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Algebraic structures on complex varieties

DEFINITION: (Formal definition) An algebraic structure on a complex
analytic variety Z is a subsheaf of the sheaf of holomorphic functions which can
be realized as a sheaf of regular functions for some biholomorphism between
Z and a quasi-projective variety.

LLess formal definition: Let M be a complex variety which can be embedded
to C". Algebraic structure on M is a finitely generated ring of holomorphic
functions on M such that its generators zq,..., 2z, induce an embedding M —
C"™, and its image is an algebraic variety. In other words, we fix a dense,
finitely-generated subring in the ring H°(0,;) of holomorphic functions.

REMARK: The algebraic structure on a manifold is not unique.

EXAMPLE: (C. Simpson)
The manifold C* x C* admits an algebraic structure without non-constant
global regular functions.

THEOREM: (Zbigniew Jelonek)
There exists an uncountable set of pairwise non-isomorphic algebraic

structures on C x S, where S is an affine complex curve of genus > 1.
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A contraction
DEFINITION: A Stein variety is a complex subvariety in C"

REMARK: We shall always tacitly assume that our Stein varieties have
iIsolated singularities.

DEFINITION: Let M be a topological space, x € M a marked point. A
contraction of (M,z) is a continuous map ¢ : M—M such that for any
compact K C M and any open U > z, a sufficiently high iteration of ¢ satisfies
oN(K) CU.

EXAMPLE: A linear operator A : C"—C" is a contraction if and only if
all its eigenvalues «; satisfy |o;| < 1.

EXAMPLE: Let X C C" be a complex subvariety, preserved by a linear
contraction A. Then A acts on X as a contraction.



Algebraic cones M. Verbitsky

T he main results of this talk:

THEOREM: Let X be a Stein variety with an most one singular point
equipped with an invertible contraction ¢ : X—=X. Then X admits an
algebraic structure such that ¢ is algebraic. Moreover, this algebraic
structure is unique.

THEOREM: In these assumptions, there exists a projective orbifold P
an an ample bundle L such that X is isomorphic to the spectrum of
the ring ©2 4 HO(X, LY. Moreover, P can be chosen in such a way that the
action of ¢ on @32 OHO(X L") is obtained from an automorphism of X
which acts on L equivariantly.

REMARK: Let x € X be the fixed point of the contraction ¢, and Xg := X\«x.
The isomorphism X = Spec(®:2 OHO(X L)) is equivalent to Xy being
iIsomorphic to the space of all non-zero vectors in the total space
Tot(L).

REMARK: However, the pair (P,L) is not determined by X and its
algebraic structure uniquely: the same X might be obtained from different
projective orbifolds. Example: X = C", o(x) := %az and and P = C(Clo any of
the weighted projective spaces.
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Stein completion

THEOREM: (a version of Hartogs theorem)
Let X be a normal Stein variety, dimg X > 1, and K C X a compact subset.
Then every holomorphic function on X\K can be extended to X.

DEFINITION: Let A be a commutative Fréchet algebra over C. The contin-
uous spectrum Spec(A) of A is defined as the set of all continuous C-linear
homomorphisms A—C.

THEOREM: (O. Forster, 1966, 1967)

Let X be a Stein variety, and H%(Oy) is the algebra of holomorphic functions
equipped with the topology of uniform convergence on compacts. Then
Spec(H9(0Oy)) = X.

DEFINITION: Let X be a normal Stein variety, and K C X a compact
subset. By Hartogs, the ring of functions on X is identified with HO(OX\K);
by Forster, this ring with its CO topology uniquely defines X. Following
Andreotti-Siu, we call X the Stein completion of X\ K. If X\K is smooth,
ts Stein completion is a normal Stein variety with isolated singularities.
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Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle
on P. Assume that the total space Tot°(L) of all non-zero vectors in L is
smooth. An open algebraic cone is Tot°(L).

DEFINITION: The corresponding closed algebraic cone is its Stein com-
pletion Z;

EXAMPLE: Let P C CP™, and L = O(1)|p. Then the open algebraic cone
Tot°(L) can be identified with the set =~ 1(P) of all v € C*T1\0 projected
to P under the standard map = : C*T1\0 — CP"”. The closed algebraic
cone is the normalization of its closure in C*t1,

REMARK: The closed algebraic cone is obtained by adding one point,
called “the apex”, or “the origin”, to Tot°(L).

REMARK: The structure of a complex variety on this one-point completion
IS unique only in the assumption of normality. Without normality, it is not
unique. Normality of the closed cone C'(P) is equivalent to the “projective

normality’”’ of P.
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Algebraic cones and subvarieties in Hopf manifolds

DEFINITION: A linear Hopf manifold is a complex manifold H = C{HT%O'
where A € GL(n,C) is an invertible linear contraction.

THEOREM: Let M C H be a submanifold in a Hopf manifold, and M C C™*\0
its Z-covering. Then M is an open algebraic cone, with the contraction
induced by the Z-action on C™\0. Moreover, any open algebraic cone can
be obtained this way.

DEFINITION: A complex manifold (M,I) is called locally conformally
Kahler (LCK) if it admits a covering (M,I) equipped with a Kahler met-
ric & such that the deck group of the cover acts on (M,&) by holomorphic
homotheties. An LCK metric on an LCK manifold is an Hermitian metric
on (M, I) such that its pullback to M is conformal with &.

EXAMPLE: (Ornea-Gauduchon, Ornea-V.) Hopf manifolds are LCK.
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LCK manifolds with potential

DEFINITION: Kahler potential for a Kahler form w is a function ¢ such
that dd®) = w. Here d° = IdI—1. On a Stein manifold, every Kahler form
admits a Kahler potential.

DEFINITION: An LCK manifold has a proper LCK potential if it admits
a Kahler Z-covering on which the Kahler metric has a global potential @ such
that the deck group multiplies ¢ by a constant (such a function is called
automorphic). In this case, M is called an LCK manifold with potential.

EXAMPLE: All Hopf manifolds are LCK with potential (Gauduchon-Ornea,
Ornea-V., 1999-2022). For a classical Hopf manifold H (= (C"\ 0)/(A),
A = A\Id, |A| > 1, the flat Kahler metric gg = > dz; ® dz; on C" is multiplied
by 22 by the deck group Z. Also, go has the global automorphic potential

Y= 7).

EXAMPLE: A complex submanifold in an LCK manifold with potential
IS LCK with potential.
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LCK manifolds with potential are submanifolds in Hopf manifolds

THEOREM: (Ornea-V., 2005)

Let M be an LCK manifold with potential, M its Z-cover, and ¢ its LCK
potential. Then ¢ is an exhausting strictly plurisubharmonic function
on M. By Andreotti-Rossi, when dim¢c M > 3, the manifold M admits a
Stein completion M., which is equipped with a holomorphic contraction.
Moreover, M. is obtained from M by adding precisely one point.

THEOREM: (Ornea-V.)

Let (M, I,w) be a compact LCK manifold with potential, dim¢ M > 3. Then
(M, I) admits a holomorphic embedding to a linear Hopf manifold. Con-
versely, any submanifold in a linear Hopf manifold is LCK with potential.
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~*-finite functions

DEFINITION: Let F € End(V) be an endomorphism of a vector space. A
vector v € V is called F-finite if the space generated by v, F(v), F'(F(v)), ... is
finite-dimensional.

THEOREM: Let v: X—X be a holomorphic contraction on a Stein variety.
Then ~. : H9%Oyx) — H9%Oy) is a compact operator in topology of
uniform convergence on compacts, Moreover, the set of v*-finite vectors
is dense in HO(Oy).

LEMMA: Let v be an invertible linear contraction of C". A holomorphic
function on C" is ~-finite if and only if it is polynomial.

Proof: Clearly, a polynomial function is ~-finite. The operator ~* acts on
homogeneous polynomials of degree d with eigenvalues Qi Qi O where
; are the eigenvalues of v on C". Since ~ is a contraction, all Q;,; satisfy
|a7;j| < 1. Therefore, any sequence {«;,a;,...c;; ,} converges to 0 as d goes to
infinity. We obtain that every given number can be realized as an eigenvalue
of ~* on homogeneous polynomials of degree d for finitely many choices of
d only. Therefore, any root vector of ~* is a finite sum of homogeneous
polynomials. =
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~*-finite functions (2)

COROLLARY: Let M — H be a complex subvariety of a linear Hopf man-
ifold, and M.—CHN the corresponding map of weak Stein completions, with
M, obtained as the closure of M c C¥ by adding the zero. Then M. is an
algebraic subvariety, that is, a set of common zeroes of a system of
polynomial equations.

Proof: The ~*-finite functions are dense in the ideal of M., therefore, this
ideal is generated by polynomials. m
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Weighted projective spaces

Recall that any representation V of C* is a direct sum of 1-dimensional rep-
resentations isomorphic to py, with C* acting by pw(t)(z) = t%Yz. Such a
representation is called representation of weight w.

CLAIM: Let p be C* acting on C™. Assume that p contains a contraction.
Then all weights of p are positive or negative. =

CLAIM: Let p be C* acting on C" with weights wiq,...,wn € ZZ°%. Then its
orbit space CP"1(wq,...,wy) is equipped with a structure of a projective
orbifold, and C"\0 can be identified with the total space of an ample
C*-bundle over CP" 1(wq,...,wn). =

DEFINITION: The orbifold CP" 1(wq,...,wn) is called the weighted pro-
jective space.

CLAIM: Let p be C* acting on C™ with weights w1, ...,w, € Z>9, and Z C C™\0
be a p-invariant submanifold. Then the orbit space Z/C* is a projective
orbifold in the corresponding weighted projective space CP" (w1, ..., wp).
|

COROLLARY: Let p be C* acting on C™ with weights w1, ...,wn € Z>°, and
Z C C™"\0 a p-invariant submanifold. Then Z is an open algebraic cone. =
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Stein varieties equipped with a contraction are algebraic cones

COROLLARY: Let M. be a normal Stein variety equipped with a holomor-
phic contraction ~, with the only singularity at the origin, denoted c¢. Then
M. admits a structure of an algebraic cone.

~

Proof. Step 1: Let I := M/\c. Then & admits a holomorphic embedding

(7)
ST};). This implies that the ideal of 7, in Ocx is

generated by A*-finite functions, that is, polynomials, hence M. C C" is
an affine subvariety.

to a linear Hopf manifold

Step 2: Let G4 be a connected component of the algebraic closure of (A). A
connected abelian algebraic group G4 C GL(n,C) is isomorphic to (C*)* x C!,
where each C* acts diagonally, and C are unipotent subgroups. Therefore,
M. C C"is C*-invariant, for some C* acting by contractions. This produces
a C*-fibration M%% with the quotient %ﬁo identified with the weighted
projective space. =

13



