Construction of automorphisms of hyperkähler manifolds

Misha Verbitsky

Hyper-Kähler Manifolds and Related Structures in Algebraic and Differential Geometry

CIRM, Levico Terme (Trento), 3-6 November 2015

The Kähler cone and its faces

This is joint work with Ekaterina Amerik.

THEOREM: Let M be a hyperkähler manifold, Mon(M) the group of automorphisms of $H^2(M)$ generated by monodromy transform for all Gauss-Manin local systems, and $Mon_I(M)$ the Hodge monodromy group, that is, a subgroup of Mon(M) preserving the Hodge decomposition. Then Aut(M) is a subgroup of $Mon_I(M)$ preserving the Kähler cone Kah(M).

Proof: Follows from Torelli theorem (this observation is due to E. Markman).

Aim of today's talk: describe Kah(M) and Aut(M) in terms of invariants of M called MBM classes. Give a classification of holomorphic automorphisms of M (hyperbolic, parabolic, elliptic). Prove the following theorem.

THEOREM: Let *M* be a hyperkähler manifold, with $b_2(M) \ge 5$. Then *M* has a deformation admitting a hyperbolic automorphism. If $b_2(M) \ge 7$, *M* has a deformation admitting a parabolic automorphism.

REMARK: By construction, these M satisfy $Aut(M) = Mon_I(M)$

REMARK: By ergodicity theorem, such M are also dense on the deformation space.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed, $\Omega := \omega_J + \sqrt{-1} \omega_K$ is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

Bogomolov's decomposition: Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.

The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

Definition: This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

Monodromy group of a hyperkähler manifold

DEFINITION: Let M be a hyperkähler manifold, and Mon(M) the group of automorphisms of $H^2(M)$ generated by monodromy transform for all Gauss-Manin local systems. Then Mon(M) is called **the monodromy group of** M.

THEOREM: (V., follows from Torelli theorem) Then group $Mon(M) \subset O(H^2(M,\mathbb{Z}))$ has finite index in $O(H^2(M,\mathbb{Z}))$.

DEFINITION: An arithmetic lattice, or arithmetic lattice subgroup in an algebraic group G defined over \mathbb{Q} is a finite index subgroup in $G_{\mathbb{Z}}$.

REMARK: For example, Mon(M) is an arithmetic lattice in $O(H^2(M, \mathbb{Q}), q)$.

The group of symplectic Hodge monodromy

DEFINITION: Let (M, I) be a hyperkähler manifold. Then **the Hodge** monodromy group $Mon_I(M)$ is the group of all $a \in Mon(M)$ preserving the Hodge decomposition on $H^2(M)$.

DEFINITION: Let Ω be a holomorphic symplectic form on a hyperkähler manifold. Consider the homomorphism φ : Mon_I(M) $\longrightarrow \mathbb{C}^*$, $\varphi(\gamma) = \frac{\gamma^*\Omega}{\Omega}$. Denote its kernel by Mon_{I, Ω}(M, I). Thi group is called **the group of symplectic Hodge monodromy.**

Claim 1: Consider the Hodge lattice $\Lambda := H_I^{1,1}(M,\mathbb{Z})$. Then the natural homomorphism $Mon_{I,\Omega}(M,I) \longrightarrow O(\Lambda)$ is injective and has finite index.

Proof: Let $H_{tr}^2(M) := H_I^{1,1}(M, \mathbb{Q})^{\perp}$ be the "transcendental part" of the Hodge lattice, that is, the smallest Hodge substructure containing Re $H^{2,0}(M)$. By definition,

$$\mathsf{Mon}_{I,\Omega}(M,I) = \left\{ a \in \mathsf{Mon}(M) \mid a \Big|_{H^2_{tr}(M)} = \mathsf{Id} \right\}$$

Since Mon(M) is an arithmetic lattice subgroup in $O(H^2(M,\mathbb{Z}))$, Mon_{I, Ω}(M, I) is arthmetic lattice in the group of isometries of $H^2_{tr}(M)^{\perp} = \Lambda$.

MBM classes

DEFINITION: Negative class on a hyperkähler manifold is $\eta \in H_2(M, \mathbb{R}) = H^2(M, \mathbb{R})$ satisfying $q(\eta, \eta) < 0$. It is effective if it is represented by a curve.

THEOREM: Let $z \in H_2(M, \mathbb{Z})$ be negative, and I, I' complex structures in the same deformation class, such that z is of type (1,1) with respect to I and I' and $Pic(M) = \langle z \rangle$. Then $\pm z$ is effective in $(M, I) \Leftrightarrow$ iff it is effective in (M, I').

REMARK: From now on, we identify $H^2(M)$ and $H_2(M)$ using the BBF form. Under this identification, **integer classes in** $H_2(M)$ **correspond to rational classes in** $H^2(M)$ (the form q is not unimodular).

DEFINITION: A negative class $z \in H^2(M, \mathbb{Z})$ on a hyperkähler manifold is called **an MBM class** if there exist a deformation of M with $Pic(M) = \langle z \rangle$ such that λz is represented by a curve, for some $\lambda \neq 0$.

MBM classes and the shape of the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and $S \subset H_{1,1}(M, I)$ the set of all MBM classes in $H_{1,1}(M, I)$. Consider the corresponding set of hyperplanes $S^{\perp} := \{W = z^{\perp} \mid z \in S\}$ in $H^{1,1}(M, I)$. Then the Kähler cone of (M, I) is a connected component of $Pos(M, I) \setminus \bigcup S^{\perp}$, where Pos(M, I)is a positive cone of (M, I). Moreover, for any connected component K of $Pos(M, I) \setminus \bigcup S^{\perp}$, there exists $\gamma \in O(H^2(M))$ in a monodromy group of M, and a hyperkähler manifold (M, I') birationally equivalent to (M, I), such that $\gamma(K)$ is a Kähler cone of (M, I').

REMARK: This implies that **MBM classes correspond to faces of the** Kähler cone.

DEFINITION: Kähler chamber is a connected component of $Pos(M, I) \setminus \cup S^{\perp}$.

CLAIM: The Hodge monodromy group maps Kähler chambers to Kähler chambers.

MBM classes and the Kähler cone: the picture

REMARK: For any negative vector $z \in H^2(M)$, $z^{\perp} \cap Pos(M, I)$ either has dense intersection with the interior of the Kähler chambers (if z is not MBM), or is a union of walls of those (if z is MBM); that is, there are no "barycentric partitions" in the decomposition of the positive cone into the Kähler chambers.

MBM classes and automorphisms

THEOREM: Let (M, I) be a hyperkähler manifold, Mon(M) the group of automorphisms of $H^2(M)$ generated by monodromy transform for all Gauss-Manin local systems, and $Mon_I(M)$ the Hodge monodromy group, that is, a subgroup of Mon(M) preserving the Hodge decomposition. Then Aut(M) is a subgroup of $Mon_I(M)$ preserving the Kähler cone Kah(M).

Proof: Follows from Torelli theorem (this observation is due to E. Markman).
■

COROLLARY: Let (M, I) be a hyperkähler manifold such that there are no MBM classes of type (1,1). Then $Aut(M) = Mon_I(M)$.

Proof: Indeed, for such manifold Kah(M, I) = Pos(M, I).

Morrison-Kawamata cone conjecture

DEFINITION: An integer cohomology class a is **primitive** if it is not divisible by integer numbers c > 1.

THEOREM: (a version of Morrison-Kawamata cone conjecture) The group Mon(M) acts on the set of primitive MBM classes with finitely many orbits.

Proof: Proven by Amerik-V., using homogeneous dynamics (Ratner theorems, Dani-Margulis, Mozes-Shah). ■

COROLLARY: Let M be a hyperkähler manifold. Then there exists a number N > 0, called **MBM bound**, such that any MBM class z satisfies |q(z,z)| < N.

Proof: There are only finitely many primitive MBM classes, up to isometry action, and the have finitely many squares. ■

Corollary 1: Let M be a hyperkähler manifold, N its MBM bound, and (M, I) a deformation such that for any $x \in H_I^{1,1}(M, \mathbb{Z})$ one has q(x, x) > N. Then (M, I) has no MBM classes of type (1,1), and $\operatorname{Kah}(M, I) = \operatorname{Pos}(M, I)$ and $\operatorname{Aut}(M) = \operatorname{Mon}_I(M)$.

Classification of automorphisms of hyperbolic space

REMARK: The group O(m, n), m, n > 0 has 4 connected components. We denote the connected component of 1 by $SO^+(m, n)$. We call a vector v positive if its square is positive.

DEFINITION: Let *V* be a vector space with quadratic form *q* of signature (1, n), $Pos(V) = \{x \in V \mid q(x, x) > 0\}$ its **positive cone**, and \mathbb{P}^+V projectivization of Pos(V). Denote by *g* any SO(V)-invariant Riemannian structure on \mathbb{P}^+V . Then (\mathbb{P}^+V, g) is called **hyperbolic space**, and the group $SO^+(V)$ **the group of oriented hyperbolic isometries**.

Theorem-definition: Let n > 0, and $\alpha \in SO^+(1, n)$ is an isometry acting on V. Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x,x) > 0 (α is "elliptic isometry")

(ii) α has an eigenvector x with q(x,x) = 0 and eigenvalue λ_x satisfying $|\lambda_x| > 1$ (α is "hyperbolic isometry")

(iii) α has a unique eigenvector x with q(x,x) = 0. (α is "parabolic isometry")

DEFINITION: An automorphism of a hyperkähler manifold (M, I) is called **elliptic (parabolic, hyperbolic)** if it is elliptic (parabolic, hyperbolic) on $H_I^{1,1}(M, \mathbb{R})$.

Primitive sublattices with MBM bound

DEFINITION: Integer lattice, or quadratic lattice, or just lattice is \mathbb{Z}^n equipped with an integer-valued quadratic form. When we speak of embedding of lattices, we always assume that they are compatible with the quadratic form.

DEFINITION: A sublattice $\Lambda' \subset \Lambda$ is called **primitive** if $(\Lambda' \otimes_{\mathbb{Z}} \mathbb{Q}) \cap \Lambda = \Lambda'$. A number *a* is **represented** by a lattice (Λ, q) if a = q(x, x) for some $x \in \Lambda$. **Minumum** of a lattice is the number min $\Lambda := \min_{x} |q(x, x)|$, taken over all $x \in \Lambda$ with $q(x, x) \neq 0$.

Theorem 1: Let (Λ, q) be a lattice of signature (n, m). Fix a number N > 0. **Then there exists a primitive sublattice** $\Lambda' \subset \Lambda$ of corank 2 with min $\Lambda' > N$.

Proof: Later today, if time permits.

DEFINITION: Let M be a hyperkähler manifold, $\Lambda = H^2(M, \mathbb{Z})$, q the BBF form. A primitive sublattice $\Lambda' \subset H^2(M, \mathbb{Z})$ satisfies MBM bound if its minimum is > N, where N is the MBM bound of M.

Sublattices with MBM bound and automorphisms

REMARK: By Torelli theorem, for any primitive sublattice $\Lambda \subset H^2(M, \mathbb{Z})$, there exists a complex structure I such that $\Lambda = H_I^{1,1}(M, \mathbb{Z})$.

THEOREM: Let M be a hyperkähler manifold, and $\Lambda \subset H^2(M, \mathbb{Z})$ a primitive sublattice satisfying the MBM bound. Let (M, I) be a deformation of M such that $\Lambda = H_I^{1,1}(M, \mathbb{Z})$. Then the group of holomorphic symplectic automorphisms $\operatorname{Aut}(M, \Omega) = \operatorname{Mon}_{I,\Omega}(M)$ is an subgroup of finite index in $O(\Lambda)$.

Proof: Since $\Lambda = H_I^{1,1}(M,\mathbb{Z})$ satisfies MBM bound, it contains no MBM classes. **By Corollary 1, this gives** Aut $(M, \Omega) = Mon_{I,\Omega}(M)$. Now, $Mon_{I,\Omega}(M)$ is a finite index subgroup in $O(\Lambda)$, as follows from Claim 1.

Existence of hyperbolic automorphisms THEOREM: Let M be a hyperkähler manifold, with $b_2(M) \ge 5$. Then M has a deformation admitting a hyperbolic automorphism.

Proof. Step 1: We show that $Aut(M, \Omega)$ **contains hyperbolic or parabolic elements.** Let $\Lambda = H_I^{1,1}(M, \mathbb{Z})$ be a primitive lattice of corank 2 in $H^2(M, \mathbb{Z})$ satisfying the MBM bound. Then $Aut(M, \Omega)$ has finite index in $O(\Lambda)$. To simplify the argument, we replace Λ by a sublattice of smaller rank, obtaining a lattice of signature (1, n).

An operator norm of an elliptic element is 1, hence any subgroup of O(1,n) containing only elliptic elements has compact closure. The volume of $O(\Lambda \otimes_{\mathbb{Z}} \mathbb{R})/O(\Lambda)$ is finite by Borel and Harish-Chandra theorem when $\text{rk }\Lambda \geq 3$. Therefore, $O(\Lambda)$ is infinite, and $\text{Aut}(M, \Omega)$ is also infinite. We obtain that $\text{Aut}(M, \Omega)$ has hyperbolic or parabolic elements.

Step 2: Product of two non-commuting parabolic isometries is hyperbolic. **It remais to show that whenever there is one parabolic element** p of $Aut(M, \Omega)$, there are two such elements which do not commute.

Step 3: Zariski closure of $O(\Lambda)$ is $O(\Lambda \otimes_{\mathbb{Z}} \mathbb{R})$ by another application of Borel and Harish-Chandra. Therefore, thee the centralizer of p is an infinite index subgroup of $O(\Lambda)$. This implies that there exists $x \in Aut(M, \Omega)$ such that xpx^{-1} does not commute with p. Then $pxpx^{-1}$ is necessarily hyperbolic.

Existence of parabolic automorphisms

THEOREM: Let *M* be a hyperkähler manifold with $b_2(M) \ge 7$. Then *M* has a deformation admitting a parabolic automorphism.

Proof. Step 1: Let $\Lambda = H_I^{1,1}(M,\mathbb{Z})$ be a primitive lattice of corank 2 in $H^2(M,\mathbb{Z})$ satisfying the MBM bound. Then $\operatorname{Aut}(M,\Omega)$ has finite index in $O(\Lambda)$. It suffices to show that the Lie group $O(\Lambda \otimes_{\mathbb{Z}} \mathbb{R})$ contains a rational unipotent subgroup U. Then $U \cap \operatorname{Aut}(M,\Omega)$ is Zariski dense in U by another application of Borel and Harish-Chandra, and all its elements are parabolic.

Step 2: Suppose that there exists a rational vector v with q(v,v) = 0, and let $P \subset O(\Lambda \otimes_{\mathbb{Z}} \mathbb{R})$ be the stabilizer of v. This subgroup is clearly rational and parabolic; its unipotent radical is the group U which we require.

Step 3: Such a rational vector exists for any indefinite lattice of rank \ge 5 by Meyer's theorem.

Markoff chain theorem

REMARK: A lattice (Λ, q) is **primitive** if there are no lattices $\Lambda' \subsetneq \Lambda$ in $\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$. This is the same as q being not divisible by an integer c > 1. Two lattices are **commensurable** if they can be embedded to the same rational lattice.

THEOREM: For each N > 0, there exists a primitive lattice Λ of rank 2 and signature (2,0) or (1,1) with min $\Lambda > N$.

Proof: For signature (1,1) it's *Cassels*, *J. W. S.*, *The Markoff chain. Ann. of Math.* (2) 50, (1949), 676-685; *A. Markoff*, *Math. Ann.* 15, 381-406 (1879); *A. Markoff*, *Math. Ann.* 17, 379-399 (1880), Or http://mathoverflow.net/questions/ ^{215636/2-dimensional-sublattices-with-all-vectors-having-very-big-square-in-absolute-v/ (reply by Noam Elkies). For signature (2,0) it's obvious. ■}

Proof of Theorem 1

Theorem 1: Let (Λ, q) be a lattice of signature (n, m). Fix a number N > 0. **Then there exists a primitive sublattice** $\Lambda' \subset \Lambda$ of corank 2 with min $\Lambda' > N$.

Now, Theorem 1 is implied by the following theorem.

Theorem 2: Let Λ', Λ be lattices of signature (n, m) and (n', m'), with $n' \leq n, m' \leq m$. Then there exist lattices Λ_1, Λ'_1 containing Λ', Λ as corank one sublattices, such that $\Lambda'_1 \otimes_{\mathbb{Z}} \mathbb{Q}$ can be embedded to $\Lambda_1 \otimes_{\mathbb{Z}} \mathbb{Q}$.

Theorem 2 implies Theorem 1: Using Markoff Chain theorem, choose a lattice Λ' with approviate signature and $\min \Lambda' \ge N$, and find an embedding $\Phi : \Lambda'_1 \otimes_{\mathbb{Z}} \mathbb{Q} \hookrightarrow \Lambda_1 \otimes_{\mathbb{Z}} \mathbb{Q}$. Then $\Lambda_0 := \Phi(\Lambda') \cap \Lambda$ is a sublattice of corank 2 in Λ , which also satisfies $\min(\Lambda_0) > N$.

Rational quadratic forms: local invariants and Hasse's principle

DEFINITION: A lattice over \mathbb{Q} is a vector space V over \mathbb{Q} equipped with a quadratic form q.

REMARK: Clearly, V always admits a basis $x_1, ..., x_n$ which is orthogonal with respect to q: $q(x_i, x_j) = 0$ for $i \neq j$.

DEFINITION: Let $q = \sum a_i x_i^2$ be a quadratic form. We associate to q the following "local invariants":

The discriminant: disc $(q) \in \mathbb{Q}^*/(\mathbb{Q}^2)^*$, represented by $\prod a_i$. *p*-adic invariants: $\varepsilon_p(q) = \prod_{i < j} (a_i, a_j)_p$, where $(\cdot, \cdot)_p$ is the Hilbert symbol. **Signature**.

THEOREM: (Hasse's local to global principle) Two lattices over \mathbb{Q} are equivalent if and only if their local invariants are equal.

Making rational quadratic form standard by adding a variable

Theorem 2: Let Λ', Λ be lattices of signature (n, m) and (n', m'), with $n' \leq n, m' \leq m$. Then there exist lattices Λ_1, Λ'_1 containing Λ', Λ as corank one sublattices, such that $\Lambda'_1 \otimes_{\mathbb{Z}} \mathbb{Q}$ can be embedded to $\Lambda_1 \otimes_{\mathbb{Z}} \mathbb{Q}$.

Theorem 2 would follow immediately if we prove the following theorem.

THEOREM: Let (V,q) be a lattice over \mathbb{Q} , with q diagonal, $q = \sum a_i x_i^2$. Then there exists a number $t \in \mathbb{Q}$ such that the diagonal form $q_1 = \sum a_i x_i^2 + ty^2$ on $V_1 = V \oplus \mathbb{Q}$ is equivalent to the standard one $q_{st} = \sum \pm z_i^2$.

Proof: By Hasse's principle, this would follow if

$$\varepsilon_p(q_1) = \prod_{i < j} (a_i, a_j)_p \prod (a_i, t)_p = 1 \quad (*)$$

for all p. Since Hilbert symbol is multiplicative, $\prod (a_i, t)_p = (\prod a_i, t)_p$, and (*) becomes

$$\varepsilon_p(q) = (\prod a_i, t)_p.$$
 (**)

Since Hilbert symbol $(a,b)_p$ is 1 for all p except a finite number, (**) is a system of equations modulo a finite number of p which can be solved using Chinese reminders theorem.