Algebraic cones as complex varieties

Misha Verbitsky

Geometria métrica e Topologia do Nordeste March 10-15, 2025

joint work with Liviu Ornea

Algebraic structures on complex varieties

DEFINITION: (Formal definition) An algebraic structure on a complex analytic variety Z is a subsheaf of the sheaf of holomorphic functions which can be realized as a sheaf of regular functions for some biholomorphism between Z and a quasi-projective variety.

Less formal definition: Let M be a complex variety which can be embedded to \mathbb{C}^n . Algebraic structure on M is a finitely generated ring of holomorphic functions on M such that its generators $z_1, ..., z_n$ induce an embedding $M \hookrightarrow \mathbb{C}^n$, and its image is an algebraic variety. In other words, we fix a dense, finitely-generated subring in the ring $H^0(\mathcal{O}_M)$ of holomorphic functions.

REMARK: The algebraic structure on a manifold is not unique.

EXAMPLE: (C. Simpson)

The manifold $\mathbb{C}^* \times \mathbb{C}^*$ admits an algebraic structure without non-constant global regular functions.

THEOREM: (Zbigniew Jelonek) There exists an uncountable set of pairwise non-isomorphic algebraic structures on $\mathbb{C} \times S$, where S is an affine complex curve of genus ≥ 1 .

A contraction

DEFINITION: A Stein variety is a complex subvariety in \mathbb{C}^n

REMARK: We shall always tacitly assume that our Stein varieties have isolated singularities.

DEFINITION: Let M be a topological space, $x \in M$ a marked point. A contraction of (M, x) is a continuous map $\varphi : M \to M$ such that for any compact $K \subset M$ and any open $U \ni x$, a sufficiently high iteration of φ satisfies $\varphi^N(K) \subset U$.

EXAMPLE: A linear operator $A : \mathbb{C}^n \to \mathbb{C}^n$ is a contraction if and only if all its eigenvalues α_i satisfy $|\alpha_i| < 1$.

EXAMPLE: Let $X \subset \mathbb{C}^n$ be a complex subvariety, preserved by a linear contraction A. Then A acts on X as a contraction.

The main results of this talk:

THEOREM: Let X be a Stein variety with an most one singular point equipped with an invertible contraction φ : $X \rightarrow X$. Then X admits an algebraic structure such that φ is algebraic. Moreover, this algebraic structure is unique.

THEOREM: In these assumptions, there exists a projective orbifold P an an ample bundle L such that X is isomorphic to the spectrum of the ring $\bigoplus_{i=0}^{\infty} H^0(X, L^i)$. Moreover, P can be chosen in such a way that the action of φ on $\bigoplus_{i=0}^{\infty} H^0(X, L^i)$ is obtained from an automorphism of X which acts on L equivariantly.

REMARK: Let $x \in X$ be the fixed point of the contraction φ , and $X_0 := X \setminus x$. The isomorphism $X = \text{Spec}(\bigoplus_{i=0}^{\infty} H^0(X, L^i))$ is equivalent to X_0 being isomorphic to the space of all non-zero vectors in the total space Tot(L).

REMARK: However, the pair (P,L) is not determined by X and its algebraic structure uniquely: the same X might be obtained from different projective orbifolds. Example: $X = \mathbb{C}^n$, $\varphi(x) := \frac{1}{2}x$, and and $P = \frac{\mathbb{C}^n \setminus 0}{\mathbb{C}^*}$ any of the weighted projective spaces.

Stein completion

THEOREM: (a version of Hartogs theorem)

Let X be a normal Stein variety, $\dim_{\mathbb{C}} X > 1$, and $K \subset X$ a compact subset. Then every holomorphic function on $X \setminus K$ can be extended to X.

DEFINITION: Let *A* be a commutative Fréchet algebra over \mathbb{C} . The **continuous spectrum** Spec(*A*) of *A* is defined as the set of all continuous \mathbb{C} -linear homomorphisms $A \rightarrow \mathbb{C}$.

THEOREM: (O. Forster, 1966, 1967)

Let X be a Stein variety, and $H^0(\mathcal{O}_X)$ is the algebra of holomorphic functions equipped with the topology of uniform convergence on compacts. Then $\operatorname{Spec}(H^0(\mathcal{O}_X)) = X$.

DEFINITION: Let X be a normal Stein variety, and $K \subset X$ a compact subset. By Hartogs, the ring of functions on X is identified with $H^0(\mathcal{O}_{X\setminus K})$; by Forster, this ring with its C^0 topology uniquely defines X. Following Andreotti-Siu, we call X the Stein completion of $X\setminus K$. If $X\setminus K$ is smooth, ts Stein completion is a normal Stein variety with isolated singularities.

Algebraic cones

DEFINITION: Let *P* be a projective orbifold, and *L* an ample line bundle on *P*. Assume that the total space $Tot^{\circ}(L)$ of all non-zero vectors in *L* is smooth. An open algebraic cone is $Tot^{\circ}(L)$.

DEFINITION: The corresponding **closed algebraic cone** is its Stein completion Z;

EXAMPLE: Let $P \subset \mathbb{C}P^n$, and $L = \mathcal{O}(1)|_P$. Then the open algebraic cone Tot^o(L) can be identified with the set $\pi^{-1}(P)$ of all $v \in \mathbb{C}^{n+1}\setminus 0$ projected to P under the standard map $\pi : \mathbb{C}^{n+1}\setminus 0 \to \mathbb{C}P^n$. The closed algebraic cone is the normalization of its closure in \mathbb{C}^{n+1} .

REMARK: The closed algebraic cone is obtained by adding one point, called "the apex", or "the origin", to $Tot^{\circ}(L)$.

REMARK: The structure of a complex variety on this one-point completion is unique only in the assumption of normality. Without normality, it is not unique. Normality of the closed cone C(P) is equivalent to the "projective normality" of P.

Algebraic cones and subvarieties in Hopf manifolds

DEFINITION: A linear Hopf manifold is a complex manifold $H := \frac{\mathbb{C}^n \setminus 0}{\langle A \rangle}$, where $A \in GL(n, \mathbb{C})$ is an invertible linear contraction.

THEOREM: Let $M \subset H$ be a submanifold in a Hopf manifold, and $\tilde{M} \subset \mathbb{C}^n \setminus 0$ its \mathbb{Z} -covering. Then \tilde{M} is an open algebraic cone, with the contraction induced by the \mathbb{Z} -action on $\mathbb{C}^n \setminus 0$. Moreover, any open algebraic cone can be obtained this way.

DEFINITION: A complex manifold (M, I) is called **locally conformally Kähler** (LCK) if it admits a covering (\tilde{M}, I) equipped with a Kähler metric $\tilde{\omega}$ such that the deck group of the cover acts on $(\tilde{M}, \tilde{\omega})$ by holomorphic homotheties. An **LCK metric** on an LCK manifold is an Hermitian metric on (M, I) such that its pullback to \tilde{M} is conformal with $\tilde{\omega}$.

EXAMPLE: (Ornea-Gauduchon, Ornea-V.) Hopf manifolds are LCK.

LCK manifolds with potential

DEFINITION: Kähler potential for a Kähler form ω is a function ψ such that $dd^c\psi = \omega$. Here $d^c = IdI^{-1}$. On a Stein manifold, every Kähler form admits a Kähler potential.

DEFINITION: An LCK manifold has a proper LCK potential if it admits a Kähler \mathbb{Z} -covering on which the Kähler metric has a global potential ψ such that the deck group multiplies ψ by a constant (such a function is called **automorphic**). In this case, *M* is called **an LCK manifold with potential**.

EXAMPLE: All Hopf manifolds are LCK with potential (Gauduchon-Ornea, Ornea-V., 1999-2022). For a classical Hopf manifold $H := (\mathbb{C}^n \setminus 0)/\langle A \rangle$, $A = \lambda \operatorname{Id}, |\lambda| > 1$, the flat Kähler metric $\tilde{g}_0 = \sum dz_i \otimes d\overline{z}_i$ on \mathbb{C}^n is multiplied by λ^2 by the deck group \mathbb{Z} . Also, \tilde{g}_0 has the global automorphic potential $\psi := \sum |z_i|^2$.

EXAMPLE: A complex submanifold in an LCK manifold with potential is LCK with potential.

LCK manifolds with potential are submanifolds in Hopf manifolds

THEOREM: (Ornea-V., 2005)

Let M be an LCK manifold with potential, \tilde{M} its \mathbb{Z} -cover, and ψ its LCK potential. Then ψ is an exhausting strictly plurisubharmonic function on M. By Andreotti-Rossi, when $\dim_{\mathbb{C}} M \ge 3$, the manifold \tilde{M} admits a Stein completion \tilde{M}_c , which is equipped with a holomorphic contraction. Moreover, \tilde{M}_c is obtained from \tilde{M} by adding precisely one point.

THEOREM: (Ornea-V.)

Let (M, I, ω) be a compact LCK manifold with potential, dim_C $M \ge 3$. Then (M, I) admits a holomorphic embedding to a linear Hopf manifold. Conversely, any submanifold in a linear Hopf manifold is LCK with potential.

γ^* -finite functions

DEFINITION: Let $F \in End(V)$ be an endomorphism of a vector space. A vector $v \in V$ is called *F*-finite if the space generated by v, F(v), F(F(v)), ... is finite-dimensional.

THEOREM: Let $\gamma : X \to X$ be a holomorphic contraction on a Stein variety. Then $\gamma_* : H^0(\mathcal{O}_X) \to H^0(\mathcal{O}_X)$ is a compact operator in topology of uniform convergence on compacts, Moreover, the set of γ^* -finite vectors is dense in $H^0(\mathcal{O}_X)$.

LEMMA: Let γ be an invertible linear contraction of \mathbb{C}^n . A holomorphic function on \mathbb{C}^n is γ -finite if and only if it is polynomial.

Proof: Clearly, a polynomial function is γ -finite. The operator γ^* acts on homogeneous polynomials of degree d with eigenvalues $\alpha_{i_1}\alpha_{i_2}...\alpha_{i_d}$, where α_{i_j} are the eigenvalues of γ on \mathbb{C}^n . Since γ is a contraction, all α_{i_j} satisfy $|\alpha_{i_j}| < 1$. Therefore, any sequence $\{\alpha_{i_1}\alpha_{i_2}...\alpha_{i_d}\}$ converges to 0 as d goes to infinity. We obtain that every given number can be realized as an eigenvalue of γ^* on homogeneous polynomials of degree d for finitely many choices of d only. Therefore, any root vector of γ^* is a finite sum of homogeneous polynomials.

$\gamma^*\text{-finite functions}$ (2)

COROLLARY: Let $M \hookrightarrow H$ be a complex subvariety of a linear Hopf manifold, and $\tilde{M}_c \to \mathbb{C}^N$ the corresponding map of weak Stein completions, with \tilde{M}_c obtained as the closure of $\tilde{M} \subset \mathbb{C}^N$ by adding the zero. Then \tilde{M}_c is an algebraic subvariety, that is, a set of common zeroes of a system of polynomial equations.

Proof: The γ^* -finite functions are dense in the ideal of M_c ; therefore, this ideal is generated by polynomials.

Weighted projective spaces

Recall that any representation V of \mathbb{C}^* is a direct sum of 1-dimensional representations isomorphic to ρ_w , with \mathbb{C}^* acting by $\rho_w(t)(z) = t^w z$. Such a representation is called **representation of weight** w.

CLAIM: Let ρ be \mathbb{C}^* acting on \mathbb{C}^n . Assume that ρ contains a contraction. **Then all weights of** ρ **are positive or negative.**

CLAIM: Let ρ be \mathbb{C}^* acting on \mathbb{C}^n with weights $w_1, ..., w_n \in \mathbb{Z}^{>0}$. Then its orbit space $\mathbb{C}P^{n-1}(w_1, ..., w_n)$ is equipped with a structure of a projective orbifold, and $\mathbb{C}^n \setminus 0$ can be identified with the total space of an ample \mathbb{C}^* -bundle over $\mathbb{C}P^{n-1}(w_1, ..., w_n)$.

DEFINITION: The orbifold $\mathbb{C}P^{n-1}(w_1, ..., w_n)$ is called **the weighted projective space**.

CLAIM: Let ρ be \mathbb{C}^* acting on \mathbb{C}^n with weights $w_1, ..., w_n \in \mathbb{Z}^{>0}$, and $Z \subset \mathbb{C}^n \setminus 0$ be a ρ -invariant submanifold. Then the orbit space Z/\mathbb{C}^* is a projective orbifold in the corresponding weighted projective space $\mathbb{C}P^{n-1}(w_1, ..., w_n)$.

COROLLARY: Let ρ be \mathbb{C}^* acting on \mathbb{C}^n with weights $w_1, ..., w_n \in \mathbb{Z}^{>0}$, and $Z \subset \mathbb{C}^n \setminus 0$ a ρ -invariant submanifold. Then Z is an open algebraic cone.

Stein varieties equipped with a contraction are algebraic cones

COROLLARY: Let \tilde{M}_c be a normal Stein variety equipped with a holomorphic contraction γ , with the only singularity at the origin, denoted c. Then \tilde{M}_c admits a structure of an algebraic cone.

Proof. Step 1: Let $\tilde{M} := \tilde{M}_c \setminus c$. Then $\frac{\tilde{M}}{\langle \gamma \rangle}$ admits a holomorphic embedding to a linear Hopf manifold $\frac{\mathbb{C}^n \setminus 0}{\langle A \rangle}$. This implies that the ideal of \tilde{M}_c in $\mathcal{O}_{\mathbb{C}^n}$ is generated by A^* -finite functions, that is, polynomials, hence $\tilde{M}_c \subset \mathbb{C}^n$ is an affine subvariety.

Step 2: Let \mathcal{G}_A be a connected component of the algebraic closure of $\langle A \rangle$. A connected abelian algebraic group $\mathcal{G}_A \subset GL(n, \mathbb{C})$ is isomorphic to $(\mathbb{C}^*)^k \times \mathbb{C}^l$, where each \mathbb{C}^* acts diagonally, and \mathbb{C} are unipotent subgroups. Therefore, $\tilde{M}_c \subset \mathbb{C}^n$ is \mathbb{C}^* -invariant, for some \mathbb{C}^* acting by contractions. This produces a \mathbb{C}^* -fibration $\tilde{M} \rightarrow \frac{\tilde{M}}{\mathbb{C}^*}$ with the quotient $\frac{\mathbb{C}^n \setminus 0}{\mathbb{C}^*}$ identified with the weighted projective space.