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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM .

The eigenvalues of this operator are ±
√
−1 . The corresponding eigenvalue

decomposition is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the usual one.

DEFINITION: An Riemannian metric g on an almost complex manifiold M

is called Hermitian if g(Ix, Iy) = g(x, y). In this case, g(x, Iy) = g(Ix, I2y) =
−g(y, Ix), hence ω(x, y) := g(x, Iy) is skew-symmetric.

DEFINITION: The differential form ω ∈ Λ1,1(M) is called the Hermitian
form of (M, I, g).
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Kähler manifolds

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then

the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has ∇(I) = 0, where ∇ is the Levi-Civita connection

∇ : End(TM)−→ End(TM)⊗ Λ1(M).

DEFINITION: A complex Hermitian manifold M is called Kähler if either
of these conditions hold. The cohomology class [ω] ∈ H2(M) of a form ω

is called the Kähler class of M . The set of all Kähler classes is called the

Kähler cone.

REMARK: (the Hodge decomposition)

The second cohomology of a compact Kähler manifold are decomposed

as H2(M,C) = H2,0(M) ⊕ H1,1(M) ⊕ H0,2(M), where H2,0(M) is the space
of all cohomology classes which can be represented by holomorphic (2,0)-
forms, H0,2(M) its complex conjugate, and H1,1(M) the classes which can
be represented by I-invariant forms.
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Kummer surfaces

REMARK: Everything I will be talking about today works not only for K3,
but for hyperkähler manifolds of maximal holonomy. I will present it for K3
to save the time and effort.

DEFINITION: A holomorphically symplectic manifold is a complex man-
ifold equipped with a non-degenerate, holomorphic (2,0)-form.

EXAMPLE: For any complex manifold M , the total space T ∗M of the
cotangent bundle is holomorphically symplectic.

REMARK: T ∗CP1 is a resolution of a singularity C2/±1.

REMARK: Let M be a 2-dimensional complex manifold which is holomorphic
symplectic form outside of singularities, which are all of form C2/±1. Then
its resolution is also holomorphically symplectic.

DEFINITION: Take a 2-dimensional complex torus T , then all 16 singular
points of T/±1 are of this form. Its resolution T̃/±1 is called a Kummer
surface. It is holomorphically symplectic.

DEFINITION: A K3 surface is a complex deformation of a Kummer surface.
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K3 surfaces

“K3: Kummer, Kähler, Kodaira” (the name is due to A. Weil).

“Faichan Kangri is the 12th highest mountain on Earth.”
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Topology of K3 surfaces

THEOREM: Any complex compact surface with c1(M) = 0 and H1(M) = 0

is isomorphic to K3. Moreover, it is Kähler.

CLAIM: 1. π1(K3) = 0,

2. The second homology and cohomology of K3 is torsion-free.

3. b2(K3) = 22, and the signature of its intersection form is (3,19).

4. The intersection form of K3 is even, and the corresponding quadratic

lattice is U3 ⊕ (−E8)2, where U =

(
0 1
1 0

)
and E8 is the Coxeter matrix for

the group E8.
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Complex surfaces and hyperbolic lattices

REMARK: Let M be a complex surface of Kähler type. Then the signature

of the intersection form on H1,1(M) is (1, h1,1 − 1).

THEOREM: Let M be a projective K3 surface, and Aut(M) its group of

complex automorphisms. Then the natural map Aut(M)−→O(H1,1(M))

has finite kernel.

REMARK: Since H1,1(M) has signature (1, h1,1−1), the group PSO(H1,1(M))

is the group of isometries of a hyperbolic space PH1,1(M). If we are inter-

ested in dynamics, the “finite kernel” does not make any difference. The

automorphisms of M can be classified in the same way as isometries

of the hyperbolic space of constant sectional curvature.
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Classification of automorphisms of a hyperbolic space

REMARK: The group O(m,n),m, n > 0 has 4 connected components. We
denote the connected component of 1 by SO+(m,n). We call a vector v

positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature
(1, n), Pos(V ) = {x ∈ V | q(x, x) > 0} its positive cone, and P+V projec-
tivization of Pos(V ). Denote by g any SO(V )-invariant Riemannian structure
on P+V . Then (P+V, g) is called hyperbolic space, and the group SO+(V )
the group of oriented hyperbolic isometries.

Theorem-definition: Let n > 0, and α ∈ SO+(1, n) is an isometry acting on
V . Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x, x) > 0 (α is “elliptic isometry”)
(ii) α has an eigenvector x with q(x, x) = 0 and eigenvalue λx satisfying

|λx| > 1 (α is “hyperbolic (or loxodromic) isometry”)
(iii) α has a unique eigenvector x with q(x, x) = 0 and eigenvalue 1. (α

is “parabolic isometry”)

DEFINITION: An automorphism of a K3 surface (M, I) is called elliptic
(parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on H

1,1
I (M,R).
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Shape of the Kähler cone

DEFINITION: Let (M, I) be a compact complex manifold admitting a Kähler

structure. Recall that its Kähler cone Kah(M) is the set of all x ∈ H1,1(M, I)

represented by Kähler forms.

REMARK: The Kähler cone of a complex manifold is open and convex in

H1,1(M, I).

DEFINITION: Let M be a K3 surface. An integer (1,1)-class η ∈ H1,1(M,Z)

is called a (-2)-class if η2 = −2.

PROPOSITION: Let η ∈ H1,1(M,Z) be a (-2)-class on a K3 surface. Then

η or −η is represented as the fundamental class of a complex curve.

THEOREM: Let M be a K3 surface, and S ⊂ H1,1(M,Z) the set of all

(-2)-classes represented by a complex curve. Then Kah(M) is the set of all

η ∈ H1,1(M,R) such that η2 > 0 and 〈η, S〉 > 0 for all S ∈ S.
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(-2)-reflections and Weyl chambers

DEFINITION: Let η ∈ H2(M,Z) be an integer class on a complex surface

with η2 = −2. Consider a map rη : H2(M,Z)−→H2(M,Z) taking v to

v + q(v, η)η, where q denotes the intersection form. Clearly, rη acts trivially

on η⊥ and takes η to −η. We call this map the reflection associated with

η.

DEFINITION: Let ω be a Kähler form on a complex surface. Clearly,
∫
M ω2 >

0. Since the intersection form on H1,1(M,R) has signature (1, k), the set of

vectors with positive square has 2 connected components. Let the positive

cone Pos(M) ⊂ H1,1(M,R) be a connected component of this set containing

the Kähler cone.

DEFINITION: Let M be a K3 surface, and R ⊂ H1,1(M,Z) the set of all (-

2)-classes. The Weyl chamber is a connected component in the complement

Pos(M)\
⋃
η∈R η

⊥.

CLAIM: Let H ⊂ O(H2(M,Z)) be the group generated by reflections rη, for

all η ∈ R. Then H acts transitively on the set of all Weyl chambers.
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The mapping class group

REMARK: Recall that the orthogonal group O(3,19) has 4 connected com-

ponents. Denote by O+(3,19) its index 2 subgroup containing the (-2)-

reflections. Donaldson proved that any diffeomorphism of a K3 surface

acts on H2(M,Z) as an element of O+(H2(M,Z)).

CLAIM: The group O(H2(M,Z)) is generated by all reflections rη, for all

(−2)-classes η. Moreover, for each η there exists a diffeomorphism of M

which acts as rη on H2(M,Z).

REMARK: This implies that the mapping class group (MCG) of K3 acts

on H2(M,Z) as O+(H2(M,Z)).

REMARK: Since the MCG acts transitively on the set of Weyl chambers,

each Weyl chamber serves as a Kähler cone for an appropriate K3.
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Arithmetic lattices

DEFINITION: Let G be a semisimple algebraic Lie group defined over Q.
An arithmetic lattice is a group Λ ⊂ G which is commensurable with GZ.

THEOREM: (Borel and Harish-Chandra)
Let G be an algebraic Lie group over Q which does not have non-trivial rational
characters, such as a semisimple group. Then G

GZ
has finite Haar measure.

DEFINITION: Covolume of a discrete group Γ acting on a space (M,µ)
with measure is

∫
M/Γ µ.

DEFINITION: Recall that the group of isometries of the hyperbolic space
Hm = SO+(1,n)

SO(n) of constant sectional curvature is O+(1, n). Let Γ ⊂ O+(1, n)
be a discrete group of finite covolume. A hyperbolic orbifold is a quotient
Hm/Γ. It is called a hyperbolic manifold if Γ has no elements of finite order.

REMARK: By Selberg lemma, any arithmetic group GZ ⊂ G has a finite
index subgroup without elements of finite order.

COROLLARY: Let Γ ⊂ SO+(1, n) be an arthmetic lattice. Then Hm/Γ is
aa hyperbolic orbifold.
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The automorphism group and Hodge monodromy

DEFINITION: Let (M, I) be a K3 surface. The group of Hodge mon-

dromy is the group MonI of all s ∈ O+(H2(M,Z)) which preserve the Hodge

decomposition H2(M,C) = H2,0(M)⊕H1,1(M)⊕H0,2(M)

DEFINITION: The Kähler chamber of a K3 surface is its Kähler cone

considered as one of its Weyl chambers.

THEOREM: Let M be a K3 surface. Then the automorphism group of M is

discrete, the restriction map Aut(M)−→ Aut(M)
∣∣∣H2(M,Z) is injective, and

its image of all τ ∈MonI which fix the Kähler chamber.

The automorphism group of K3 can be interpreted as the fundamental

group of a certain hyperbolic manifold with a boundary.
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The ample cone

DEFINITION: Let H1,1(M,Q) := H2(M,Q)∩H1,1(M). Define the positive

rational cone as Pos(M)∩H1,1(M,Q)⊗Q R, and the ample cone KahQ(M)

as the intersection of Kah(M) and PosQ(M).

REMARK: The group of Hodge monodromy acts on H1,1(M,Q) ⊗Q R as

an arithmetic lattice, and the quotient PPosQ(M)/MonI is a hyperbolic

manifold.

CLAIM: The group of Hodge monodromy acts on the set if all (-2)-classes

of type (1,1) with finitely many orbits.

Proof: The image of MonI has finite index in O(H1,1(M,Z)). In any non-

degenerate quadratic lattice Λ, the group O(Λ) acts on the set Vn := {v ∈
Λ | q(v, v) = n} with finite number of orbits, for any given n ∈ Z.
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Automorphism group as the fundamental group

DEFINITION: Let H := PPos(V )/Γ be a hyperbolic orbifold, and S1, ..., Sn ⊂
H a finite collection of immersed hyperbolic hypersurfaces of finite volume,
associated with hyperspaces Vi ⊂ V of codimension 1. Any connected com-
ponent of H\

⋃
Si is called is a convex hyperbolic orbifold with polyhedral

boundary.

COROLLARY: The image of a Weyl chamber in H := PPosQ(M)/MonI
is a convex hyperbolic orbifold with polyhedral boundary, obtained as a
connected component of H\

⋃
s∈OHs, where O is the set of all orbits of MonI

acting on (-2)-classes of type (1,1), and Hs is the hyperbolic hypersurface
PPosQ(M)∩s⊥

Sts(MonI)
.

REMARK: Since the ample cone KahQ(M) is convex, the orbifold funda-
mental group of its image in H is the subgroup of MonI fixing KahQ(M).
This group is equal to the fundamental group of the corresponding
hyperbolic orbifold with a boundary.

COROLLARY: The group of holomorphic automorphisms of a K3 sur-
face is π1(K), where K is a hyperbolic orbifold with polyhedral boundary
obtained as the image of PKahQ(M) in H := PPosQ(M)/MonI.
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The absolute

DEFINITION: Let V be a real space equipped with a scalar product q of
signature (1, k), and V+ the set of all vectors with positive square Then
Hn = PV+ is the hyperbolic space of constant negative curvature. The
absolute Abs is the projectivization of the set of all vectors with square 0; it
is identified with the boundary of Hn. Clearly, Abs is diffeomorphic to the
sphere Sn−1. Clearly, the union Hn ∪Abs is compact.

REMARK: Let W ⊂ V be a 2-dimensional subspace of signature (1,1). Then
P(W ∩Pos(V )) ⊂ H is a geodesic, and all geodesics are obtained this way.

DEFINITION: The endpoints of a geodesic γ ∈ P(W ∩ Pos(V )) are two
points Abs∩P(W ).

REMARK: Clearly, any geodesic is uniquely determined by its two end-
points.

Claim 1: Let γ1, γ2 be two geodesics on a hyperbolic space, and δ : γ1 −→ R
the distance from a point of γ1 to γ2. Let ∞+, ∞− be the endpoints of
γ1, considered as points in Abs. Then limx−→∞+ δ(x) = ∞ if γ2 is not an
endpoint of γ2, and limx−→∞+ δ(x) <∞ otherwise.

Proof: Left as an exercise.
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The limit set

CLAIM: Let Γ ⊂ SO(1, n) be a group of hyperbolic isometries acting on Hn,

and a, b ∈ Hn any two points. Let Λa,Λb ⊂ Abs be the set of all points in Abs

obtained as accumulation points for Γ · a,Γ · b. Then Λa = Λb.

Proof: Let x ∈ Λa, and {yi = γia} ∈ Γ · a be a sequence converging to x.

Since d(γib, γia) < ∞, the sequence converges to x as well. Indeed, since

Hn ∪ Abs is compact, otherwise we would have a point y 6= x which is a

limit of a subsequence γib. However, for any two sequences of points {xi}
converging to x and {yi} converging to y, we have limi d(xi, yi) = ∞,

giving a contradiction.

DEFINITION: In these assumptions, the limit set of Γ is Λa, for a ∈ H.

REMARK: Γ acts on Abs by conformal equivalences, and it acts on Abs \Λ
properly discontinuously.
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Quasi-Fuchsian groups

DEFINITION: A Kleinian group is a discrete subgroup of PSL(2,C) =
SO+(1,3).

EXAMPLE: Let Γ ⊂ PSL(2,R) be a fundamental group of a Riemann surface
C = H2/Γ. We embed PSL(2,R) to PSL(2,C). This gives an embedding of
Γ = π1(C) to SO+(1,3); its image is called a Fuchsian group.

REMARK: Clearly, the limit set of Γ is the circle Abs(R1,2) ⊂ Abs(R1,3) =
S2. The group Γ acts on two half-spheres S+, S− conformally, inducing a
conformal (that is, complex) structure on manifolds S+/Γ and S−/Γ.

CLAIM: The Riemannian surface S+/Γ is isomorphic to C, and S−/Γ
to its complex conjugate C.

Proof: Left as an exercise.

DEFINITION: A Kleinian group Γ ⊂ SO+(1,3) is called quasi-Fuchsian if
its limit set Λ ⊂ S2 is a Jordan curve.

REMARK: If this Jordan curve is real analytic somewhere, it is Fuchsian.
18
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Ahlfors double uniformization theorem

THEOREM: A small deformation of a quasi-Fuchsian representation Γ−→ SO+(1,3)

is always quasi-Fuchsian.

THEOREM: (Ahlfors double uniformization theorem) Let Γ ⊂ SO+(1,3)

be a quasi-Fuchsian subgroup, and Λ ⊂ CP1 its limit set, splitting CP1 onto

two half-spheres S+, S− ⊂ CP1. Consider the map Ψ : F −→ Teich×Teich

from the set F of all quasi-Fuchsian subgroup deformations of Γ to the point

of Teich×Teich represented by (S+/Γ, S−/Γ). Then Ψ is bijective.
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“a hyperbolic hypersurspace”

REMARK: Consider a hyperbolic space Hn = PPos(V ), where V is a real

vector space equipped with a scalar product of signature (1, n). For any

subspace W ⊂ V of signature (1, n − 1), the space PPos(W ) ⊂ PPos(V )

is a completely geodesical hyperbolic hypersurface, and all completely

geodesical hyperbolic hypersurfaces Hn−1 ⊂ Hn are obtained this way.

DEFINITION: Later on, when we say “a hyperbolic hypersurspace”, we

always mean PPos(W ) ⊂ PPos(V ) as above.
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Constructing convex hyperbolic orbifold with polyhedral boundary

REMARK: Let Γ ⊂ SO+(1, n) be a group of isometries of finite covolume
(that is, a lattice), and PPos(W ) ⊂ PPos(V ) a hyperbolic hypersurspace.
Clearly, the image of PPos(W ) in PPos(V )/Γ has the same volume as
PPos(W )/ΓW , where ΓW is {γ ∈ Γ | γ(W ) = W}. Any integer lattice in
O(1, n) has finite covolume. This implies the following description of a convex
hyperbolic orbifold with polyhedral boundary.

CLAIM: Let VZ be a lattice equipped with a scalar product of signature
(1, n), and Γ ⊂ SO+(V ) a subgroup commensurable with SO(VZ). Consider
a finite collection of rational hyperspaces Wi ⊂ V of signature (1, n − 1), let
S be

⋃
iΓWi, and P a connected component of PPosV \PS. Denote by ΓP

the group {γ ∈ Γ | γ(P ) = P}. Then P/ΓP is a convex hyperbolic
orbifold with polyhedral boundary, and all convex hyperbolic orbifolds
with polyhedral boundary in PPosV/Γ are obtained this way.

Today we are interested in the following question.

QUESTION: What is the limit set of ΓP acting on P?

REMARK: The following theorem is true for all hyperbolic manifolds, but it
is much easier to state and prove when H is compact. Later I will explain
how to generalize it to all hyperbolic H.
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The boundary of a polyhedron

THEOREM: Let H := PPosV/Γ be a hyperbolic manifold, and P ⊂ H a
convex hyperbolic orbifold with polyhedral boundary. Let P be a connected
component of the preimage of P in PPosV = H; clearly, P is a convex
polyhedron in H with hyperbolic faces. Denote by AbsP the set of all points
on Abs obtained as limits of xi ∈ P . Assume that H is compact. Then
AbsP is the limit set of ΓP acting on P .

Proof. Step 1: Clearly, for any x ∈ P , its orbit belongs to P , hence its limit
set belongs to AbsP .

Step 2: Conversely, let x ∈ AbsP , and let γ be a geodesic with an end in
x. Assume that γ contains a point in P . Since P is convex, a ray γ+ ⊂ γ
converging to x also belongs to P . Choose a fundamental domain D of ΓP -
action on P . Since P/ΓP is a closed subset of H, this space is compact, hence
D can be chosen compact. Let R := diamD.

Step 3: Choose z ∈ D. Since diamD = R, an R-neighbourhood of any
point y ∈ γ+ contains γz for some γ ∈ ΓP . Choose a sequence of points yi
converging to x ∈ AbsP , and let γiz be points which satisfy d(γiz, yi) 6 R.
Then lim γiz is a point in an R-neighbourhood γ+(R) of γ+. By Claim 1, any
unbounded sequence in γ+(R) converges to x, hence x belongs to the
limit set of ΓP .
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Cusp points

DEFINITION: A horosphere on a hyperbolic space is a sphere which is

everywhere orthogonal to a pencil of geodesics passing through one point at

infinity, and a horoball is a ball bounded by a horosphere. A cusp point

for an n-dimensional hyperbolic manifold H/Γ is a point on the boundary ∂H
such that its stabilizer in Γ contains a free abelian group of rank n− 1. Such

subgroups are called maximal parabolic.

CLAIM: For any point p ∈ ∂H stabilized by Γ0 ⊂ Γ, and any horosphere S

tangent to the boundary in p, Γ0 acts on S by isometries. In such a situation,

p is a cusp point if and only if (S\p)/Γ0 is compact.

REMARK: A cusp point p yields a cusp in the quotient H/Γ, that is, a

geometric end of H/Γ of the form B/Zn−1, where B ⊂ H is a horoball tangent

to the boundary at p.
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Cusp points and thick-thin decomposition

THEOREM: (Thick-thin decomposition) Any n-dimensional complete hy-

perbolic manifold of finite volume can be represented as a union of a “thick

part”, which is a compact manifold with a boundary, and a “thin part”,

which is a finite union of quotients of form B/Zn−1, where B is a horoball

tangent to the boundary at a cusp point, and Zn−1 = StΓ(B).

THEOREM: (A. Borel) Let VZ be a lattice equipped with a scalar product

of signature (1, n), and Γ ⊂ SO+(V ) a subgroup commensurable with SO(VZ).

Then the cusp points of the hyperbolic manifold H/Γ are in bijective corre-

spondence with Γ-orbits on the set Abs∩P(VZ ⊗Z Q) of all rational points on

Abs.
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The boundary of a polyhedron,

THEOREM: Let H := PPosV/Γ be a hyperbolic manifold, and P ⊂ H a
convex hyperbolic orbifold with polyhedral boundary. Let P be a connected
component of the preimage of P in PPosV = H; clearly, P is a convex
polyhedron in H with hyperbolic faces. Denote by AbsP the set of all points
on Abs obtained as limits of xi ∈ P Then AbsP is the union of all cusp
points in AbsP and the limit set of ΓP acting on P .
Proof. Step 1: Clearly, for any x ∈ P , its ΓP orbit belongs to P , hence its
limit set belongs to AbsP .

Step 2: Consider the thick-thin decomposition of H, with the thick part H0,
and let P0 be the intersection of P and the preimage of H0. Then P0 is
obtained by removing from P a countable number of horoballs; this set is
ΓP -invariant. The fundamental domain D of ΓP -action on P0 has finite
diameter R.

Step 3: Fix a non-cusp point x ∈ AbsP , and fix z ∈ P . We need to show that
γiz converges to x for some sequence {γi} ∈ ΓP . Let γ+ ⊂ P be a geodesic
ray with an end in x. An intersection of a horoball and a geodesic ray is
bounded, unless its end coincides with the boundary point of the horoball.
Then γ+ contains a family of points {yi} ⊂ γ+ ∩ P0 converging to x. This
implies that an R-neighbourhood of yi contains γiD, hence it contains
γiz, and lim γiz = x by another application of Claim 1.
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The Apollonian gasket

DEFINITION: Let VZ be a lattice equipped with a scalar product of signature

(1, n), and Γ ⊂ SO+(V ) a subgroup commensurable with SO(VZ). Consider

a convex hyperbolic orbifold P ⊂ H with polyhedral boundary. Let P be a

connected component of the preimage of P in PPosV = H, and AbsP the set

of accumulation points of P on Abs. The Apollonian gasket is the union

of all positive-dimensional real analytic subvarieties in AbsP .

THEOREM: The Apollonian gasket of P is a union of spheres Abs∩PWi,

where Wi ⊂ V is a rational subspace of signature (1, k).
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The seven mother goddesses

The Seven Mother Goddesses (Matrikas) Flanked by Shiva-Virabhadra and Ganesha, Lord

of Obstacles, India, Madhya Pradesh, 9th century

REMARK: In a sequence of papers, A. Baragar found many examples of

K3 surfaces with Apollonian gasket on the boundary.
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Apollonian sphere packings

Pentatope-based Apollonian packing, by Michael Fennen and Domenico Giulini, “Lie sphere

geometry in lattice cosmology”, 2020
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Ergodic group action

DEFINITION: Let (M,µ) be a space with finite measure, and G a group

acting on M preserving µ. This action is ergodic if all G-invariant measurable

subsets M ′ ⊂M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

CLAIM: Let M be a manifold, µ a Lebesgue measure, and G a group acting

on M ergodically. Then the set of non-dense orbits has measure 0.

Proof. Step 1: Consider a non-empty open subset U ⊂M . Then µ(U) > 0,

hence M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting

U , x ∈M\M ′. Therefore the set ZU of such orbits has measure 0.

Proof. Step 2: Choose a countable base {Ui} of topology on M . Then the

set of points in dense orbits is M\
⋃
iZUi.

CLAIM: A group G acts on M ergodically if and only if any L2-integrable

G-invariant function on M is constant almost everywhere.
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Shah’s theorem

DEFINITION: Let STHn be the manifold of unit tangent vectors to a hyper-
bolic space of constant sectional curvature, and Vis : STHn −→ Abs a map
taking a tangent vector to the limit point of the corresponding geodesic.

DEFINITION: Let (v,m) ∈ STHn, with v ∈ TmHn being a unit tangent vector.
Denote by γv,m(t) the geodesic starting to m and tangent to v. Geodesic
flow is a measure-preserving flow of diffeomorphisms Gt : STHn×R−→ STHn
taking (v,m), t to the tangent vector γ′v,m(t).

REMARK: By Hopf theorem, the geodesic flow on a hyperbolic manifold is
ergodic. However (unlike for Ratner’s theorem on homogeneous flows), the
closure of a geodesic might be very pathological, such as a product of
a Cantor set and an interval. Shah’s theorem can be used to rectify this
problem.

THEOREM: (Nimish Shah, “LIMITING DISTRIBUTIONS OF CURVES
UNDER GEODESIC FLOW ON HYPERBOLIC MANIFOLDS”, 2007,
Theorem 1.2) Let H = Hn/Γ be a hyperbolic orbifold, and C ⊂ STM a real
analytic interval, such that Vis(C) is not a singleton. Denote by X the min-
imal closed subset of STM invariant under the geodesic flow and containing
C. Then Vis(X) is a totally geodesic sphere in Abs. Moreover, the image
of its convex hull is a hyperbolic submanifold in H.
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Shah’s theorem and hyperbolic polyhedra

THEOREM: The Apollonian gasket of P is a union of spheres Abs∩PWi,

where Wi ⊂ V is a rational subspace of signature (1, k).

Proof. Step 1: Let C ⊂ AbsP be a real analytic curve. Connecting a

point in P with C by a real analytic family of geodesics, we obtain a real

analytic path C1 ⊂ P satisfying assumptions of Shah’s theorem. Running

a geodesic flow on its closure, we obtain a geodesic sphere S on Abs which

belongs to AbsP and contains C.

Step 2: The convex hull of S = PW ∩Abs is the hyperbolic subspace PPosW .

By Ratner theorem, its image in H = PPosV/Γ is closed if and only if ΓW :=

{γ ∈ Γ | γ(W ) = W} is a lattice in O(W ), which happens if and inly if W is

rational.
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Apollonian gasket for a K3 surface

DEFINITION: Let S be a sphere which lies in the Apollonian gasket. We say

that S is a component of the Apollonian gasket if S does not belong to

a sphere of bigger dimension, which also lies in the Apollonian gasket. Note

that the components can be tangent or intersect each other.

DEFINITION: The Apollonian gasket of a K3 surface is the union of all

geodesic spheres which belong to the boundary of its ample cone.

REMARK: Clearly, the Apollonian gasket of a K3 surface is the Apol-

lonian gasket of the convex polyhedron with hyperbolic faces obtained

as the image of its ample cone.
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Apollonian gasket for a K3 surface: explicit description

THEOREM: Let M be a projective K3 surface, NS := H1,1(M,R)∩H2(M,Z)

its Neron-Severi lattice. Consider the set of all rational subspaces Wi ⊂ NSR
of signature (1, k), k > 2 such that for any (−2)-class η ∈ NS, with η 6 ⊥Wi,

and any integer class ρ ∈W⊥i , the space 〈ρ, η〉 is not negative definite. Then

the sphere SiAbs∩PWi belongs to one of the Weyl chambers of M ,

associated with the complex structure Ii on M . Moreover, Si belongs to the

Apollonian gasket of (M, Ii), and all components of the Apollonian gasket

of M are obtained this way.

REMARK: This gives an effective and easy way to determine the Apollonian

gasket for special examples when we have good control over the lattice; by

Nikulin’s theorem, any even quadratic lattice of signature (1, n), n 6 10

can be realized as NS(M, I) for an appropriate K3 surface.
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Apollonian gasket for a K3 surface: explicit description (2)

THEOREM: Let M be a projective K3 surface, NS := H1,1(M,R)∩H2(M,Z)

its Neron-Severi lattice. Consider the set of all rational subspaces Wi ⊂ NSR
of signature (1, k), k > 2 such that for any (−2)-class η ∈ NS, not orthogonal

to Wi, the space η + W⊥i is not negative definite. Then the sphere Si :=

Abs∩PWi belongs to one of the Weyl chambers of M , associated with the

complex structure Ii on M . Moreover, Si belongs to the Apollonian gasket of

(M, Ii), and all components of the Apollonian gasket of M are obtained

this way.

Proof. Step 1: Let Si be a component of the Apollonian gasket on (M, I).

Then Si = Abs∩PWi, where Wi is a rational subspace. Denote by Γ the

group of all ν ∈ O+(H2(M,Z)) preserving the Hodge decomposition. Then

H := PPos(NS)/Γ is a hyperbolic lattice, and Aut(M, I) is the group of all

ν ∈ Γ preserving the Hodge decomposition. Let ΓWi
:= {γ ∈ Γ | Γ(Wi) = Wi}.

Then ΓWi
is a lattice in O(Wi), hence it acts on Si with dense orbits. This

implies that Si wholly belongs to the closure Kähler cone, and it cannot

transversally intersect the orthogonal complement to a (-2)-class. Indeed,

the the orthogonal complements to (-2)-classes are faces of the Kähler cone,

and Si does not cross these faces.
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Step 2: Let U1, U2 ⊂ V be spaces of negative signature of a space of signature

(1, n). Then PPosU⊥1 intersects PPosU⊥2 if and only if U1 + U2 is negative

definite. If U1 +U2 is degenerate, the spheres AbsPPosU⊥1 and AbsPPosU⊥2
are tangent; otherwise, these spheres do not intersect either. Therefore, Si
does not transversally intersect an orthogonal complement to a (-2)-

class if and only if W⊥i + η is not negative definite for any (-2)-class η

not orthogonal to Wi.

Step 3: In this case Si belongs to a Weyl chamber, and ΓWi
preserves this

Weil chamber, because it preserves Si. Therefore, ΓWi
⊂ Aut(M). Since Si

is the limit set of ΓWi
, this implies that Si belongs to the Apollonian gasket.

Step 4: Conversely, assume that W ⊂ NSR be a rational subspace of signature

(1, k) such that PosW does not intersect ρ⊥ for all (-2)-classes. Consider a

subgroup Γ◦W ⊂ ΓW ⊂ Γ consisting of all elements of ΓW acting trivially

on W⊥. Then Γ◦W has finite index in O(WZ). Since Γ◦W preserves its limit

set, which belongs to Abs KahQ, it actually preserves the ample cone, hence

Γ◦W ⊂ Aut(M). Therefore, its limit set belongs to the limit set of Aut(M).
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Baragar gasket

REMARK: Let L ⊂ KahQ be a face of a Kähler cone which does not meet

faces of smaller dimension, dimL > 1. Then PPosL ∩ Abs is a component

of the Apollonian gasket.

DEFINITION: The union of all components of the Apollonian gasket ob-

tained this way is called the Baragar gasket.

REMARK: The Baragar components do not intersect transversally, but

they might be tangential. Other components of the Apollonian gasket

can intersect, but they cannot intersect the Baragar components transver-

sally.
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