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The Kähler cone and its faces

This is joint work with Ekaterina Amerik.

THEOREM: Let M be a hyperkähler manifold, Mon(M) the group of au-
tomorphisms of H2(M) generated by monodromy transform for all Gauss-
Manin local systems, and MonI(M) the Hodge monodromy group, that is, a
subgroup of Mon(M) preserving the Hodge decomposition. Then Aut(M) is
a subgroup of MonI(M) preserving the Kähler cone Kah(M).

Proof: Follows from Torelli theorem (this observation is due to E. Markman).

Aim of today’s talk: describe Kah(M) and Aut(M) in terms of invariants of
M called MBM classes. Give a classification of holomorphic automorphisms
of M (hyperbolic, parabolic, elliptic). Prove the following theorem.

THEOREM: Let M be a hyperkähler manifold, with b2(M) > 5. Then M
has a deformation admitting a hyperbolic automorphism. If b2(M) > 7,
M has a deformation admitting a parabolic automorphism.

REMARK: By construction, these M satisfy Aut(M) = MonI(M)

REMARK: By ergodicity theorem, such M are also dense on the de-
formation space.
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Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian

structure g and a triple of complex structures I, J,K, satisfying quaternionic

relations I ◦ J = −J ◦ I = K, such that g is Kähler for I, J,K.

REMARK: A hyperkähler manifold has three symplectic forms

ωI := g(I·, ·), ωJ := g(J ·, ·), ωK := g(K·, ·).

REMARK: This is equivalent to ∇I = ∇J = ∇K = 0: the parallel translation

along the connection preserves I, J,K.

DEFINITION: Let M be a Riemannian manifold, x ∈ M a point. The

subgroup of GL(TxM) generated by parallel translations (along all paths) is

called the holonomy group of M .

REMARK: A hyperkähler manifold can be defined as a manifold which

has holonomy in Sp(n) (the group of all endomorphisms preserving I, J,K).
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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

REMARK: Hyperkähler manifolds are holomorphically symplectic. Indeed,

Ω := ωJ +
√
−1 ωK is a holomorphic symplectic form on (M, I).

THEOREM: (Calabi-Yau) A compact, Kähler, holomorphically symplectic

manifold admits a unique hyperkähler metric in any Kähler class.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called simple if π1(M) = 0,

H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be simple.
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic form

q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) =
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.
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Monodromy group of a hyperkähler manifold

DEFINITION: Let M be a hyperkähler manifold, and Mon(M) the group of

automorphisms of H2(M) generated by monodromy transform for all Gauss-

Manin local systems. Then Mon(M) is called the monodromy group of

M .

THEOREM: (V., follows from Torelli theorem)

Then group Mon(M) ⊂ O(H2(M,Z) has finite index in O(H2(M,Z)).

DEFINITION: An arithmetic lattice, or arithmetic lattice subgroup in

an algebraic group G defined over Q is a finite index subgroup in GZ.

REMARK: For example, Mon(M) is an arithmetic lattice in O(H2(M,Q), q).
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The group of symplectic Hodge monodromy

DEFINITION: Let (M, I) be a hyperkähler manifold. Then the Hodge
monodromy group MonI(M) is the group of all a ∈ Mon(M) preserving the
Hodge decomposition on H2(M).

DEFINITION: Let Ω be a holomorphic symplectic form on a hyperkähler
manifold. Consider the homomorphism ϕ : MonI(M)−→ C∗, ϕ(γ) = γ∗Ω

Ω . De-
note its kernel by MonI,Ω(M, I). Thi group is called the group of symplectic
Hodge monodromy.

Claim 1: Consider the Hodge lattice Λ := H
1,1
I (M,Z). Then the natural

homomorphism MonI,Ω(M, I)−→O(Λ) is injective and has finite index.

Proof: Let H2
tr(M) := H

1,1
I (M,Q)⊥ be the “transcendental part” of the Hodge

lattice, that is, the smallest Hodge substructure containing ReH2,0(M). By
definition,

MonI,Ω(M, I) =

{
a ∈ Mon(M)

∣∣∣∣∣ a

∣∣∣∣H2
tr(M) = Id

}

Since Mon(M) is an arithmetic lattice subgroup in O(H2(M,Z)), MonI,Ω(M, I)
is arthmetic lattice in the group of isometries of H2

tr(M)⊥ = Λ.
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MBM classes

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R) =

H2(M,R) satisfying q(η, η) < 0. It is effective if it is represented by a curve.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in

the same deformation class, such that z is of type (1,1) with respect to I and

I ′ and Pic(M) = 〈z〉. Then ±z is effective in (M, I) ⇔ iff it is effective in

(M, I ′).

REMARK: From now on, we identify H2(M) and H2(M) using the BBF

form. Under this identification, integer classes in H2(M) correspond to

rational classes in H2(M) (the form q is not unimodular).

DEFINITION: A negative class z ∈ H2(M,Z) on a hyperkähler manifold is

called an MBM class if there exist a deformation of M with Pic(M) = 〈z〉
such that λz is represented by a curve, for some λ 6= 0.
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MBM classes and the shape of the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to faces of the

Kähler cone.

DEFINITION: Kähler chamber is a connected component of

Pos(M, I)\ ∪ S⊥.

CLAIM: The Hodge monodromy group maps Kähler chambers to Kähler

chambers.
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MBM classes and the Kähler cone: the picture

REMARK: For any negative vector z ∈ H2(M), z⊥ ∩ Pos(M, I) either has

dense intersection with the interior of the Kähler chambers (if z is not

MBM), or is a union of walls of those (if z is MBM); that is, there are

no “barycentric partitions” in the decomposition of the positive cone into the

Kähler chambers.

Allowed partition Prohibited partition
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MBM classes and automorphisms

THEOREM: Let (M, I) be a hyperkähler manifold, Mon(M) the group of

automorphisms of H2(M) generated by monodromy transform for all Gauss-

Manin local systems, and MonI(M) the Hodge monodromy group, that is, a

subgroup of Mon(M) preserving the Hodge decomposition. Then Aut(M) is

a subgroup of MonI(M) preserving the Kähler cone Kah(M).

Proof: Follows from Torelli theorem (this observation is due to E. Markman).

COROLLARY: Let (M, I) be a hyperkähler manifold such that there are no

MBM classes of type (1,1). Then Aut(M) = MonI(M).

Proof: Indeed, for such manifold Kah(M, I) = Pos(M, I).
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Morrison-Kawamata cone conjecture

DEFINITION: An integer cohomology class a is primitive if it is not divisible
by integer numbers c > 1.

THEOREM: (a version of Morrison-Kawamata cone conjecture)
The group Mon(M) acts on the set of primitive MBM classes with finitely
many orbits.

Proof: Proven by Amerik-V., using homogeneous dynamics (Ratner theo-
rems, Dani-Margulis, Mozes-Shah).

COROLLARY: Let M be a hyperkähler manifold. Then there exists a
number N > 0, called MBM bound, such that any MBM class z satisfies
|q(z, z)| < N .

Proof: There are only finitely many primitive MBM classes, up to isometry
action, and the have finitely many squares.

Corollary 1: Let M be a hyperkähler manifold, N its MBM bound, and (M, I)
a deformation such that for any x ∈ H1,1

I (M,Z) one has q(x, x) > N . Then
(M, I) has no MBM classes of type (1,1), and Kah(M, I) = Pos(M, I) and
Aut(M) = MonI(M).
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Classification of automorphisms of hyperbolic space

REMARK: The group O(m,n),m, n > 0 has 4 connected components. We
denote the connected component of 1 by SO+(m,n). We call a vector v

positive if its square is positive.

DEFINITION: Let V be a vector space with quadratic form q of signature
(1, n), Pos(V ) = {x ∈ V | q(x, x) > 0} its positive cone, and P+V projec-
tivization of Pos(V ). Denote by g any SO(V )-invariant Riemannian structure
on P+V . Then (P+V, g) is called hyperbolic space, and the group SO+(V )
the group of oriented hyperbolic isometries.

Theorem-definition: Let n > 0, and α ∈ SO+(1, n) is an isometry acting on
V . Then one and only one of these three cases occurs

(i) α has an eigenvector x with q(x, x) > 0 (α is “elliptic isometry”)
(ii) α has an eigenvector x with q(x, x) = 0 and eigenvalue λx satisfying

|λx| > 1 (α is “hyperbolic isometry”)
(iii) α has a unique eigenvector x with q(x, x) = 0. (α is “parabolic

isometry”)

DEFINITION: An automorphism of a hyperkähler manifold (M, I) is called
elliptic (parabolic, hyperbolic) if it is elliptic (parabolic, hyperbolic) on
H

1,1
I (M,R).
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Primitive sublattices with MBM bound

DEFINITION: Integer lattice, or quadratic lattice, or just lattice is Zn

equipped with an integer-valued quadratic form. When we speak of em-

bedding of lattices, we always assume that they are compatible with

the quadratic form.

DEFINITION: A sublattice Λ′ ⊂ Λ is called primitive if (Λ′ ⊗Z Q) ∩ Λ = Λ′.
A number a is represented by a lattice (Λ, q) if a = q(x, x) for some x ∈ Λ.

Minumum of a lattice is the number min Λ := minx |q(x, x)|, taken over all

x ∈ Λ with q(x, x) 6= 0.

Theorem 1: Let (Λ, q) be a lattice of signature (n,m). Fix a number N > 0.

Then there exists a primitive sublattice Λ′ ⊂ Λ of corank 2 with min Λ′ >
N.

Proof: Later today, if time permits.

DEFINITION: Let M be a hyperkähler manifold, Λ = H2(M,Z), q the BBF

form. A primitive sublattice Λ′ ⊂ H2(M,Z) satisfies MBM bound if its

minimum is > N , where N is the MBM bound of M .
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Sublattices with MBM bound and automorphisms

REMARK: By Torelli theorem, for any primitive sublattice Λ ⊂ H2(M,Z),

there exists a complex structure I such that Λ = H
1,1
I (M,Z).

THEOREM: Let M be a hyperkähler manifold, and Λ ⊂ H2(M,Z) a primitive

sublattice satisfying the MBM bound. Let (M, I) be a deformation of M

such that Λ = H
1,1
I (M,Z). Then the group of holomorphic symplectic

automorphisms Aut(M,Ω) = MonI,Ω(M) is an subgroup of finite index in

O(Λ).

Proof: Since Λ = H
1,1
I (M,Z) satisfies MBM bound, it contains no MBM

classes. By Corollary 1, this gives Aut(M,Ω) = MonI,Ω(M). Now, MonI,Ω(M)

is a finite index subgroup in O(Λ), as follows from Claim 1.
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Existence of hyperbolic automorphisms
THEOREM: Let M be a hyperkähler manifold, with b2(M) > 5. Then
M has a deformation admitting a hyperbolic automorphism.

Proof. Step 1: We show that Aut(M,Ω) contains hyperbolic or parabolic
elements. Let Λ = H

1,1
I (M,Z) be a primitive lattice of corank 2 in H2(M,Z)

satisfying the MBM bound. Then Aut(M,Ω) has finite index in O(Λ). To
simplify the argument, we replace Λ by a sublattice of smaller rank, obtaining
a lattice of signature (1, n).

An operator norm of an elliptic element is 1, hence any subgroup of O(1, n)
containing only elliptic elements has compact closure. The volume of O(Λ⊗Z
R)/O(Λ) is finite by Borel and Harish-Chandra theorem when rk Λ > 3. There-
fore, O(Λ) is infinite, and Aut(M,Ω) is also infinite. We obtain that Aut(M,Ω)
has hyperbolic or parabolic elements.

Step 2: Product of two non-commuting parabolic isometries is hyperbolic.
It remais to show that whenever there is one parabolic element p of
Aut(M,Ω), there are two such elements which do not commute.

Step 3: Zariski closure of O(Λ) is O(Λ⊗Z R) by another application of Borel
and Harish-Chandra. Therefore, thee the centralizer of p is an infinite index
subgroup of O(Λ). This implies that there exists x ∈ Aut(M,Ω) such that
xpx−1 does not commute with p. Then pxpx−1 is necesarily hyperbolic.
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Existence of parabolic automorphisms

THEOREM: Let M be a hyperkähler manifold with b2(M) > 7. Then

M has a deformation admitting a parabolic automorphism.

Proof. Step 1: Let Λ = H
1,1
I (M,Z) be a primitive lattice of corank 2 in

H2(M,Z) satisfying the MBM bound. Then Aut(M,Ω) has finite index in

O(Λ). It suffices to show that the Lie group O(Λ ⊗Z R) contains a

rational unipotent subgroup U. Then U ∩ Aut(M,Ω) is Zariski dense in U

by another application of Borel and Harish-Chandra, and all its elements are

parabolic.

Step 2: Suppose that there exists a rational vector v with q(v, v) = 0, and

let P ⊂ O(Λ⊗Z R) be the stabilizer of v. This subgroup is clearly rational

and parabolic; its unipotent radical is the group U which we require.

Step 3: Such a rational vector exists for any indefinite lattice of rank > 5 by

Meyer’s theorem.
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Markoff chain theorem

REMARK: A lattice (Λ, q) is primitive if there are no lattices Λ′ ( Λ in

Λ ⊗Z Q. This is the same as q being not divisible by an integer c > 1. Two

lattices are commensurable if they can be embedded to the same rational

lattice.

THEOREM: For each N > 0, there exists a primitive lattice Λ of rank 2 and

signature (2,0) or (1,1) with min Λ > N .

Proof: For signature (1,1) it’s Cassels, J. W. S., The Markoff chain. Ann. of

Math. (2) 50, (1949), 676-685; A. Markoff, Math. Ann. 15, 381-406 (1879);

A. Markoff, Math. Ann. 17, 379-399 (1880), or http://mathoverflow.net/questions/

215636/2-dimensional-sublattices-with-all-vectors-having-very-big-square-in-absolute-v/ (reply by Noam

Elkies). For signature (2,0) it’s obvious.
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Proof of Theorem 1

Theorem 1: Let (Λ, q) be a lattice of signature (n,m). Fix a number N > 0.

Then there exists a primitive sublattice Λ′ ⊂ Λ of corank 2 with min Λ′ >
N.

Now, Theorem 1 is implied by the following theorem.

Theorem 2: Let Λ′,Λ be lattices of signature (n,m) and (n′,m′), with n′ 6
n,m′ 6 m. Then there exist lattices Λ1,Λ

′
1 containing Λ′,Λ as corank one

sublattices, such that Λ′1 ⊗Z Q can be embedded to Λ1 ⊗Z Q.

Theorem 2 implies Theorem 1: Using Markoff Chain theorem, choose a

lattice Λ′ with approriate signature and min Λ′ > N , and find an embedding

Φ : Λ′1 ⊗Z Q ↪→ Λ1 ⊗Z Q. Then Λ0 := Φ(Λ′) ∩ Λ is a sublattice of corank 2 in

Λ, which also satisfies min(Λ0) > N .
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Rational quadratic forms: local invariants and Hasse’s principle

DEFINITION: A lattice over Q is a vector space V over Q equipped with

a quadratic form q.

REMARK: Clearly, V always admits a basis x1, ..., xn which is orthogonal

with respect to q: q(xi, xj) = 0 for i 6= j.

DEFINITION: Let q =
∑
aix

2
i be a quadratic form. We associate to q the

following “local invariants”:

The discriminant: disc(q) ∈ Q∗/(Q2)∗, represented by
∏
ai.

p-adic invariants: εp(q) =
∏
i<j(ai, aj)p, where (·, ·)p is the Hilbert symbol.

Signature.

THEOREM: (Hasse’s local to global principle) Two lattices over Q are

equivalent if and only if their local invariants are equal.
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Making rational quadratic form standard by adding a variable

Theorem 2: Let Λ′,Λ be lattices of signature (n,m) and (n′,m′), with n′ 6
n,m′ 6 m. Then there exist lattices Λ1,Λ

′
1 containing Λ′,Λ as corank one

sublattices, such that Λ′1 ⊗Z Q can be embedded to Λ1 ⊗Z Q.

Theorem 2 would follow immediately if we prove the following theorem.

THEOREM: Let (V, q) be a lattice over Q, with q diagonal, q =
∑
aix

2
i . Then

there exists a number t ∈ Q such that the diagonal form q1 =
∑
aix

2
i +ty2

on V1 = V ⊕ Q is equivalent to the standard one qst =
∑
±z2

i .

Proof: By Hasse’s principle, this would follow if

εp(q1) =
∏
i<j

(ai, aj)p
∏

(ai, t)p = 1 (∗)

for all p. Since Hilbert symbol is multiplicative,
∏

(ai, t)p = (
∏
ai, t)p, and (*)

becomes

εp(q) = (
∏
ai, t)p. (∗∗)

Since Hilbert symbol (a, b)p is 1 for all p except a finite number, (**) is a
system of equations modulo a finite number of p which can be solved using
Chinese reminders theorem.
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