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Algebraic structures on complex varieties

DEFINITION: (Formal definition) An algebraic structure on a complex
analytic variety Z is a subsheaf of the sheaf of holomorphic functions which can
be realized as a sheaf of regular functions for some biholomorphism between
Z and a quasi-projective variety.

Less formal definition: Let M be a complex variety which can be embedded
to Cn. Algebraic structure on M is a finitely generated ring of holomorphic
functions on M such that its generators z1, ..., zn induce an embedding M ↪→
Cn, and its image is an algebraic variety. In other words, we fix a dense,
finitely-generated subring in the ring H0(OM) of holomorphic functions.

REMARK: The algebraic structure on a manifold is not unique.

EXAMPLE: (C. Simpson)
The manifold C∗×C∗ admits an algebraic structure without global regular
functions.

THEOREM: (Zbigniew Jelonek)
There exists an uncountable set of pairwise non-isomorphic algebraic
structures on C× S, where S is a complex curve of genus > 1.
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A contraction

DEFINITION: A Stein variety is a complex subvariety in Cn

REMARK: We shall always tacitly assume that our Stein varieties have

isolated singularities.

DEFINITION: Let M be a topological space, x ∈ M a marked point. A

contraction of (M,x) is a continuous map ϕ : M→M such that for any

compact K ⊂M and any open U 3 x, a sufficiently high iteration of ϕ satisfies

ϕN(K) ⊂ U .

EXAMPLE: A linear operator A : Cn→Cn is a contraction if and only if

all its eigenvalues αi satisfy |αi| < 1.

EXAMPLE: Let X ⊂ Cn be a complex subvariety, preserved by a linear

contraction A. Then A acts on X as a contraction.
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The main results of this talk:

THEOREM: Let X be a Stein variety with an most one singular point
equipped with an invertible contraction ϕ : X→X. Then X admits an
algebraic structure such that ϕ is algebraic. Moreover, this algebraic
structure is unique.

THEOREM: In these assumptions, there exists a projective orbifold P

an an ample bundle L such that X is isomorphic to the spectrum of
the ring

⊕∞
i=0H

0(X,Li). Moreover, P can be chosen in such a way that the
action of ϕ on

⊕∞
i=0H

0(X,Li). is obtained from an automorphism of X
which acts on L equivariantly.

REMARK: Let x ∈ X be the fixed point of the contraction ϕ, and X0 := X\x.
The isomorphism X = Spec(

⊕∞
i=0H

0(X,Li)) is equivalent to X0 being
isomorphic to the space of all non-zero vectors in the total space
Tot(L).

REMARK: However, the pair (P,L) is not determined by X and its
algebraic structure uniquely: the same X might be obtained from different
projective orbifolds. Example: X = Cn, ϕ(x) := 1

2x, and and P = Cn\0
C∗ any of

the weighted projective spaces.
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Stein completion

THEOREM: (a version of Hartogs theorem)

Let X be a normal Stein variety, dimCX > 1, and K ⊂ X a compact subset.

Then every holomorphic function on X\K can be extended to X.

DEFINITION: Let A be a commutative Fréchet algebra over C. The contin-

uous spectrum Spec(A) of A is defined as the set of all continuous C-linear

homomorphisms A→C.

THEOREM: (O. Forster, 1966, 1967)

Let X be a Stein variety, and H0(OX) is the algebra of holomorphic functions

equipped with the topology of uniform convergence on compacts. Then

Spec(H0(OX)) = X.

DEFINITION: Let X be a normal Stein variety, and K ⊂ X a compact

subset. By Hartogs, the ring of functions on X is identified with H0(OX\K);

by Forster, this ring with its C0 topology uniquely defines X. Following

Andreotti-Siu, we call X the Stein completion of X\K.
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Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle

on P . Assume that the total space Tot◦(L) of all non-zero vectors in L is

smooth. An open algebraic cone is Tot◦(L).

DEFINITION: The corresponding closed algebraic cone is its Stein com-

pletion Z.

EXAMPLE: Let P ⊂ CPn, and L = O(1)|P . Then the open algebraic cone

Tot◦(L) can be identified with the set π−1(P ) of all v ∈ Cn+1\0 projected

to P under the standard map π : Cn+1\0 → CPn. The closed algebraic

cone is the normalization of its closure in Cn+1.

REMARK: The closed algebraic cone is obtained by adding one point,

called “the apex”, or “the origin”, to Tot◦(L).
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Algebraic cones and subvarieties in Hopf manifolds

DEFINITION: A linear Hopf manifold is a complex manifold H := Cn\0
〈A〉 ,

where A ∈ GL(n,C) is an invertible linear contraction. A classical Hopf

manifold is a linear Hopf manifold such that A is a scalar matrix.

THEOREM: Let M ⊂ H be a submanifold in a Hopf manifold, and M̃ ⊂ Cn\0
its Z-covering. Then M̃ is an open algebraic cone. Moreover, any open

algebraic cone can be obtained this way.

Proof: Later today
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Compact operators

DEFINITION: Recall that a subset X of a topological space Y is called

precompact, if its closure is compact.

DEFINITION: A subset K ⊂ V of a topological vector space is called

bounded if for any open set U 3 0, there exists a number λU ∈ R>0 such that

λUK ⊂ U .

DEFINITION: Let V,W be topological vector spaces. A continuous operator

ϕ : V→W is called compact if the image of any bounded set is precompact.

THEOREM: Let M be a complex manifold, and let H0
b (OM) the space of

all bounded holomorphic functions, equipped with the sup-norm |f |sup :=

supM |f |. Then H0
b (OM) is a Banach space.

Proof: The space of bounded continuous functions is Banach with respect to

the sup-norm. However, The uniform convergence of holomorphic functions

implies their C∞-convergence by Cauchy theorem.
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The Banach space of bounded holomorphic functions

THEOREM: Let X be a complex variety, and γ : X→X a holomorphic
contraction to x ∈ X such that γ(X) is precompact. Consider the Banach
space V = H0

b (OX) of bounded holomorphic functions with the sup-norm,
and let Vx ⊂ V be the space of all v ∈ V vanishing in x. Then γ∗ : V→V
is compact, and the eigenvalues of its restriction to Vx are strictly less
than 1 in absolute value.

Proof. Step 1: For any f ∈ H0(OX) we have |γ∗f |sup = sup
x∈γ(X)

|f(x)|.
This implies that γ∗(f) is bounded.

Step 2: Consider the space H0(OX) of holomorphic functions with topology
of the uniform convergence on compact subsets. By Montel’s theorem, the
identity map H0

b (OX)→H0(OX) is compact. By Step 1, this implies that
γ∗(f) is precompact in sup-topology. Therefore, γ∗ takes bounded sets to
precompact.

Step 3: Let x be the fixed point of γ. All derivatives in x of the sequence
f, γ∗f, (γ∗)2f, (γ∗)3f, ... converge to zero; therefore, this sequence converges
to a constant. This implies that γ∗ acts on Vx as a contraction, hence all its
eigenvalues are < 1.
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The Riesz-Schauder theorem

THEOREM: (Riesz-Schauder theorem)
Let F : V→V be a compact operator on a Banach space. Then for each
non-zero µ ∈ C, there exists a sufficiently big number N ∈ Z�0 such
that for each n > N one has V = ker(F − µ Id)n ⊕ im(F − µ Id)n, where
im(F − µ Id)n is the closure of the image. Moreover, ker(F − µ Id)n is
finite-dimensional and independent on n > N.

REMARK: Define the root space of an operator F ∈ End(V ), associated
with an eigenvalue µ, as

⋃
n∈Z ker(F −µ Id)n. In the finite-dimensional case,

the root spaces coincide with the Jordan cells of the corresponding matrix.
The Riesz-Schauder theorem can be reformulated by saying that any compact
operator F ∈ End(V ) admits a Jordan cell decomposition, with V identified
with a completed direct sum of the root spaces, which are all finite-
dimensional; moreover, the eigenvalues of F converge to zero.

DEFINITION: Let F ∈ End(V ) be an endomorphism of a vector space. A
vector v ∈ V is called F -finite if the space generated by v, F (v), F (F (v)), ... is
finite-dimensional.

COROLLARY: Let F : V→V be a compact operator on a Banach space,
and V0 ⊂ V the space of all F -finite vectors. Then V0 is dense in V .
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γ∗-finite functions on complex manifolds

LEMMA: Let γ be an invertible linear contraction of Cn. A holomorphic
function on Cn is γ-finite if and only if it is polynomial.

Proof: Clearly, a polynomial function is γ-finite. The operator γ∗ acts on
homogeneous polynomials of degree d with eigenvalues αi1αi2...αid, where
αij are the eigenvalues of γ on Cn. Since γ is a contraction, all αij satisfy
|αij | < 1. Therefore, any sequence {αi1αi2...αid} converges to 0 as d goes to
infinity. We obtain that every given number can be realized as an eigenvalue
of γ∗ on homogeneous polynomials of degree d for finitely many choices of
d only. Therefore, any root vector of γ∗ is a finite sum of homogeneous
polynomials.

COROLLARY: Let M ↪→ H be a complex subvariety of a linear Hopf man-
ifold, and M̃c→CN the corresponding map of weak Stein completions, with
M̃c obtained as the closure of M̃ ⊂ CN by adding the zero. Then M̃c is an
algebraic subvariety, that is, a set of common zeroes of a system of
polynomial equations.

Proof: Using Riesz-Schauder, we prove that the ideal of M̃c ⊂ Cn is generated
by γ∗-finite functions, which are polynomial, as shown above.
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Contractions are properly discontinuous

LEMMA: Let γ act on a complex variety M̃c by contractions, contracting

M̃c to a point c. Then the corresponding Z-action on M̃ := M̃c\{c} is

properly discontinuous, hence M̃/Z is Hausdorff; it is a manifold when

M̃ is a manifold.

Proof: By definition, the Z-action is properly discontinuous if every point has

a neighbourhood U such that the set {g ∈ Z | g(U) ∩ U 6= ∅} is finite. Let

x ∈ M̃ and K be the compact closure of an open neighbourhood of U ⊂ M̃

containing x. Since M̃c is Hausdorff, there exists a neighbourhood W 3 c

such that its closure does not intersect K. By definition of contractions,

there exists N > 0 such that γn(K) ⊂ W for all n > N . This implies that

γn(K) ∩ K = ∅. This also implies that K ∩ γ−n(K) = ∅. We have shown

that γn(K) ∩K = ∅ for all n /∈ [−N,N ].
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Stein varieties to Hopf manifolds

THEOREM: Let M̃c be a Stein variety equipped with a holomorphic contrac-

tion γ, contracting it to the point c. Assume that the complement M̃ := M̃c\c
is smooth. Then there exists a holomorphic embedding j : M̃/〈γ〉 ↪→ H

to a Hopf manifold.

Proof. Step 1: Let R be the ring of γ-finite holomorphic functions on M̃c, I

the maximal ideal of c, and and V ⊂ I a finite-dimensional γ-invariant space

generating I. As shown above, the action of γ∗ is compact on I and has all

eigenvalues < 1. By Riesz-Schauder theorem, R is dense in OM̃c
. Therefore,

the functions in V separate the points in M̃, for V sufficiently big.

Step 2: By Cauchy formula, R is dense in C1-topology whenever it is dense

in C0-topology; therefore, the differentials of the functions f ∈ R generate

T ∗xM̃ for all x ∈ M̃ . This implies that the tautological map M̃→V ∗, taking

x ∈ M̃, v ∈ V to v(x) is a holomorphic embedding.

Step 3: This map is by construction γ-equivariant, hence it induces a holo-

morphic embedding M̃/〈γ〉 ↪→ H = V ∗/〈γ〉.
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Weighted projective spaces

Recall that any representation V of C∗ is a direct sum of 1-dimensional rep-
resentations isomorphic to ρw, with C∗ acting by ρw(t)(z) = twz. Such a
representation is called representation of weight w.

CLAIM: Let ρ be C∗ acting on Cn. Assume that ρ contains a contraction.
Then all weights of ρ are positive or negative.

CLAIM: Let ρ be C∗ acting on Cn with weights w1, ..., wn ∈ Z>0. Then its
orbit space CPn−1(w1, ..., wn) is equipped with a structure of a projective
orbifold, and Cn\0 can be identified with the total space of an ample
C∗-bundle over CPn−1(w1, ..., wn).

DEFINITION: The orbifold CPn−1(w1, ..., wn) is called the weighted pro-
jective space.

CLAIM: Let ρ be C∗ acting on Cn with weights w1, ..., wn ∈ Z>0, and Z ⊂ Cn\0
be a ρ-invariant submanifold. Then the orbit space Z/C∗ is a projective
orbifold in the corresponding weighted projective space CPn−1(w1, ..., wn).

COROLLARY: Let ρ be C∗ acting on Cn with weights w1, ..., wn ∈ Z>0, and
Z ⊂ Cn\0 a ρ-invariant submanifold. Then Z is an open algebraic cone.
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Stein varieties equipped with a contraction are algebraic cones

COROLLARY: Let M̃c be a normal Stein variety equipped with a holomor-

phic contraction γ, with the only singularity at the origin, denoted c. Then

M̃c admits a structure of an algebraic cone.

Proof. Step 1: Let M̃ := M̃c\c. Then M̃
〈γ〉 admits a holomorphic embedding

to a linear Hopf manifold Cn\0
〈A〉 . This implies that the ideal of M̃c in OCn is

generated by A∗-finite functions, that is, polynomials, hence M̃c ⊂ Cn is

an affine subvariety.

Step 2: Let GA be a connected component of the algebraic closure of 〈A〉. A

connected abelian algebraic group GA ⊂ GL(n,C) is isomorphic to (C∗)k × Cl,
where each C∗ acts diagonally, and C are unipotent subgroups. Therefore,

M̃c ⊂ Cn is C∗-invariant, for some C∗ acting by contractions. This produces

a C∗-fibration M̃→M̃
C∗ with the quotient Cn\0

C∗ identified with the weighted

projective space.
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Algebraic cones: uniqueness of the complex structure

LEMMA: Let M ⊂ H be a submanifold in a Hopf manifold, and M̃c ⊂ Cn

the Stein completion of its Z-cover. Denote by γ ∈ Aut(M̃c) the holomorphic

contraction generating the Z-action on M̃c. Choose a compact set K ⊂ M̃c

containing an open neighbourhood of the apex. Denote by B ⊂ H0(OM̃c
) the

following ring of functions on M̃c:

B := {f ∈ H0(OM̃c
) | ∃ C > 0 such that ∀i sup

K
|(γ∗)−i|f | < Ci}. (∗)

Then B coincides with the space of γ-finite functions.

REMARK: We call a function satisfying (*) the function of polynomial

growth. This terminology is justified because for γ a linear contraction of

Cn, (*) is equivalent to having polynomial growth.

Proof. Step 1: Let f be a γ-finite function, and W the space generated

by {f, (γ∗)f, (γ∗)2f, ...}. Let ‖ · ‖K be the norm on W defined by ‖f‖ :=

supK |f |, and let C := sup‖f‖=1 ‖(γ∗)−1f‖ be the operator norm of the map

(γ∗)−1 ∈ End(W ) in this norm. Then supK |(γ∗)−if | 6 Ci supK |f |, hence f

has polynomial growth.
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Step 2: Suppose that f has polynomial growth, and let W be the space of

all functions generated by {f, (γ∗)f, (γ∗)2f, ...}. Then all elements of W have

the same growth as f , with the same bound C, hence the closure W of W in

the norm ‖f‖ := supK |f | consists of functions with polynomial growth.

The condition (*) holds for all f ∈W if and only if (γ∗)−1 has finite norm on

W . Therefore, γ∗
∣∣∣W is invertible. It remains only to show that the norm of

(γ∗)−1 is infinite on W if W is infinite-dimensional.

Step 3: The operator γ∗ on W is compact; by the Riesz-Schauder theorem,

it has the Jordan cell decomposition with eigenvalues converging to 0, unless

W is finite-dimensional. The norm of a linear operator A with eigenvalues αi
satisfies ‖A‖ > sup |αi|. Therefore, a compact operator cannot be invertible

on an infinitely-dimensional Banach space: the inverse operator would have

infinite norm.

COROLLARY: The algebraic structure on M̃c is uniquely determined

by γ.
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