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Algebraic structures on complex varieties

DEFINITION: (Formal definition) An algebraic structure on a complex
analytic variety Z is a subsheaf of the sheaf of holomorphic functions which can
be realized as a sheaf of regular functions for some biholomorphism between
Z and a quasi-projective variety.

LLess formal definition: Let M be a complex variety which can be embedded
to C". Algebraic structure on M is a finitely generated ring of holomorphic
functions on M such that its generators zq,..., 2z, induce an embedding M —
C"™, and its image is an algebraic variety. In other words, we fix a dense,
finitely-generated subring in the ring H°(0,;) of holomorphic functions.

REMARK: The algebraic structure on a manifold is not unique.

EXAMPLE: (C. Simpson)
The manifold C*xC* admits an algebraic structure without global regular
functions.

THEOREM: (Zbigniew Jelonek)
There exists an uncountable set of pairwise non-isomorphic algebraic

structures on C x S, where S is a complex curve of genus > 1.
2



Algebraic cones M. Verbitsky

A contraction
DEFINITION: A Stein variety is a complex subvariety in C"

REMARK: We shall always tacitly assume that our Stein varieties have
iIsolated singularities.

DEFINITION: Let M be a topological space, x € M a marked point. A
contraction of (M,z) is a continuous map ¢ : M—M such that for any
compact K C M and any open U > z, a sufficiently high iteration of ¢ satisfies
oN(K) CU.

EXAMPLE: A linear operator A : C"—C" is a contraction if and only if
all its eigenvalues «; satisfy |o;| < 1.

EXAMPLE: Let X C C" be a complex subvariety, preserved by a linear
contraction A. Then A acts on X as a contraction.
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T he main results of this talk:

THEOREM: Let X be a Stein variety with an most one singular point
equipped with an invertible contraction ¢ : X—=X. Then X admits an
algebraic structure such that ¢ is algebraic. Moreover, this algebraic
structure is unique.

THEOREM: In these assumptions, there exists a projective orbifold P
an an ample bundle L such that X is isomorphic to the spectrum of
the ring ©2 4 HO(X, LY. Moreover, P can be chosen in such a way that the
action of ¢ on @&°2 OHO(X LY). is obtained from an automorphism of X
which acts on L equivariantly.

REMARK: Let x € X be the fixed point of the contraction ¢, and Xg := X\«x.
The isomorphism X = Spec(®:2 OHO(X L)) is equivalent to Xy being
iIsomorphic to the space of all non-zero vectors in the total space
Tot(L).

REMARK: However, the pair (P,L) is not determined by X and its
algebraic structure uniquely: the same X might be obtained from different
projective orbifolds. Example: X = C", o(x) := %az and and P = C(Clo any of
the weighted projective spaces.
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Stein completion

THEOREM: (a version of Hartogs theorem)
Let X be a normal Stein variety, dimg X > 1, and K C X a compact subset.
Then every holomorphic function on X\K can be extended to X.

DEFINITION: Let A be a commutative Fréchet algebra over C. The contin-
uous spectrum Spec(A) of A is defined as the set of all continuous C-linear
homomorphisms A—C.

THEOREM: (O. Forster, 1966, 1967)
Let X be a Stein variety, and HO(Ox) is the algebra of holomorphic functions

equipped with the topology of uniform convergence on compacts. Then
Spec(HY(0Ox)) = X.

DEFINITION: Let X be a normal Stein variety, and K C X a compact
subset. By Hartogs, the ring of functions on X is identified with HO((’)X\K);
by Forster, this ring with its CO topology uniquely defines X. Following
Andreotti-Siu, we call X the Stein completion of X\K.
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Algebraic cones

DEFINITION: Let P be a projective orbifold, and L an ample line bundle
on P. Assume that the total space Tot°(L) of all non-zero vectors in L is
smooth. An open algebraic cone is Tot°(L).

DEFINITION: The corresponding closed algebraic cone is its Stein com-
pletion Z.

EXAMPLE: Let P C CP™, and L = O(1)|p. Then the open algebraic cone
Tot°(L) can be identified with the set 7~ 1(P) of all v € C*T1\0 projected
to P under the standard map = : C*T1\0 — CP"”. The closed algebraic
cone is the normalization of its closure in C*t1,

REMARK: The closed algebraic cone is obtained by adding one point,
called “the apex”, or “the origin”, to Tot°(L).
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Algebraic cones and subvarieties in Hopf manifolds

DEFINITION: A linear Hopf manifold is a complex manifold H := C{"T};),
where A € GL(n,C) is an invertible linear contraction. A classical Hopf

manifold is a linear Hopf manifold such that A is a scalar matrix.

THEOREM: Let M C H be a submanifold in a Hopf manifold, and M C C™\0
its Z-covering. Then M is an open algebraic cone. Moreover, any open
algebraic cone can be obtained this way.

Proof: Later today
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Compact operators

DEFINITION: Recall that a subset X of a topological space Y is called
precompact, if its closure is compact.

DEFINITION: A subset K C V of a topological vector space is called
bounded if for any open set U > 0, there exists a number A\ € R>0 such that
)‘UK CU.

DEFINITION: Let V,W be topological vector spaces. A continuous operator
p: V—W is called compact if the image of any bounded set is precompact.

THEOREM: Let M be a complex manifold, and let Hg)(OM) the space of
all bounded holomorphic functions, equipped with the sup-norm |flsup =
supys |f]. Then HP(Oy) is a Banach space.

Proof: The space of bounded continuous functions is Banach with respect to
the sup-norm. However, The uniform convergence of holomorphic functions
implies their C°°-convergence by Cauchy theorem. =
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The Banach space of bounded holomorphic functions

THEOREM: Let X be a complex variety, and v : X—X a holomorphic
contraction to z € X such that v(X) is precompact. Consider the Banach
Space V = H,?(OX) of bounded holomorphic functions with the sup-norm,
and let V, C V be the space of all v € V vanishing in . Then ~* . V>V
IS compact, and the eigenvalues of its restriction to V, are strictly less
than 1 in absolute value.

Proof. Step 1: For any f € H9(Ox) we have |v*flsup = Sup, gy 1 (@)1,
This implies that ~*(f) is bounded.

Step 2: Consider the space HO(OX) of holomorphic functions with topology
of the uniform convergence on compact subsets. By Montel's theorem, the
identity map HP(Ox)—H®(Ox) is compact. By Step 1, this implies that
~*(f) is precompact in sup-topology. Therefore, ~* takes bounded sets to
precompact.

Step 3: Let x be the fixed point of ~. All derivatives in = of the sequence
9% f, (v)2F, (v*)3f, ... converge to zero; therefore, this sequence converges
to a constant. This implies that v* acts on V, as a contraction, hence all its
eigenvalues are < 1. m
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The Riesz-Schauder theorem

THEOREM: (Riesz-Schauder theorem)

Let F': V—V be a compact operator on a Banach space. Then for each
non-zero p € C, there exists a sufficiently big number N & 7>9 such
that for each n > N one has V = ker(F — pld)" @ im(F — pId)”, where
im(F — puld)” is the closure of the image. Moreover, ker(F — pld)™ is
finite-dimensional and independent on n > N. =

REMARK: Define the root space of an operator F € End(V), associated
with an eigenvalue p, as U, ¢z ker(F —plId)™. In the finite-dimensional case,
the root spaces coincide with the Jordan cells of the corresponding matrix.
The Riesz-Schauder theorem can be reformulated by saying that any compact
operator F' € End(V) admits a Jordan cell decomposition, with V identified
with a completed direct sum of the root spaces, which are all finite-
dimensional; moreover, the eigenvalues of ' converge to zero.

DEFINITION: Let F € End(V) be an endomorphism of a vector space. A
vector v € V is called F-finite if the space generated by v, F'(v), F(F(v)),... is
finite-dimensional.

COROLLARY: Let F: V=V be a compact operator on a Banach space,
and Vo C V the space of all F-finite vectors. Then Vj is dense in V. =m
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~v*-finite functions on complex manifolds

LEMMA: Let v be an invertible linear contraction of C". A holomorphic
function on C" is ~-finite if and only if it is polynomial.

Proof: Clearly, a polynomial function is ~-finite. The operator ~* acts on
homogeneous polynomials of degree d with eigenvalues o, a;,...c;,, where
;; are the eigenvalues of v on C". Since ~ is a contraction, all , satisfy
|Ozij| < 1. Therefore, any sequence {«;,a;,...c;; ,} converges to 0 as d goes to
infinity. We obtain that every given number can be realized as an eigenvalue
of ~* on homogeneous polynomials of degree d for finitely many choices of
d only. Therefore, any root vector of ~* is a finite sum of homogeneous
polynomials. =

COROLLARY: Let M — H be a complex subvariety of a linear Hopf man-
ifold, and M.—CHN the corresponding map of weak Stein completions, with
M, obtained as the closure of M c C¥ by adding the zero. Then M, is an
algebraic subvariety, that is, a set of common zeroes of a system of
polynomial equations.

Proof: Using Riesz-Schauder, we prove that the ideal of M. C C" is generated

by ~*-finite functions, which are polynomial, as shown above. =
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Contractions are properly discontinuous

LEMMA: Let v act on a complex variety M. by contractions, contracting
M. to a point c. Then the corresponding Z-action on M := M:\{c} is
properly discontinuous, hence 1 /Z is Hausdorff; it is a manifold when

~

M 1S a manifold.

Proof: By definition, the Z-action is properly discontinuous if every point has
a neighbourhood U such that theset {g € Z | g(U)NU # 0} is finite. Let
x € M and K be the compact closure of an open neighbourhood of U C M
containing z. Since M, is Hausdorff, there exists a neighbourhood W 3 ¢
such that its closure does not intersect K. By definition of contractions,
there exists N > 0 such that vy"(K) Cc W for all n > N. This implies that
YY"(K) N K = (. This also implies that K N~ "(K) = (. We have shown
that Y""(K)NK =0 for all n ¢ [-N,N]. =
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Stein varieties to Hopf manifolds

THEOREM: Let M. be a Stein variety equipped with a holomorphic contrac-
tion ~y, contracting it to the point c. Assume that the complement M := M.\c
is smooth. Then there exists a holomorphic embedding j : M/{(y) — H
to a Hopf manifold.

Proof. Step 1: Let R be the ring of ~v-finite holomorphic functions on M., T
the maximal ideal of ¢, and and V C I a finite-dimensional ~-invariant space
generating I. As shown above, the action of ~v* is compact on I and has all
eigenvalues < 1. By Riesz-Schauder theorem, R is dense in O v T herefore,
the functions in V separate the points in M, for V sufficiently big.

Step 2: By Cauchy formula, R is dense in Cl—topology whenever it is dense
in Co-topology; therefore, the differentials of the functions f € R generate
T*M for all z € M. This implies that the tautological map M—V*, taking
x € M, veV to v(z) is a holomorphic embedding.

Step 3: This map is by construction ~-equivariant, hence it induces a holo-
morphic embedding M/(y) — H =V*/{y). =
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Weighted projective spaces

Recall that any representation V of C* is a direct sum of 1-dimensional rep-
resentations isomorphic to py, with C* acting by pw(t)(z) = t%Yz. Such a
representation is called representation of weight w.

CLAIM: Let p be C* acting on C™. Assume that p contains a contraction.
Then all weights of p are positive or negative. =

CLAIM: Let p be C* acting on C" with weights wiq,...,wn € ZZ°%. Then its
orbit space CP"1(wq,...,wy) is equipped with a structure of a projective
orbifold, and C"\0 can be identified with the total space of an ample
C*-bundle over CP" 1(wq,...,wn). =

DEFINITION: The orbifold CP" 1(wq,...,wn) is called the weighted pro-
jective space.

CLAIM: Let p be C* acting on C™ with weights w1, ...,w, € Z>9, and Z C C™\0
be a p-invariant submanifold. Then the orbit space Z/C* is a projective
orbifold in the corresponding weighted projective space CP" (w1, ..., wp).
|

COROLLARY: Let p be C* acting on C™ with weights w1, ...,wn € Z>°, and
Z C C™"\0 a p-invariant submanifold. Then Z is an open algebraic cone. =
14
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Stein varieties equipped with a contraction are algebraic cones

COROLLARY: Let M. be a normal Stein variety equipped with a holomor-
phic contraction ~, with the only singularity at the origin, denoted c¢. Then
M. admits a structure of an algebraic cone.

~

Proof. Step 1: Let I := M/\c. Then & admits a holomorphic embedding

(7)
ST};). This implies that the ideal of 7, in Ocx is

generated by A*-finite functions, that is, polynomials, hence M. C C" is
an affine subvariety.

to a linear Hopf manifold

Step 2: Let G4 be a connected component of the algebraic closure of (A). A
connected abelian algebraic group G4 C GL(n,C) is isomorphic to (C*)* x C!,
where each C* acts diagonally, and C are unipotent subgroups. Therefore,
M. C C"is C*-invariant, for some C* acting by contractions. This produces
a C*-fibration M%% with the quotient %ﬁo identified with the weighted
projective space. =
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Algebraic cones: uniqueness of the complex structure

LEMMA: Let M C H be a submanifold in a Hopf manifold, and M. C C"
the Stein completion of its Z-cover. Denote by ~v € Aut(M,.) the holomorphic
contraction generating the Z-action on M,.. Choose a compact set K C M,
containing an open neighbourhood of the apex. Denote by B C HO(OMC) the
following ring of functions on M,:

B:={fc H°(Og) | 3C >0 such that Vi sup|(v*)7'|f| <C}. (%)
¢ K

Then B coincides with the space of ~-finite functions.

REMARK: We call a function satisfying (*) the function of polynomial
growth. This terminology is justified because for v a linear contraction of
C"™, (*) is equivalent to having polynomial growth.

Proof. Step 1: Let f be a ~-finite function, and W the space generated
by {f, (") f, (v)2f,...}. Let | -||x be the norm on W defined by |f| =
supg |f], and let C := supjsj=1 [(v*) "1 f|| be the operator norm of the map
(v*)~1 € End(W) in this norm. Then supg |(v*)~f] < Ctsupy |f|, hence f
has polynomial growth.
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Step 2: Suppose that f has polynomial growth, and let W be the space of
all functions generated by {f, (v*)f, (*)2f,...}. Then all elements of W have
the same growth as f, with the same bound C, hence the closure W of W in
the norm [|f|| ;== supg |f| consists of functions with polynomial growth.

The condition (*¥) holds for all f € W if and only if (%)~ has finite norm on
W. Therefore, v*|i7 is invertible. It remains only to show that the norm of

(fy*)_l is infinite on W if W is infinite-dimensional.

Step 3: The operator v* on W is compact; by the Riesz-Schauder theorem,
it has the Jordan cell decomposition with eigenvalues converging to 0O, unless
W is finite-dimensional. The norm of a linear operator A with eigenvalues «;
satisfies |A|| > sup|a;|. Therefore, a compact operator cannot be invertible
on an infinitely-dimensional Banach space: the inverse operator would have
infinite norm. =

COROLLARY: The algebraic structure on M, is uniquely determined
by v. =
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