# Constructing automorphisms of hyperkähler manifolds

Misha Verbitsky

2016 Simons Symposium on Geometry Over Nonclosed Fields

April 20, 2016

## Holomorphically symplectic manifolds

**DEFINITION:** A holomorphically symplectic manifold is a complex manifold equipped with non-degenerate, holomorphic (2,0)-form.

**DEFINITION:** For the rest of this talk, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

**DEFINITION:** A hyperkähler manifold M is called **of maximal holonomy**, or **IHS**, if  $\pi_1(M) = 0$ ,  $H^{2,0}(M) = \mathbb{C}$ .

**Bogomolov's decomposition:** Any hyperkähler manifold admits a finite covering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be of maximal holonomy.

## **Existence of automorphisms**

Aim of today's talk: describe the automorphism group Aut(M) of a hyperkähler manifold in terms of invariants of M called MBM classes. Prove the following theorem.

**THEOREM:** Let *M* be a hyperkähler manifold, with  $b_2(M) \ge 5$ . Then *M* has a deformation admitting an automorphism of infinite order, acting on  $H^{1,1}(M)$  with real eigenvalues  $\alpha, \beta, \alpha < 1 < \beta$  ("hyperbolically").

This is joint work with Ekaterina Amerik.

**THEOREM:** Let *M* be a hyperkähler manifold, with  $b_2(M) \ge 14$ . Then *M* has a deformation admitting an authomorphism of infinite order, acting on  $H^{1,1}(M)$  unipotently ("parabolic action").

#### The Bogomolov-Beauville-Fujiki form

**THEOREM:** (Fujiki). Let  $\eta \in H^2(M)$ , and dim M = 2n, where M is hyperkähler. Then  $\int_M \eta^{2n} = cq(\eta, \eta)^n$ , for some primitive integer quadratic form q on  $H^2(M, \mathbb{Z})$ , and c > 0 a rational number.

**Definition:** This form is called **Bogomolov-Beauville-Fujiki form**. **It is defined by the Fujiki's relation uniquely, up to a sign**. The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = 2 \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left( \int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left( \int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where  $\Omega$  is the holomorphic symplectic form, and  $\lambda > 0$ .

**Remark:** *q* has signature  $(3, b_2 - 3)$ . It is negative definite on primitive forms, and positive definite on  $\langle \Omega, \overline{\Omega}, \omega \rangle$ , where  $\omega$  is a Kähler form.

Unlike  $H^2(K3,\mathbb{Z})$ , the BBF form is usually not unimodular.

# Monodromy group of a hyperkähler manifold

**DEFINITION:** Let M be a hyperkähler manifold, and Mon(M) the group of automorphisms of  $H^2(M)$  generated by monodromy transform for all Gauss-Manin local systems. Then Mon(M) is called **the monodromy group of** M.

Theorem 1: The group  $Mon(M) \subset O(H^2(M,\mathbb{Z})$  has finite index in  $O(H^2(M,\mathbb{Z}))$ .

**THEOREM:** Let M be a hyperkähler manifold, Mon(M) the group of automorphisms of  $H^2(M)$  generated by monodromy transform for all Gauss-Manin local systems, and  $Mon_I(M)$  the Hodge monodromy group, that is, a subgroup of Mon(M) preserving the Hodge decomposition. Then Aut(M) surjects to the subgroup of  $Mon_I(M)$  preserving the Kähler cone Kah(M), and the kernel of this map is finite.

**Proof:** Follows from global Torelli theorem (this observation is due to E. Markman).

#### **MBM classes**

**DEFINITION:** Negative class on a hyperkähler manifold is  $\eta \in H_2(M, \mathbb{R}) = H^2(M, \mathbb{R})$  satisfying  $q(\eta, \eta) < 0$ . It is effective if it is represented by a curve.

**THEOREM:** Let  $z \in H_2(M, \mathbb{Z})$  be negative, and I, I' complex structures in the same deformation class, such that z is of type (1,1) with respect to I and I' and  $Pic(M) = \langle z \rangle$ . Then  $\pm z$  is effective in  $(M, I) \Leftrightarrow$  iff it is effective in (M, I').

**REMARK:** From now on, we identify  $H^2(M)$  and  $H_2(M)$  using the BBF form. Under this identification, **integer classes in**  $H_2(M)$  **correspond to rational classes in**  $H^2(M)$  (the form q is not unimodular).

**DEFINITION:** A negative class  $z \in H^2(M, \mathbb{Z})$  on a hyperkähler manifold is called **an MBM class** if there exist a deformation of M with  $Pic(M) = \langle z \rangle$  such that  $\lambda z$  is represented by a curve, for some  $\lambda \neq 0$ .

#### MBM classes and the shape of the Kähler cone

**THEOREM:** Let (M, I) be a hyperkähler manifold, and  $S \subset H_{1,1}(M, I)$  the set of all MBM classes in  $H_{1,1}(M, I)$ . Consider the corresponding set of hyperplanes  $S^{\perp} := \{W = z^{\perp} \mid z \in S\}$  in  $H^{1,1}(M, I)$ . Then the Kähler cone of (M, I) is a connected component of  $Pos(M, I) \setminus \bigcup S^{\perp}$ , where Pos(M, I)is a positive cone of (M, I). Moreover, for any connected component K of  $Pos(M, I) \setminus \bigcup S^{\perp}$ , there exists  $\gamma \in O(H^2(M))$  in a monodromy group of M, and a hyperkähler manifold (M, I') birationally equivalent to (M, I), such that  $\gamma(K)$  is a Kähler cone of (M, I').

**REMARK:** This implies that **MBM classes correspond to faces of the** Kähler cone.

**DEFINITION: Kähler chamber** is a connected component of  $Pos(M, I) \setminus \cup S^{\perp}$ .

CLAIM: The Hodge monodromy group maps Kähler chambers to Kähler chambers.

#### MBM classes and the Kähler cone: the picture

**REMARK:** For any negative vector  $z \in H^2(M)$ , the set  $z^{\perp} \cap Pos(M, I)$  either has dense intersection with the interior of the Kähler chambers (if z is not MBM), or is a union of walls of those (if z is MBM); that is, there are no "barycentric partitions" in the decomposition of the positive cone into the Kähler chambers.



## **MBM classes and automorphisms**

**THEOREM:** Let (M, I) be a hyperkähler manifold, Mon(M) the group of automorphisms of  $H^2(M)$  generated by monodromy transform for all Gauss-Manin local systems, and  $Mon_I(M)$  the Hodge monodromy group, that is, a subgroup of Mon(M) preserving the Hodge decomposition. Denote by  $Aut_h(M, I)$  the image of the automorphism group in  $GL(H^2(M, \mathbb{R}))$ . **Then**  $Aut_h(M, I)$  is a subgroup of  $Mon_I(M)$  preserving the Kähler cone Kah(M, I).

**REMARK:** The kernel of the natural map  $Aut(M) \rightarrow GL(H^2(M,\mathbb{R}))$  is a finite group which is independent from the choice of M in its deformation class. It consists of "absolutely trianalytic" automorphisms of M: automorphisms which are hyperkähler in all hyperkähler structures.

**COROLLARY:** Let (M, I) be a hyperkähler manifold such that there are no MBM classes of type (1,1). Then Aut(M) surjects to Mon<sub>I</sub>(M) with finite kernel.

**Proof:** Indeed, for such manifold Kah(M, I) = Pos(M, I).

#### Morrison-Kawamata cone conjecture

**DEFINITION:** An integer cohomology class a is **primitive** if it is not divisible by integer numbers c > 1.

**THEOREM:** (a version of Morrison-Kawamata cone conjecture) The group Mon(M) acts on the set of primitive MBM classes with finitely many orbits.

**Proof:** Proven by Amerik-V., using homogeneous dynamics (Ratner theorems, Dani-Margulis, Mozes-Shah). ■

**COROLLARY:** Let M be a hyperkähler manifold. Then there exists a number N > 0, called **MBM bound**, such that any MBM class z satisfies |q(z,z)| < N.

**Proof:** There are only finitely many primitive MBM classes, up to isometry action, and they have finitely many squares. ■

**Corollary 1:** Let M be a hyperkähler manifold, N its MBM bound, and (M, I) a deformation such that for any  $x \in H_I^{1,1}(M,\mathbb{Z})$  one has q(x,x) > N. Then (M,I) has no MBM classes of type (1,1),  $\operatorname{Kah}(M,I) = \operatorname{Pos}(M,I)$ , and  $\operatorname{Aut}(M)$  surjects to  $\operatorname{Mon}_I(M)$  with finite kernel.

#### Non-zero minimum of a lattice

**DEFINITION:** Integer lattice, or quadratic lattice, or just lattice is  $\mathbb{Z}^n$  equipped with an integer-valued quadratic form. When we speak of embedding of lattices, we always assume that they are compatible with the quadratic form.

**DEFINITION:** A sublattice  $\Lambda' \subset \Lambda$  is called **primitive** if  $(\Lambda' \otimes_{\mathbb{Z}} \mathbb{Q}) \cap \Lambda = \Lambda'$ . A number *a* is **represented** by a lattice  $(\Lambda, q)$  if a = q(x, x) for some  $x \in \Lambda$ . **Non-zero minumum** of a lattice is the number  $\min_{\neq 0} \Lambda := \min_{x} |q(x, x)|$ , taken over all  $x \in \Lambda$  with  $q(x, x) \neq 0$ .

**THEOREM:** Let  $(\Lambda, q)$  be a lattice of signature (n, m),  $n, m > 0, n + m \ge 5$ . Fix a number N > 0. Then there exists a primitive sublattice  $\Lambda' \subset \Lambda$  of rank 2 with  $\min_{\neq 0} \Lambda' > N$ .

**Proof:** Later today.

#### Sublattices with MBM bound and automorphisms

**DEFINITION:** Let M be a hyperkähler manifold,  $\Lambda = H^2(M, \mathbb{Z})$ , and q the BBF form. A primitive sublattice  $\Lambda' \subset H^2(M, \mathbb{Z})$  satisfies MBM bound if its non-zero minimum is > N, where N is the MBM bound of M.

**REMARK:** By Torelli theorem, for any primitive sublattice  $\Lambda \subset H^2(M, \mathbb{Z})$ , there exists a complex structure I such that  $\Lambda = H_I^{1,1}(M, \mathbb{Z})$ .

**THEOREM:** Let M be a hyperkähler manifold, and  $\Lambda \subset H^2(M, \mathbb{Z})$  a primitive sublattice satisfying the MBM bound. Let (M, I) be a deformation of M such that  $\Lambda = H_I^{1,1}(M, \mathbb{Z})$ . Then the group of automorphisms  $\operatorname{Aut}(M) = \operatorname{Mon}_I(M)$  surjects to a subgroup of finite index in  $O(\Lambda)$ .

**Proof:** Since  $\Lambda = H_I^{1,1}(M,\mathbb{Z})$  satisfies the MBM bound, it contains no MBM classes. **By Corollary 1, this implies that** Aut(M) **surjects to** Mon<sub>I</sub>(M) **with finite kernel.** Now, Mon<sub>I</sub>(M) surjects to a finite index subgroup in  $O(\Lambda)$ , as follows from Theorem 1.

## **Existence of hyperbolic automorphisms**

**THEOREM:** Let *M* be a hyperkähler manifold, with  $b_2(M) \ge 5$ . Then *M* has a deformation admitting an automorphism of infinite order.

**Proof. Step 1:** Find a primitive sublattice of signature  $(1,1) \land \subset H^2(M,\mathbb{Z})$  satisfying the MBM bound and not representing 0. Using Torelli theorem, we construct a deformation M' of M which has  $\Lambda = H^{1,1}(M') \cap H^2(M',\mathbb{Z})$ .

**Proof. Step 2:** For such M', the symplectic automorphisms surjects to a finite index subgroup of  $O(\Lambda)$ .

**Proof. Step 3:**  $O(\Lambda)$  has infinite order (follows from Dirichlet unit theorem).

Existence of parabolic automorphisms is proven in a similar way, but we need a primitive sublattice  $\Lambda \subset H^2(M, \mathbb{Z})$  of signature (2,1) representing 0 and with  $\min_{\neq 0}(\Lambda) > N$ , where N is MBM bound.

## **Existence of sublattices**

**PROBLEM:** Let  $\Lambda$  be a non-degenerate, indefinite integer lattice of signature (p,q). Find all (p',q') such that for all such  $\Lambda$  there exist primitive sublattices  $\Lambda' \subset \Lambda$  of signature (p',q') and with arbitrary high  $\min_{\neq 0}(\Lambda)$ .

**REMARK:** Meyer's theorem implies that any indefinite lattice of rank  $\ge 5$  represents 0. Therefore, this question is not very interesting for the usual minimum, but it becomes highly non-trivial for min $\neq 0$ .

**PROPOSITION:** Let  $\Lambda$  be a non-degenerate, indefinite integer lattice  $\operatorname{rk} \Lambda \ge$  5, and N > 0 any number. Then  $\Lambda$  contains a primitive sublatice of signature (1,1) with  $\min_{\neq 0}(\Lambda) > N$ .

**Proof:** We use the following elementary lemma.

**Lemma 1:** Let  $(\Lambda, q)$  be a diagonal rank 2 lattice with diagonal entries  $\alpha_1, \alpha_2$  divisible by an odd power of p,  $\alpha_i = \beta_i p^{2n_i+1}$ , such that the numbers  $\beta_i$  are not divisible by p and the equation  $\beta_1 x^2 + \beta_2 y^2 = 0$  has no solutions modulo p. Let  $v \in \Lambda \otimes \mathbb{Q}$  be any vector such that q(v, v) is an integer. Then this integer is divisible by p.

#### **Existence of sublattices (2)**

**PROPOSITION:** Let  $\Lambda$  be a non-degenerate, indefinite integer lattice with  $rk \Lambda \ge 5$ , and N > 0 any number. Then  $\Lambda$  contains a primitive sublatice of signature (1,1) with  $\min_{\neq 0}(\Lambda) > N$ .

**Proof. Step 1:** By Meyer's Theorem, A has an isotropic vector (that is, a vector v with q(v) = 0). The isotropic quadric  $\{v \in L \mid q(v) = 0\}$  has infinitely many points if it has one, and not all of them are proportional. Take two of such non-proportional points v and v', and let  $v_1 := av + bv'$ . Then  $q(v_1) = 2abq(v, v')$ . We may chose 2ab to be of any sign and such that it has arbitrary large prime divisors in odd powers.

**Step 2:** It is always possible to find a vector  $w \in \langle v, v' \rangle^{\perp}$  such that q(w) is divisible by an odd power of a suitable sufficiently large prime number p. Now choose the multipliers a, b in such a way that the lattice  $\Lambda' := \langle v_1, w \rangle$  satisfies assumptions of Lemma 1 and has signature (1,1).

**REMARK: The lattice**  $\Lambda'$  does not represent 0, because it represents only mumbers which are divisible by odd powers of p.

## **Existence of sublattices (3)**

**THEOREM:** (Nikulin, Witt...) Let  $\Lambda$  be a unimodular lattice of signature (p,q), and  $\Lambda'$  any lattice of signature (p',q') such that  $2p' \leq p, 2q' \leq q$ . Then  $\Lambda'$  admits a primitive embedding to  $\Lambda$ .

**REMARK:** Since one could take the quadratic form on  $\Lambda'$ , say,  $10^{100}q_0$ , this theorem gives partial solution to our problem for unimodular lattices. Two caveats: (a) it does not work for non-unimodular  $\Lambda$  and (b) the bound  $1/2 \text{ rk } \Lambda$  is a bit too high.

To apply it to our case, we find a rational embedding of a non-unimodular  $\Lambda$  to  $\Lambda_1 \otimes_{\mathbb{Z}} \mathbb{Q}$ , where  $\Lambda_1$  is a diagonal lattice with eigenvalues  $\pm q$ . This is possible to do using Hilbert symbols and classification of rational lattices, with  $rk \Lambda_1 = rk \Lambda + 3$ . Then one takes a primitive sublattice  $\Lambda' \subset \Lambda_1$  and its intersection with  $\Lambda$  has arbitrarily big min<sub>0</sub>.

This makes an embedding from  $\Lambda_0$  of signature (1,2) to  $\Lambda$  of signature (3,11) – clearly non-optimal.

# **QUESTION:** Is it possible to optimize this construction?