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Kobayashi pseudometric

DEFINITION: Pseudometric on M is a function d : M ×M −→ R>0 which
is symmetric: d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) +
d(y, z) > d(x, z).

DEFINITION: The Kobayashi pseudometric on a complex manifold M :
the distance between points x, y in Kobayashi pseudometric is infimum
of the Poincaré distance over all sets of Poincaré disks connecting x
to y.

EXAMPLE: The Kobayashi pseudometric on C vanishes.

CLAIM: Any holomorphic map X
ϕ−→ Y is 1-Lipschitz with respect to

the Kobayashi pseudometric.

Proof: If x ∈ X is connected to x′ by a sequence of Poincare disks ∆1, ...,∆n,
then ϕ(x) is connected to ϕ(x′) by ϕ(∆1), ..., ϕ(∆n).

CLAIM: (Schwarz-Pick lemma) Any holomorphic map from a disk ∆ to
itself is distance-decreasing with respect to the Poincaré metric.

COROLLARY: The Kobayashi pseudometric on a disk is equal to the
Poincaré metric.
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Kobayashi hyperbolic manifolds

COROLLARY: Let B ⊂ Cn be a unit ball, and x, y ∈ B points with coordi-

nates x = (x1, ..., xn), y = (y1, ..., yn). Since xi, yi belongs to ∆, it makes sense

to compute the Poincare distance dP (xi, yi). Then dK(x, y) > maxi dP (xi, yi).

Proof: Each of projection maps Πi : B −→∆ is 1-Lipschitz.

DEFINITION: A variety is called Kobayashi hyperbolic if the Kobayashi

pseudometric dK is non-degenerate.

DEFINITION: A domain in Cn is an open subset. A bounded domain is

an open subset contained in a ball.

COROLLARY: Any bounded domain Ω in Cn is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that Ω ⊂ B where B is

an open ball. Then the Kobayashi distance in Ω is > that in B. However, the

Kobayashi distance in B is bounded by the metric d(x, y) := maxi dP (xi, yi) as

follows from above.
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Brody theorem

THEOREM: (Brody) A compact complex manifold M is Kobayashi hyper-

bolic if and only if any holomorphic map C−→M is constant.

REMARK: Clearly, any covering gives a local isometry with respect to

the Kobayashi metric.

COROLLARY: Any non-ramified quotient of a bounded domain is Kobayashi

hyperbolic.

REMARK: Other examples of hyperbolic manifolds: very general com-

plete intersection subvarieties of very big degree; manifolds of negative holo-

morphic curvature; period domains for deformations of Hodge structures;

Teichmüller space of curves.

REMARK: Examples of non-hyperbolic manifolds: All hyperkähler man-

ifolds are non-hyperbolic. All manifolds containing a rational or elliptic curve

are non-hyperbolic. Conjecturally, all Calabi-Yau manifolds are non-hyperbolic.
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Algebraically hyperbolic manifolds

DEFINITION: Let M be a projective manifold. We say that M is alge-

braically hyperbolic if there exists A > 0 such that for any curve C ⊂ M of

genus g one has degC < A(g − 1).

REMARK: Algebraically hyperbolic manifolds contain no elliptic nor ra-

tional curves.

THEOREM: Kobayashi hyperbolic implies algebraically hyperbolic.

Converse implication (“algebraically hyperbolic implies Kobayashi hyper-

bolic”) was conjectured by J.-P. Demailly who introduced the notion of

algebraic hyperbolicity.
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Kobayashi hyperbolicity implies algebraic hyperbolicity

THEOREM: Kobayashi hyperbolic implies algebraically hyperbolic.

Proof. Step 1: Kobayashi metric on a compact curve is a Riemannian metric

of constant negative curvature, because the covering map from the disk is

an isometry. Gauss-Bonnet formula implies that its volume is (2g − 2)α,

where α is some constant independent from the genus.

Step 2: Suppose that M is a projective manifold which is algebraically

hyperbolic. Denote by gFS the Fubini-Study metric on M and by gK the

Kobayashi metric on M . By compactness, there exists a constant ε such

that gFS 6 εgK.

Step 2: Let j : S ↪→ M be a curve; its genus g is > 2 by hyperbolicity.

Denote by gS the Kobayashi metric on S. Since j is 1-Lipschitz with respect

to the Kobayashi metric, one has

(2g − 2)α = VolgS(S) > VolgK(S) > εVolgFS(S) = εdegS.

This gives g − 1 > ε
2α degS, proving hyperbolicity.
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Automorphism group of an algebraically hyperbolic manifold is discrete

CLAIM: The group of automorphisms of an algebraically hyperbolic manifold

M is discrete.

Proof. Step 1: The group of automorphisms of a projective manifold is a

complex Lie group. If its connected component G0 is non-trivial, this gives a

holomorphic map ϕ : G0 −→M . Then G0 is an extension of an affine group

and an abelian variety.

Step 2: Affine algebraic groups are rational varieties, hence the closure of an

orbit of an affine algebraic group is unirational and covered by rational curves.

An abelian variety is not algebraically hyperbolic because abelian variety of

dimension n admits a self-isogeny of order mn mapping a curve C of genus

g to a curve of genus g and degree mn degC; the same argument shows

that any positive-dimensional orbit of a compact complex commutative Lie

group is not algebraically hyperbolic. Therefore M cannot be algebraically

hyperbolic.
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Automorphism group of a Kobayashi hyperbolic manifold is finite

An even stronger statement is true for Kobayashi hyperbolic manifolds.

CLAIM: The group of automorphisms of a compact Kobayashi hyperbolic

manifold M is finite.

Proof: Clearly, the group G of automorphisms of M is closed in its group

of isometries (under the Kobayashi metric). The group of isometries of a

compact metric space is compact, hence G has only finitely many connected

components. Finally, dimG0 = 0 as shown above.

The main result of today’s talk

THEOREM: (joint work with F. Bogomolov and L. Kamenova)

The group of automorphisms of an algebraically hyperbolic manifold M is

finite.
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Automorphisms of algebraically hyperbolic manifolds: the plan

Theorem 1: The group Aut(M) of automorphisms of an algebraically hy-
perbolic manifold M is finite.

Plan of the proof.

PROPOSITION: Suppose that the image of Aut(M) in GL(H1,1(M,R))
does not preserve any rational Kähler class. Then M is not algebraically
hyperbolic.

REMARK: In this case the image of Aut(M) in GL(H1,1(M,R)) is infinite;
indeed, otherwise we take an orbit of a Kähler class and its geometric center
is an Aut(M)-invariant Kähler class, because the convex hull of a set of Kähler
classes lies in the Kähler cone.

PROPOSITION: Suppose that the image of Aut(M) in GL(H1,1(M,R)) is
finite, but its image in Aut(Pic0(M)) is infinite. Then M is not algebraically
hyperbolic.

PROPOSITION: Suppose that Aut(M) is infinite, but the image of Aut(M)
in Aut(Pic(M)) is finite. Then M is not algebraically hyperbolic.
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Automorphisms acting non-trivially on H2(M)

PROPOSITION: Suppose that the image of Aut(M) in GL(H1,1(M,R))
does not preserve a rational Kähler class. Then M is not algebraically
hyperbolic.
Proof. Step 1: Let ω be a rational Kähler class which has an infinite
Aut(M)-orbit. Replacing ω by Nω, we may assume that ω is a class of a
hyperplane section. Then ωn−1, n = dimCM is a fundamental class of a
smooth complex curve C ⊂M . Let fi(ω) be an orbit of ω, which is infinite by
our assumtions. Then

degω fi(C) =
∫
M
ω ∧ (fi(ω))n−1 =

∫
M
f−1
i (ω) ∧ ωn−1

Since the genus of fi(C) is constant, from algebraic hyperbolicity we obtain∫
M fi(ω) ∧ ωn−1 < A for some constant A > 0.

Step 2: Let | · | denote the positive definite Hodge-Riemann metric on
H1,1(M). Let R be a limit point of the sequence fi(ω)

|fi(ω)| in the sphere S ⊂
H1,1(M). Since the sequence fi(ω) is infinite, distinct and integral, one has
limi |fi(ω)| =∞. Then

∫
M fi(ω) ∧ ωn−1 < A implies that

∫
M R ∧ ωn−1 = 0. By

Hodge-Riemann relations, this gives
∫
M R ∧ R ∧ ωn−2 = −|R|2 = −1, hence∫

M fi(ω)∧fi(ω)∧ωn−2

|fi(ω)|2 < −(1 − ε) for i sufficiently small. This is a contradiction,

because fi(ω) is Kähler.
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Automorphisms acting trivially on Pic(M)

PROPOSITION: Suppose that Aut(M) is infinite, but the image of Aut(M)

in Aut(Pic(M)) is finite. Then M is not algebraically hyperbolic.

Proof. Step 1: We obtain that an infinite subgroup Γ ⊂ Aut(M) acts

trivially on Pic(M). Then it fixes a very ample line bundle L ∈ Pic(M). We

obtain that Γ acts on PH0(M,L)∗ preserving the image of the projective

embedding M −→ PH0(M,L)∗.

Step 2: Let G be the Zariski closure of Γ in PGL(H0(M,L)∗). Since Γ acts

on M with infinite orbits, the orbits of G are positive-dimensional. This is

impossible, because Aut(M) is discrete as shown above.
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Automorphisms fixing a Kähler class

To prove Theorem 1 it remains only to prove
PROPOSITION: Suppose that the image of Aut(M) in GL(H1,1(M,R)) is
finite, but its image in Aut(Pic0(M)) is infinite. Then M is not algebraically
hyperbolic.

Proof. Step 1: Consider an orbit of a Kähler class. Its geometric center
gives an Aut(M)-invariant Kähler class ω, because the convex hull of a set
of Kähler classes lies in the Kähler cone.

Step 2: The Albanese manifold Alb(M) = H0(Ω1M)∗/H1(M,Z) admits a
natural Aut(M)-invariant flat Kähler metric induced by the Hodge-Riemann
form on H1(M). Since Aut(M) acts on Alb(M) by isometries, it contains a
finite index subgroup Γ acting on Alb(M) by parallel transport.

Step 3: Let Par(Alb(M)) be the group of parallel transports of Alb(M).
Since Γ is infinite, it is dense in its closure T ⊂ Par(AlbM), which is positive-
dimensional. Take a smooth fiber Alb−1(x) over x ∈ Alb(M). The general
fibers of a real analytic map Alb−1(T ·x)

π−→ T ·x are smooth; since all fibers
of π exist in dense families, all fibers of π are smooth. Then π is a locally
trivial fibration with isomorphic fibers. Passing to the Zariski closure T1 of T ,
we obtain an isotrivial fibration Alb−1(X)

π1−→ X, where X is an orbit of T1.
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Automorphisms fixing a Kähler class (2)

PROPOSITION: Suppose that the image of Aut(M) in GL(H1,1(M,R)) is
finite, but its image in Aut(Pic0(M)) is infinite. Then M is not algebraically
hyperbolic.

Proof. Step 1: There exists an Aut(M)-invariant Kähler class on M .

Step 2: The group Aut(M) acts on Alb(M) by isometries and contains a
finite index subgroup Γ acting on Alb(M) by parallel transport.

Step 3: There is a complex torus X ⊂ Alb(M) such that the Albanese map
Alb−1(X)

π1−→ T1 · x is a smooth, isotrivial complex fibration.

Step 4: Isotrivial fibrations with fiber F are classified by H1(T1,Aut(F )).
Using induction by dimension, we may assume that Aut(F ) is finite. The
first cohomology of a torus with coefficients in a finite group is the same as
a G-valued local system. Therefore, it becomes trivial after an appropriate
finite covering. Then π1 becomes a trivial fibration after passing to a finite

covering Y −→X, giving a decomposition ˜Alb−1(X) = F × Y . This manifold
admits self-isogenies of arbitrary high order, giving curves of constant genus
and arbitrary high degree in Alb−1(X). Therefore, Alb−1(X) ⊂ M is not
algebraically hyperbolic.
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