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Algebraic structures on complex varieties

DEFINITION: (Formal definition) An algebraic structure on a complex
analytic variety Z is a subsheaf of the sheaf of holomorphic functions which can
be realized as a sheaf of regular functions for some biholomorphism between
Z and a quasi-projective variety.

Less formal definition: Let M be a complex variety which can be embedded
to Cn. Algebraic structure on M is a finitely generated ring of holomorphic
functions on M such that its generators z1, ..., zn induce an embedding M ↪→
Cn, and its image is an algebraic variety. In other words, we fix a dense,
finitely-generated subring in the ring H0(OM) of holomorphic functions.

REMARK: The algebraic structure on a manifold is not unique.

EXAMPLE: (C. Simpson)
The manifold C∗×C∗ admits an algebraic structure without non-constant
global regular functions.

THEOREM: (Zbigniew Jelonek)
There exists an uncountable set of pairwise non-isomorphic algebraic
structures on C× S, where S is an affine complex curve of genus > 1.
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A contraction

DEFINITION: A Stein variety is a complex subvariety in Cn

REMARK: We shall always tacitly assume that our Stein varieties have

isolated singularities.

DEFINITION: Let M be a topological space, x ∈ M a marked point. A

contraction of (M,x) is a continuous map ϕ : M→M such that for any

compact K ⊂M and any open U 3 x, a sufficiently high iteration of ϕ satisfies

ϕN(K) ⊂ U .

EXAMPLE: A linear operator A : Cn→Cn is a contraction if and only if

all its eigenvalues αi satisfy |αi| < 1.

EXAMPLE: Let X ⊂ Cn be a complex subvariety, preserved by a linear

contraction A. Then A acts on X as a contraction.
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The main results of this talk:

THEOREM: Let X be a Stein variety with an most one singular point
equipped with an invertible contraction ϕ : X→X. Then X admits an
algebraic structure such that ϕ is algebraic. Moreover, this algebraic
structure is unique.

THEOREM: In these assumptions, there exists a projective orbifold P

an an ample bundle L such that X is isomorphic to the spectrum of
the ring

⊕∞
i=0H

0(X,Li). Moreover, P can be chosen in such a way that the
action of ϕ on

⊕∞
i=0H

0(X,Li) is obtained from an automorphism of X
which acts on L equivariantly.

REMARK: Let x ∈ X be the fixed point of the contraction ϕ, and X0 := X\x.
The isomorphism X = Spec(

⊕∞
i=0H

0(X,Li)) is equivalent to X0 being
isomorphic to the space of all non-zero vectors in the total space
Tot(L).

REMARK: However, the pair (P,L) is not determined by X and its
algebraic structure uniquely: the same X might be obtained from different
projective orbifolds. Example: X = Cn, ϕ(x) := 1

2x, and and P = Cn\0
C∗ any of

the weighted projective spaces.
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Stein completion

THEOREM: (a version of Hartogs theorem)

Let X be a normal Stein variety, dimCX > 1, and K ⊂ X a compact subset.

Then every holomorphic function on X\K can be extended to X.

DEFINITION: Let A be a commutative Fréchet algebra over C. The contin-

uous spectrum Spec(A) of A is defined as the set of all continuous C-linear

homomorphisms A→C.

THEOREM: (O. Forster, 1966, 1967)

Let X be a Stein variety, and H0(OX) is the algebra of holomorphic functions

equipped with the topology of uniform convergence on compacts. Then

Spec(H0(OX)) = X.

DEFINITION: Let X be a normal Stein variety, and K ⊂ X a compact

subset. By Hartogs, the ring of functions on X is identified with H0(OX\K);

by Forster, this ring with its C0 topology uniquely defines X. Following

Andreotti-Siu, we call X the Stein completion of X\K. If X\K is smooth,

ts Stein completion is a normal Stein variety with isolated singularities.
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Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle

on P . Assume that the total space Tot◦(L) of all non-zero vectors in L is

smooth. An open algebraic cone is Tot◦(L).

DEFINITION: The corresponding closed algebraic cone is its Stein com-

pletion Z;

EXAMPLE: Let P ⊂ CPn, and L = O(1)|P . Then the open algebraic cone

Tot◦(L) can be identified with the set π−1(P ) of all v ∈ Cn+1\0 projected

to P under the standard map π : Cn+1\0 → CPn. The closed algebraic

cone is the normalization of its closure in Cn+1.

REMARK: The closed algebraic cone is obtained by adding one point,

called “the apex”, or “the origin”, to Tot◦(L).

REMARK: The structure of a complex variety on this one-point completion

is unique only in the assumption of normality. Without normality, it is not

unique. Normality of the closed cone C(P ) is equivalent to the “projective

normality” of P .
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Algebraic cones and subvarieties in Hopf manifolds

DEFINITION: A linear Hopf manifold is a complex manifold H := Cn\0
〈A〉 ,

where A ∈ GL(n,C) is an invertible linear contraction.

THEOREM: Let M ⊂ H be a submanifold in a Hopf manifold, and M̃ ⊂ Cn\0
its Z-covering. Then M̃ is an open algebraic cone, with the contraction

induced by the Z-action on Cn\0. Moreover, any open algebraic cone can

be obtained this way.

DEFINITION: A complex manifold (M, I) is called locally conformally

Kähler (LCK) if it admits a covering (M̃, I) equipped with a Kähler met-

ric ω̃ such that the deck group of the cover acts on (M̃, ω̃) by holomorphic

homotheties. An LCK metric on an LCK manifold is an Hermitian metric

on (M, I) such that its pullback to M̃ is conformal with ω̃.

EXAMPLE: (Ornea-Gauduchon, Ornea-V.) Hopf manifolds are LCK.
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LCK manifolds with potential

DEFINITION: Kähler potential for a Kähler form ω is a function ψ such

that ddcψ = ω. Here dc = IdI−1. On a Stein manifold, every Kähler form

admits a Kähler potential.

DEFINITION: An LCK manifold has a proper LCK potential if it admits

a Kähler Z-covering on which the Kähler metric has a global potential ψ such

that the deck group multiplies ψ by a constant (such a function is called

automorphic). In this case, M is called an LCK manifold with potential.

EXAMPLE: All Hopf manifolds are LCK with potential (Gauduchon-Ornea,

Ornea-V., 1999-2022). For a classical Hopf manifold H := (Cn \ 0)/〈A〉,
A = λ Id, |λ| > 1, the flat Kähler metric g̃0 =

∑
dzi ⊗ dzi on Cn is multiplied

by λ2 by the deck group Z. Also, g̃0 has the global automorphic potential

ψ :=
∑
|zi|2.

EXAMPLE: A complex submanifold in an LCK manifold with potential

is LCK with potential.
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LCK manifolds with potential are submanifolds in Hopf manifolds

THEOREM: (Ornea-V., 2005)

Let M be an LCK manifold with potential, M̃ its Z-cover, and ψ its LCK

potential. Then ψ is an exhausting strictly plurisubharmonic function

on M . By Andreotti-Rossi, when dimCM > 3, the manifold M̃ admits a

Stein completion M̃c, which is equipped with a holomorphic contraction.

Moreover, M̃c is obtained from M̃ by adding precisely one point.

THEOREM: (Ornea-V.)

Let (M, I, ω) be a compact LCK manifold with potential, dimCM > 3. Then

(M, I) admits a holomorphic embedding to a linear Hopf manifold. Con-

versely, any submanifold in a linear Hopf manifold is LCK with potential.
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γ∗-finite functions

DEFINITION: Let F ∈ End(V ) be an endomorphism of a vector space. A
vector v ∈ V is called F -finite if the space generated by v, F (v), F (F (v)), ... is
finite-dimensional.

THEOREM: Let γ : X→X be a holomorphic contraction on a Stein variety.
Then γ∗ : H0(OX) → H0(OX) is a compact operator in topology of
uniform convergence on compacts, Moreover, the set of γ∗-finite vectors
is dense in H0(OX).

LEMMA: Let γ be an invertible linear contraction of Cn. A holomorphic
function on Cn is γ-finite if and only if it is polynomial.

Proof: Clearly, a polynomial function is γ-finite. The operator γ∗ acts on
homogeneous polynomials of degree d with eigenvalues αi1αi2...αid, where
αij are the eigenvalues of γ on Cn. Since γ is a contraction, all αij satisfy
|αij | < 1. Therefore, any sequence {αi1αi2...αid} converges to 0 as d goes to
infinity. We obtain that every given number can be realized as an eigenvalue
of γ∗ on homogeneous polynomials of degree d for finitely many choices of
d only. Therefore, any root vector of γ∗ is a finite sum of homogeneous
polynomials.
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γ∗-finite functions (2)

COROLLARY: Let M ↪→ H be a complex subvariety of a linear Hopf man-

ifold, and M̃c→CN the corresponding map of weak Stein completions, with

M̃c obtained as the closure of M̃ ⊂ CN by adding the zero. Then M̃c is an

algebraic subvariety, that is, a set of common zeroes of a system of

polynomial equations.

Proof: The γ∗-finite functions are dense in the ideal of Mc; therefore, this

ideal is generated by polynomials.
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Weighted projective spaces

Recall that any representation V of C∗ is a direct sum of 1-dimensional rep-
resentations isomorphic to ρw, with C∗ acting by ρw(t)(z) = twz. Such a
representation is called representation of weight w.

CLAIM: Let ρ be C∗ acting on Cn. Assume that ρ contains a contraction.
Then all weights of ρ are positive or negative.

CLAIM: Let ρ be C∗ acting on Cn with weights w1, ..., wn ∈ Z>0. Then its
orbit space CPn−1(w1, ..., wn) is equipped with a structure of a projective
orbifold, and Cn\0 can be identified with the total space of an ample
C∗-bundle over CPn−1(w1, ..., wn).

DEFINITION: The orbifold CPn−1(w1, ..., wn) is called the weighted pro-
jective space.

CLAIM: Let ρ be C∗ acting on Cn with weights w1, ..., wn ∈ Z>0, and Z ⊂ Cn\0
be a ρ-invariant submanifold. Then the orbit space Z/C∗ is a projective
orbifold in the corresponding weighted projective space CPn−1(w1, ..., wn).

COROLLARY: Let ρ be C∗ acting on Cn with weights w1, ..., wn ∈ Z>0, and
Z ⊂ Cn\0 a ρ-invariant submanifold. Then Z is an open algebraic cone.
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Stein varieties equipped with a contraction are algebraic cones

COROLLARY: Let M̃c be a normal Stein variety equipped with a holomor-

phic contraction γ, with the only singularity at the origin, denoted c. Then

M̃c admits a structure of an algebraic cone.

Proof. Step 1: Let M̃ := M̃c\c. Then M̃
〈γ〉 admits a holomorphic embedding

to a linear Hopf manifold Cn\0
〈A〉 . This implies that the ideal of M̃c in OCn is

generated by A∗-finite functions, that is, polynomials, hence M̃c ⊂ Cn is

an affine subvariety.

Step 2: Let GA be a connected component of the algebraic closure of 〈A〉. A

connected abelian algebraic group GA ⊂ GL(n,C) is isomorphic to (C∗)k × Cl,
where each C∗ acts diagonally, and C are unipotent subgroups. Therefore,

M̃c ⊂ Cn is C∗-invariant, for some C∗ acting by contractions. This produces

a C∗-fibration M̃→M̃
C∗ with the quotient Cn\0

C∗ identified with the weighted

projective space.
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