Teichmüller spaces for geometric structures, lecture 1

Misha Verbitsky

Conference - Teichmüller Theory in Higher Dimension and Mirror Symmetry

April 24-28, 2017

Plan:

- 1. Set-up: Teichmüller space and the moduli space of geometric structures.
- 2. Moser's theorem. Teichmüller space of symplectic structures on a torus.
- 3. Hyperkähler maifolds (introduction)

Geometric structures

DEFINITION: "Geometric structure" on a manifold M is a reduction of its structure group $GL(n,\mathbb{R})$ to a subgroup $G \subset GL(n,\mathbb{R})$. However, it is easier to define it by a collection of tensors $\Psi_1, ..., \Psi_n$ such that the stabilizer $\operatorname{St}_{\langle \Psi_1,...,\Psi_n \rangle}$ of $\Psi_1, ..., \Psi_n$ at each point $x \in M$ is conjugate to the same group $G \subset GL(d,\mathbb{R})$, $d = \dim_{\mathbb{R}} M$.

Let me give some examples.

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: Symplectic form on a manifold is a non-degenerate differential 2-form ω satisfying $d\omega = 0$.

Teichmüller space of geometric structures

Let C be the set of all geometric structures of a given type, say, complex, or symplectic. We put topology of uniform convergence with all derivatives on C. Let $\text{Diff}_0(M)$ be the connected component of its diffeomorphism group Diff(M) (the group of isotopies).

DEFINITION: The quotient $C/Diff_0$ is called **Teichmüller space** of geometric strictures of this type.

DEFINITION: The group $\Gamma := \text{Diff}(M) / \text{Diff}_0(M)$ is called **the mapping** class group of M. It acts on Teich by homeomorphisms.

DEFINITION: The orbit space $C/Diff = Teich / \Gamma$ is called **the moduli space** of geometric structure of this type.

Teichmüller space for symplectic structures

DEFINITION: Let $\Gamma(\Lambda^2 M)$ be the space of all 2-forms on a manifold M, and Symp $\subset \Gamma(\Lambda^2 M)$ the space of all symplectic 2-forms. We equip $\Gamma(\Lambda^2 M)$ with C^{∞} -topology of uniform convergence on compacts with all derivatives. **Then** $\Gamma(\Lambda^2 M)$ **is a Frechet vector space, and** Symp **a Frechet manifold**.

DEFINITION: Consider the group of diffeomorphisms, denoted Diff or Diff(M) as a Frechet Lie group, and denote its connected component ("group of isotopies") by Diff₀. The quotient group $\Gamma := \text{Diff} / \text{Diff}_0$ is called **the mapping** class group of M.

DEFINITION: Teichmüller space of symplectic structures on M is defined as a quotient Teich_s := Symp / Diff₀. The quotient Teich_s / Γ = Symp / Diff, is called **the moduli space of symplectic structures**.

REMARK: In many cases Γ acts on Teich_s with dense orbits, hence the moduli space is not always well defined.

DEFINITION: Two symplectic structures are called **isotopic** if they lie in the same orbit of $Diff_0$, and **diffeomorphic** is they lie in the same orbit of Diff.

Moser's theorem

DEFINITION: Define the period map Per: Teich_s $\longrightarrow H^2(M, \mathbb{R})$ mapping a symplectic structure to its cohomology class.

THEOREM: (Moser, 1965)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is locally a diffeomorphism.

The proof is based on another theorem of Moser.

Theorem 1: (Moser)

Let ω_t , $t \in S$ be a smooth family of symplectic structures, parametrized by a connected manifold S. Assume that the cohomology class $[\omega_t] \in H^2(M)$ is constant in t. Then all ω_t are diffeomorphic.

The proof of Moser's theorem

THEOREM: (Moser)

The **Teichmüler space** Teich_s is a manifold (possibly, non-Hausdorff), and the period map Per : Teich_s $\longrightarrow H^2(M, \mathbb{R})$ is locally a diffeomorphism.

Proof. Step 1: We can locally find a section S for the Diff₀-action on Symp, producing a local decomposition Symp = $O \times S$, where O is a Diff₀-orbit. Here O and S are both Frechet manifolds.

Step 2: The period map $P : S \longrightarrow H^2(M, \mathbb{R})$ is a smooth submersion. By Theorem 1, the fibers of P are 0-dimensional. Therefore, P is locally a diffeomorphism.

Symplectic structures on a compact torus

DEFINITION: A symplectic structure ω on a torus is called **standard** if there exists a flat torsion-free connection preserving ω .

REMARK: Moser's theorem immediately implies that the set $Teich_{st}$ of standard symplectic structures is open in the Teichmüller space. Indeed, the period map from $Teich_{st}$ to $H^2(M)$ is also locally a diffeomorphism.

REMARK: It is not known if any non-standard symplectic structures exist (even in dimension =4).

THEOREM: Let $\Lambda_{nd}^2(H_1(T)) \subset H^2(T)$ be the space of symplectic forms on $H_1(T)$, where T is an even-dimensional torus. Consider the period map Per : Teich_{st} $\longrightarrow \Lambda_{nd}^2(H_1(T)) \subset H^2(T)$, where Teich_{st} is the Teichmüller space of standard symplectic structures on T. **Then** Per **is a diffeomorphism.**

Non-Hausdorff points on symplectic Teichmüller space

Example of D. McDuff found in Salamon, Dietmar, *Uniqueness of symplectic structures*, Acta Math. Vietnam. 38 (2013), no. 1, 123-144.

Let $M = S^1 \times S^1 \times S^2 \times S^2$ with coordinates $\theta_1, \theta_2 \in S^1 \subset \mathbb{C}^*$ and $z_1, z_2 \in S^2$. Let $\varphi_{\theta,z} \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ be a rotation around the axis $z \in \mathbb{C}P^1$ by the angle θ . Consider the diffeomorphism $\Psi : M \longrightarrow M$ mapping $(\theta_1, \theta_2, z_1, z_2)$ to $(\theta_1, \theta_2, z_1, \varphi_{\theta_1, z_1}(z_2))$.

THEOREM: Let ω_{λ} be the product symplectic form on $M = T^2 \times \mathbb{C}P^1 \times \mathbb{C}P^1$ obtained as a product of symplectic forms of volume 1, 1, λ on T^2 , $\mathbb{C}P^1$, $\mathbb{C}P^1$. **The form** $\Psi^*(\omega_1)$ **is homologous, but not diffeomorphic to** ω_1 . However, **the form** $\Psi^*(\omega_{\lambda})$ **is diffeomorphic to** ω_{λ} **for any** $\lambda \neq 1$.

(D. McDuff, *Examples of symplectic structures*, Invent. Math. 89 (1987), 13-36.)

The space of standard symplectic forms on a torus

THEOREM: Let $\Lambda_{nd}^2(H_1(T)) \subset H^2(T)$ be the space of symplectic forms on $H_1(T)$, where T is an even-dimensional torus. Consider the period map Per : Teich_{st} $\longrightarrow \Lambda_{nd}^2(H_1(T)) \subset H^2(T)$, where Teich_{st} is the Teichmüller space of standard symplectic structures on T. **Then** Per **is a diffeomorphism**.

Proof. Step 1: Let Teich_h be the Teichmüller space of flat Hermitian metrics on *T*. Clearly, $\text{Teich}_h = GL(2n, \mathbb{R})/U(n)$. Moreover, **the natural forgetful map** $\text{Teich}_h \longrightarrow \text{Teich}_{st}$ **is surjective**.

Step 2: The fibers of the natural projection $\operatorname{Teich}_h \longrightarrow \Lambda^2_{nd}(H_1(T))$ are connected. Using the diagram

$$\begin{array}{ccc} \operatorname{Teich}_{h} & \longrightarrow & \Lambda^{2}_{nd}(H_{1}(T)) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \operatorname{Teich}_{st} & \longrightarrow & \Lambda^{2}_{nd}(H_{1}(T)) \end{array}$$

we obtain that Per : Teich_{st} $\longrightarrow \Lambda_{nd}^2(H_1(T))$ has connected fibers. By Moser's theorem, this map is a diffeomorphism.

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM \otimes \mathbb{C} = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called **a complex structure operator**. A manifold with an integrable almost complex structure is called **a complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

Kähler manifolds

DEFINITION: A Riemannian metric g on a complex manifold (M, I) is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called **the Hermitian** form of (M, I, g).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

REMARK: This is equivalent to $\nabla \omega = 0$, where ∇ is Levi-Civita connection.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

CLAIM: A compact hyperkähler manifold M has maximal holonomy of Levi-Civita connection Sp(n) if and only if $\pi_1(M) = 0$, $h^{2,0}(M) = 1$.

THEOREM: (Bogomolov decomposition)

Any compact hyperkähler manifold has a finite covering isometric to a product of a torus and several maximal holonomy hyperkähler manifolds.

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: In these lectures , all holomorphically symplectic manifolds are assumed to be Kähler and compact.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I \cdot, \cdot), \ \omega_J := g(J \cdot, \cdot), \ \omega_K := g(K \cdot, \cdot).$

CLAIM: In these assumptions, $\omega_J + \sqrt{-1} \omega_K$ is holomorphic symplectic on (M, I).

THEOREM: (Calabi-Yau)

A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of these lectures, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold of maximal holonomy.

EXAMPLES.

EXAMPLE: An even-dimensional complex torus.

EXAMPLE: A non-compact example: $T^* \mathbb{C}P^n$ (Calabi).

```
REMARK: T^* \mathbb{C}P^1 is a resolution of a singularity \mathbb{C}^2/\pm 1.
```

EXAMPLE: Take a 2-dimensional complex torus T, then the singular locus of $T/\pm 1$ is of form $(\mathbb{C}^2/\pm 1) \times T$. Its resolution $T/\pm 1$ is called a Kummer surface. It is holomorphically symplectic.

REMARK: Take a symmetric square Sym² T, with a natural action of T, and let $T^{[2]}$ be a blow-up of a singular divisor. Then $T^{[2]}$ is naturally isomorphic to the Kummer surface $T/\pm 1$.

DEFINITION: A complex surface is called **K3 surface** if it a deformation of the Kummer surface.

THEOREM: (a special case of Enriques-Kodaira classification) Let *M* be a compact complex surface which is hyperkähler. Then *M* is either a torus or a K3 surface.

Hilbert schemes

DEFINITION: A Hilbert scheme $M^{[n]}$ of a complex surface M is a classifying space of all ideal sheaves $I \subset \mathcal{O}_M$ for which the quotient \mathcal{O}_M/I has dimension n over \mathbb{C} .

REMARK: A Hilbert scheme is obtained as a resolution of singularities of the symmetric power $Sym^n M$.

THEOREM: (Fujiki, Beauville) **A Hilbert scheme of a hyperkähler surface is hyperkähler.**

EXAMPLE: A Hilbert scheme of K3 is hyperkähler.

EXAMPLE: Let T be a torus. Then it acts on its Hilbert scheme freely and properly by translations. For n = 2, the quotient $T^{[n]}/T$ is a Kummer K3-surface. For n > 2, a universal covering of $T^{[n]}/T$ is called a generalized Kummer variety.

REMARK: There are 2 more "sporadic" examples of compact hyperkähler manifolds, constructed by K. O'Grady. **All known compact hyperkaehler manifolds are these 2 and the two series:** Hilbert schemes of K3, and generalized Kummer.

Global Torelli theorem.

THEOREM: Let M be a simple hyperkähler manifold, and $\Gamma := \text{Diff} / \text{Diff}_0$ its mapping class group. Then $H^2(M, \mathbb{Z})$ admits a Γ -invariant, non-degenerate integer quadratic form q such that the natural action of Γ on $H^2(M, \mathbb{Z})$ induces a homomorphism $\Gamma \longrightarrow SO(H^2(M, \mathbb{Z}), q)$ with finite index and finite kernel.

REMARK: Suppose that $\varphi : M \longrightarrow M'$ is a bimeromorphic map of Calabi-Yau manifolds. Then the exceptional set of φ has codimension ≥ 2 , hence $H^2(M) = H^2(M')$.

DEFINITION: Let Teich be the Teichmüller space of complex structures of hyperkähler type on M, and Teich_b the quotient of Teich by an equivalence relation induced by bimeromorphic maps $(M, I) \rightarrow (M, I')$ inducing identity on $H^2(M)$. Then Teich_b is called **birational Teichmüller space** of M. As we shall see, Teich_b is a smooth, Hausdorff complex manifold.

THEOREM: Consider the space

 $\mathbb{P}er := \{ l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l, l) = 0, q(l, \bar{l}) > 0 \}$

and let the **period map** Per : Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ map a complex structure I to a line $H^{2,0}(M,I) \in \mathbb{P}H^2(M,\mathbb{C})$. Then Per : Teich $\longrightarrow \mathbb{P}H^2(M,\mathbb{C})$ induces a bijective map Teich_b $\longrightarrow \mathbb{P}er$ on any connected component of Teich_b.