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Holomorphically symplectic manifolds

DEFINITION: A holomorphically symplectic manifold is a complex manifold

equipped with non-degenerate, holomorphic (2,0)-form.

DEFINITION: For the rest of this talk, a hyperkähler manifold is a com-

pact, Kähler, holomorphically symplectic manifold.

DEFINITION: A hyperkähler manifold M is called of maximal holonomy,

or IHS, if π1(M) = 0, H2,0(M) = C.

Bogomolov’s decomposition: Any hyperkähler manifold admits a finite cov-

ering which is a product of a torus and several simple hyperkähler manifolds.

Further on, all hyperkähler manifolds are assumed to be of maximal

holonomy.
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Existence of automorphisms

Aim of today’s talk: describe the automorphism group Aut(M) of a hy-

perkähler manifold in terms of invariants of M called MBM classes. Prove

the following theorem.

THEOREM: Let M be a hyperkähler manifold, with b2(M) > 5. Then M

has a deformation admitting an automorphism of infinite order, acting

on H1,1(M) with real eigenvalues α, β, α < 1 < β (“hyperbolically”).

This is joint work with Ekaterina Amerik.

THEOREM: Let M be a hyperkähler manifold, with b2(M) > 14. Then

M has a deformation admitting an authomorphism of infinite order,

acting on H1,1(M) unipotently (“parabolic action”).
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The Bogomolov-Beauville-Fujiki form

THEOREM: (Fujiki). Let η ∈ H2(M), and dimM = 2n, where M is hy-

perkähler. Then
∫
M η2n = cq(η, η)n, for some primitive integer quadratic

form q on H2(M,Z), and c > 0 a rational number.

Definition: This form is called Bogomolov-Beauville-Fujiki form. It is

defined by the Fujiki’s relation uniquely, up to a sign. The sign is

determined from the following formula (Bogomolov, Beauville)

λq(η, η) = 2
∫
X
η ∧ η ∧Ωn−1 ∧Ωn−1−

−
n− 1

n

(∫
X
η ∧Ωn−1 ∧Ωn

)(∫
X
η ∧Ωn ∧Ωn−1

)
where Ω is the holomorphic symplectic form, and λ > 0.

Remark: q has signature (3, b2 − 3). It is negative definite on primitive

forms, and positive definite on 〈Ω,Ω, ω〉, where ω is a Kähler form.

Unlike H2(K3,Z), the BBF form is usually not unimodular.
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Monodromy group of a hyperkähler manifold

DEFINITION: Let M be a hyperkähler manifold, and Mon(M) the group of

automorphisms of H2(M) generated by monodromy transform for all Gauss-

Manin local systems. Then Mon(M) is called the monodromy group of

M .

Theorem 1:

The group Mon(M) ⊂ O(H2(M,Z) has finite index in O(H2(M,Z)).

THEOREM: Let M be a hyperkähler manifold, Mon(M) the group of auto-

morphisms of H2(M) generated by monodromy transform for all Gauss-Manin

local systems, and MonI(M) the Hodge monodromy group, that is, a sub-

group of Mon(M) preserving the Hodge decomposition. Then Aut(M) sur-

jects to the subgroup of MonI(M) preserving the Kähler cone Kah(M),

and the kernel of this map is finite.

Proof: Follows from global Torelli theorem (this observation is due to E.

Markman).

5



Construction of automorphisms M. Verbitsky

MBM classes

DEFINITION: Negative class on a hyperkähler manifold is η ∈ H2(M,R) =

H2(M,R) satisfying q(η, η) < 0. It is effective if it is represented by a curve.

THEOREM: Let z ∈ H2(M,Z) be negative, and I, I ′ complex structures in

the same deformation class, such that z is of type (1,1) with respect to I and

I ′ and Pic(M) = 〈z〉. Then ±z is effective in (M, I) ⇔ iff it is effective in

(M, I ′).

REMARK: From now on, we identify H2(M) and H2(M) using the BBF

form. Under this identification, integer classes in H2(M) correspond to

rational classes in H2(M) (the form q is not unimodular).

DEFINITION: A negative class z ∈ H2(M,Z) on a hyperkähler manifold is

called an MBM class if there exist a deformation of M with Pic(M) = 〈z〉
such that λz is represented by a curve, for some λ 6= 0.
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MBM classes and the shape of the Kähler cone

THEOREM: Let (M, I) be a hyperkähler manifold, and S ⊂ H1,1(M, I) the

set of all MBM classes in H1,1(M, I). Consider the corresponding set of

hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M, I). Then the Kähler cone

of (M, I) is a connected component of Pos(M, I)\ ∪ S⊥, where Pos(M, I)

is a positive cone of (M, I). Moreover, for any connected component K of

Pos(M, I)\ ∪ S⊥, there exists γ ∈ O(H2(M)) in a monodromy group of M ,

and a hyperkähler manifold (M, I ′) birationally equivalent to (M, I), such that

γ(K) is a Kähler cone of (M, I ′).

REMARK: This implies that MBM classes correspond to faces of the

Kähler cone.

DEFINITION: Kähler chamber is a connected component of

Pos(M, I)\ ∪ S⊥.

CLAIM: The Hodge monodromy group maps Kähler chambers to Kähler

chambers.
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MBM classes and the Kähler cone: the picture

REMARK: For any negative vector z ∈ H2(M), the set z⊥∩Pos(M, I) either

has dense intersection with the interior of the Kähler chambers (if z is

not MBM), or is a union of walls of those (if z is MBM); that is, there

are no “barycentric partitions” in the decomposition of the positive cone into

the Kähler chambers.

Allowed partition Prohibited partition
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MBM classes and automorphisms

THEOREM: Let (M, I) be a hyperkähler manifold, Mon(M) the group of

automorphisms of H2(M) generated by monodromy transform for all Gauss-

Manin local systems, and MonI(M) the Hodge monodromy group, that is,

a subgroup of Mon(M) preserving the Hodge decomposition. Denote by

Auth(M, I) the image of the automorphism group in GL(H2(M,R)). Then

Auth(M, I) is a subgroup of MonI(M) preserving the Kähler cone Kah(M, I).

REMARK: The kernel of the natural map Aut(M)−→GL(H2(M,R)) is a

finite group which is independent from the choice of M in its defor-

mation class. It consists of “absolutely trianalytic” automorphisms of M :

automorphisms which are hyperkähler in all hyperkähler structures.

COROLLARY: Let (M, I) be a hyperkähler manifold such that there are no

MBM classes of type (1,1). Then Aut(M) surjects to MonI(M) with finite

kernel.

Proof: Indeed, for such manifold Kah(M, I) = Pos(M, I).
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Morrison-Kawamata cone conjecture

DEFINITION: An integer cohomology class a is primitive if it is not divisible
by integer numbers c > 1.

THEOREM: (a version of Morrison-Kawamata cone conjecture)
The group Mon(M) acts on the set of primitive MBM classes with
finitely many orbits.

Proof: Proven by Amerik-V., using homogeneous dynamics (Ratner theo-
rems, Dani-Margulis, Mozes-Shah).

COROLLARY: Let M be a hyperkähler manifold. Then there exists a
number N > 0, called MBM bound, such that any MBM class z satisfies
|q(z, z)| < N .

Proof: There are only finitely many primitive MBM classes, up to isometry
action, and they have finitely many squares.

Corollary 1: Let M be a hyperkähler manifold, N its MBM bound, and (M, I)
a deformation such that for any x ∈ H1,1

I (M,Z) one has q(x, x) > N . Then
(M, I) has no MBM classes of type (1,1), Kah(M, I) = Pos(M, I), and
Aut(M) surjects to MonI(M) with finite kernel.
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Non-zero minimum of a lattice

DEFINITION: Integer lattice, or quadratic lattice, or just lattice is Zn

equipped with an integer-valued quadratic form. When we speak of em-

bedding of lattices, we always assume that they are compatible with

the quadratic form.

DEFINITION: A sublattice Λ′ ⊂ Λ is called primitive if (Λ′ ⊗Z Q) ∩ Λ = Λ′.
A number a is represented by a lattice (Λ, q) if a = q(x, x) for some x ∈ Λ.

Non-zero minumum of a lattice is the number min6=0 Λ := minx |q(x, x)|,
taken over all x ∈ Λ with q(x, x) 6= 0.

THEOREM: Let (Λ, q) be a lattice of signature (n,m), n,m > 0, n+m > 5.

Fix a number N > 0. Then there exists a primitive sublattice Λ′ ⊂ Λ of

rank 2 with min 6=0 Λ′ > N.

Proof: Later today.
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Sublattices with MBM bound and automorphisms

DEFINITION: Let M be a hyperkähler manifold, Λ = H2(M,Z), and q the

BBF form. A primitive sublattice Λ′ ⊂ H2(M,Z) satisfies MBM bound if its

non-zero minimum is > N , where N is the MBM bound of M .

REMARK: By Torelli theorem, for any primitive sublattice Λ ⊂ H2(M,Z),

there exists a complex structure I such that Λ = H
1,1
I (M,Z).

THEOREM: Let M be a hyperkähler manifold, and Λ ⊂ H2(M,Z) a primitive

sublattice satisfying the MBM bound. Let (M, I) be a deformation of M

such that Λ = H
1,1
I (M,Z). Then the group of automorphisms Aut(M) =

MonI(M) surjects to a subgroup of finite index in O(Λ).

Proof: Since Λ = H
1,1
I (M,Z) satisfies the MBM bound, it contains no MBM

classes. By Corollary 1, this implies that Aut(M) surjects to MonI(M)

with finite kernel. Now, MonI(M) surjects to a finite index subgroup in

O(Λ), as follows from Theorem 1.
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Existence of hyperbolic automorphisms

THEOREM: Let M be a hyperkähler manifold, with b2(M) > 5. Then

M has a deformation admitting an automorphism of infinite order.

Proof. Step 1: Find a primitive sublattice of signature (1,1) Λ ⊂ H2(M,Z)

satisfying the MBM bound and not representing 0. Using Torelli theorem, we

construct a deformation M ′ of M which has Λ = H1,1(M ′) ∩H2(M ′,Z).

Proof. Step 2: For such M ′, the symplectic automorphisms surjects to a

finite index subgroup of O(Λ).

Proof. Step 3: O(Λ) has infinite order (follows from Dirichlet unit theorem).

Existence of parabolic automorphisms is proven in a similar way, but we need

a primitive sublattice Λ ⊂ H2(M,Z) of signature (2,1) representing 0 and with

min6=0(Λ) > N , where N is MBM bound.
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Existence of sublattices

PROBLEM: Let Λ be a non-degenerate, indefinite integer lattice of signature

(p, q). Find all (p′, q′) such that for all such Λ there exist primitive

sublattices Λ′ ⊂ Λ of signature (p′, q′) and with arbitrary high min 6=0(Λ).

REMARK: Meyer’s theorem implies that any indefinite lattice of rank > 5

represents 0. Therefore, this question is not very interesting for the usual

minimum, but it becomes highly non-trivial for min 6=0.

PROPOSITION: Let Λ be a non-degenerate, indefinite integer lattice rk Λ >
5, and N > 0 any number. Then Λ contains a primitive sublatice of

signature (1,1) with min6=0(Λ) > N.

Proof: We use the following elementary lemma.

Lemma 1: Let (Λ, q) be a diagonal rank 2 lattice with diagonal entries α1, α2

divisible by an odd power of p, αi = βip
2ni+1, such that the numbers βi are

not divisible by p and the equation β1x
2 + β2y

2 = 0 has no solutions modulo

p. Let v ∈ Λ ⊗ Q be any vector such that q(v, v) is an integer. Then this

integer is divisible by p.
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Existence of sublattices (2)

PROPOSITION: Let Λ be a non-degenerate, indefinite integer lattice with

rk Λ > 5, and N > 0 any number. Then Λ contains a primitive sublatice

of signature (1,1) with min6=0(Λ) > N.

Proof. Step 1: By Meyer’s Theorem, Λ has an isotropic vector (that is,

a vector v with q(v) = 0). The isotropic quadric {v ∈ L | q(v) = 0} has

infinitely many points if it has one, and not all of them are proportional. Take

two of such non-proportional points v and v′, and let v1 := av + bv′. Then

q(v1) = 2abq(v, v′). We may chose 2ab to be of any sign and such that

it has arbitrary large prime divisors in odd powers.

Step 2: It is always possible to find a vector w ∈ 〈v, v′〉⊥ such that q(w) is

divisible by an odd power of a suitable sufficiently large prime number p. Now

choose the multipliers a, b in such a way that the lattice Λ′ := 〈v1, w〉
satisfies assumptions of Lemma 1 and has signature (1,1).

REMARK: The lattice Λ′ does not represent 0, because it represents only

mumbers which are divisible by odd powers of p.
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Existence of sublattices (3)

THEOREM: (Nikulin, Witt...) Let Λ be a unimodular lattice of signature

(p, q), and Λ′ any lattice of signature (p′, q′) such that 2p′ 6 p,2q′ 6 q. Then

Λ′ admits a primitive embedding to Λ.

REMARK: Since one could take the quadratic form on Λ′, say, 10100q0, this

theorem gives partial solution to our problem for unimodular lattices. Two

caveats: (a) it does not work for non-unimodular Λ and (b) the bound 1/2 rk Λ

is a bit too high.

To apply it to our case, we find a rational embedding of a non-unimodular

Λ to Λ1 ⊗Z Q , where Λ1 is a diagonal lattice with eigenvalues ±q. This is

possible to do using Hilbert symbols and classification of rational lattices,

with rk Λ1 = rk Λ + 3. Then one takes a primitive sublattice Λ′ ⊂ Λ1 and its

intersection with Λ has arbitrarily big min0.

This makes an embedding from Λ0 of signature (1,2) to Λ of signature (3,11)

– clearly non-optimal.

QUESTION: Is it possible to optimize this construction?
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