim M - k)$ -forms with compact support, which is continuous in one of C^i -topologies.

REMARK: Currents are forms with coefficients in generalized functions.

Currents on complex manifolds

DEFINITION: The space of currents is equipped with weak topology (a sequence of currents converges if it converges on all forms with compact support).

CLAIM: De Rham differential is continuous on currents, and the Poincare lemma holds. Hence, the cohomology of currents are the same as cohomology of smooth forms.

DEFINITION: On an complex manifold, (p,q)-currents are (p,q)-forms with coefficients in generalized functions

REMARK: In the literature, this is sometimes called (n-p,n-q)-currents.

CLAIM: The Poincare and Poincare Dolbeault-Grothendieck lemma hold on (p,q)-currents, and the d- and $\overline{\partial}$ -cohomology are the same as for forms.

Positive currents

REMARK: Positive generalized functions are all C^0 -continuous as functionals on $C^{\infty}M$. A positive generalized function multiplied by a positive volume form gives a measure on a manifold, and all measures are obtained this way.

DEFINITION: Let $\dim_{\mathbb{C}} M = n$. The cone of positive (n-1,n-1)-currents is generated by $\alpha(-\sqrt{-1})^{n-1}\alpha\prod_{i=1}^{n-1}dz_i\wedge d\overline{z}_i$, where α is a nonnegative generalized function (that is, a measure), and z_i holomorphic functions.

REMARK: An (n-1,n-1)-current α on an n-dimensional complex manifold is positive if and only if $\int_M \alpha \wedge \beta \geqslant 0$, where $\beta = (-\sqrt{-1})^1 \alpha dz \wedge d\overline{z}$, z a holomorphic function, and α a smooth non-negative function with compact support.

EXAMPLE: A current of integration $\beta \longrightarrow \int_Z \beta$ is positive, for any 1-dimensional complex subvariety $Z \subset M$.

REMARK: If Z is without boundary, the current of integration C_Z is closed by Stokes' theorem. If Z has boundary, we have

$$\langle dC_z, \beta \rangle = \int_{\mathbb{Z}} d\beta = \int_{\partial Z} \beta,$$

and this is usually non-zero.

Ahlfors currents

THEOREM: Let $\varphi: \mathbb{C} \longrightarrow M$ be a Brody curve on a complex Hermitian manifold, and $\Delta_r \subset M$ the corresponding disk embeddings. Denote by A(r) the area of Δ_r in M, and let C_{Δ_r} be its current of integration. Then there exists a sequence r_i such that $\lim_i A(r_i)^{-1}C_{\Delta_{r_i}}$ converges to a closed current.

REMARK: Any of such limits is called **Ahlfors current**. It is positive, closed, non-zero (n-1, n-1) current, which can be understood as "the current of integration" along the Brody curve.

Proof. Step 1: Let l(r) be the length of $\partial \Delta_r$. Using

$$\langle dC_z, \beta \rangle = \int_{\mathbb{Z}} d\beta = \int_{\partial Z} \beta,$$

we obtain that it suffices to show that $\lim_{i} \frac{l(r_i)}{A(r_i)} = 0$ for an appropriate sequence r_i .

Ahlfors currents (2)

THEOREM: Let $\varphi: \mathbb{C} \longrightarrow M$ be an entire curve on a complex Hermitian manifold, and $\Delta_r \subset M$ the corresponding disk embeddings. Denote by A(r) the area of Δ_r in M, and let C_{Δ_r} be its current of integration. Then there exists a sequence r_i such that $\lim_i A(r)^{-1} C_{\Delta_r}$ converges to a closed current.

Step 1: Let l(r) be the length of $\partial \Delta_r$. Then it suffices to show that $\lim_i \frac{l(r_i)}{A(r_i)} = 0$ for an appropriate sequence r_i .

Step 2: Consider the function $f(x) = |d\varphi|(x)$ on \mathbb{C} . Then $A(r) = \int_{\Delta_r} f^2$ and $l(r) = \int_{\partial \Delta_r} f$ (from now on, all integrals are taken with respect to the usual area and length Lebesgue measure on \mathbb{C} and $\partial \Delta_r$). If such $\{r_i\}$ does not exist, we obtain that l(r)/A(r) > C for some constant C > 0.

Step 3: Since φ is conformal, the volume of a thin strip $\Delta_r \setminus \Delta_{r-\varepsilon} \subset M$ is approximately equal to $\varepsilon \int_{\partial \Delta_r} f^2$. This gives $\int_{\partial D_r} f^2 = A'(r)$.

Step 4: Now we can forget about M entirely. We are given a positive, bounded function f on $\mathbb C$ which satisfies $\int_{\partial D_r} f^2 = A'(r)$, $\int_{\partial D_r} f = l(r)$, and l(r)/A(r) > C. We need to show that this is impossible.

Ahlfors currents (3)

Step 4: Now we can forget about M entirely. We are given a positive, bounded function f on $\mathbb C$ which satisfies $\int_{\partial D_r} f^2 = A'(r)$, $\int_{\partial D_r} f = l(r)$, and l(r)/A(r) > C. We need to show that this is impossible.

Step 5: Using Cauchy-Bunyakovsky-Schwarz inequality, we obtain

$$\left(\int_{\partial D_r} f\right)^2 = l(r)^2 \leqslant 2\pi r \int_{\partial D_r} f^2 = 2\pi r A'(r).$$

Then $l(r) \geqslant CA(r)$ gives $C^2A^2(r) \leqslant 2\pi rA'(r)$. Writing $C_1 = C^2(2\pi)^{-1}$, we obtain $rA'(r) \geqslant A(r)^2C_1$.

Step 6: We have

$$\left(\frac{1}{-A(r)}\right)' = \frac{A'(r)}{A^2(r)} \geqslant \frac{C_1}{r}$$

Integrating both sides, we get

$$-\frac{1}{A(r)} \geqslant C_1 \log(r) - C_2$$

which is impossible, because A(r) is monotonous.

Nevanlinna theory

Let U be a family of closed divisors on a compact complex manifold M projecting surjectively to an open subset of M, and C an entire curve. Fix a Hermitian metric on M. By Thom transversality theorem, for almost all divisors $D \in U$, D meets C transversally. Let $N_r(D)$ be the number of intersection points of D and the risk $C_r \subset C$. Let $A(C_r)$ be the area of the disk.

THEOREM: For almost all $D \in U$, the limit $\lim_{r} \frac{N_r(D)}{A(C_r)}$ exists and is independent from the choice of D.

Proof: Let A_C be the Ahlfors current of C. The integration current [D] is not smooth, but its average $[D]_{\varphi}$ with some positive compactly supported function on U is closed and smooth. Therefore, it can be paired with A_C and gives the intersection number in the cohomology. Taking a sequence of φ converging to a δ -function and applying the Fubini theorem, we obtain that the limit $\int [D] \wedge A_C = \lim_r \frac{N_r(D)}{A(C_r)}$ exists and depends on on the class of D in cohomology. \blacksquare