Basic facts about hyperkahler and holomorphically symplectic manifolds

Tel Aviv University, July 11, 2024

Misha Verbitsky

M. Verbitsky

Complex manifolds

DEFINITION: Let *M* be a smooth manifold. An **almost complex structure** is an operator $I: TM \longrightarrow TM$ which satisfies $I^2 = -\operatorname{Id}_{TM}$.

The eigenvalues of this operator are $\pm \sqrt{-1}$. The corresponding eigenvalue decomposition is denoted $TM = T^{0,1}M \oplus T^{1,0}(M)$.

DEFINITION: An almost complex structure is **integrable** if $\forall X, Y \in T^{1,0}M$, one has $[X,Y] \in T^{1,0}M$. In this case *I* is called a **complex structure operator**. A manifold with an integrable almost complex structure is called a **complex manifold**.

THEOREM: (Newlander-Nirenberg) This definition is equivalent to the usual one.

REMARK: The commutator defines a $\mathbb{C}^{\infty}M$ -linear map $N := \Lambda^2(T^{1,0}) \longrightarrow T^{0,1}M$, called **the Nijenhuis tensor** of *I*. **One can represent** *N* **as a section of** $\Lambda^{2,0}(M) \otimes T^{0,1}M$.

Exercise: Prove that $\mathbb{C}P^n$ is a complex manifold, in the sense of the above definition.

Kähler manifolds

DEFINITION: A Riemannian metric g on an almost complex manifold M is called **Hermitian** if g(Ix, Iy) = g(x, y). In this case, $g(x, Iy) = g(Ix, I^2y) = -g(y, Ix)$, hence $\omega(x, y) := g(x, Iy)$ is skew-symmetric.

DEFINITION: The differential form $\omega \in \Lambda^{1,1}(M)$ is called **the Hermitian** form of (M, I, g).

REMARK: It is U(1)-invariant, hence of Hodge type (1,1).

DEFINITION: A complex Hermitian manifold (M, I, ω) is called Kähler if $d\omega = 0$. The cohomology class $[\omega] \in H^2(M)$ of a form ω is called the Kähler class of M, and ω the Kähler form.

Examples of Kähler manifolds.

Definition: Let $M = \mathbb{C}P^n$ be a complex projective space, and g a U(n + 1)invariant Riemannian form. It is called **Fubini-Study form on** $\mathbb{C}P^n$. The
Fubini-Study form is obtained by taking arbitrary Riemannian form and averaging with U(n + 1).

Remark: For any $x \in \mathbb{C}P^n$, the stabilizer St(x) is isomorphic to U(n). Fubini-Study form on $T_x\mathbb{C}P^n = \mathbb{C}^n$ is U(n)-invariant, hence unique up to a constant.

Claim: Fubini-Study form is Kähler. Indeed, $d\omega|_x$ is a U(n)-invariant 3-form on \mathbb{C}^n , but such a form must vanish, because $-\operatorname{Id} \in U(n)$

REMARK: The same argument works for all symmetric spaces.

Corollary: Every projective manifold (complex submanifold of $\mathbb{C}P^n$) is Kähler. Indeed, a restriction of a closed form is again closed.

M. Verbitsky

Connections

Notation: Let M be a smooth manifold, TM its tangent bundle, $\Lambda^i M$ the bundle of differential *i*-forms, $C^{\infty}M$ the smooth functions. The space of sections of a bundle B is denoted by B.

DEFINITION: A connection on a vector bundle *B* is a map $B \xrightarrow{\nabla} \Lambda^1 M \otimes B$ which satisfies

$$\nabla(fb) = df \otimes b + f\nabla b$$

for all $b \in B$, $f \in C^{\infty}M$.

REMARK: A connection ∇ on B gives a connection $B^* \xrightarrow{\nabla^*} \Lambda^1 M \otimes B^*$ on the dual bundle, by the formula

$$d(\langle b,\beta\rangle) = \langle \nabla b,\beta\rangle + \langle b,\nabla^*\beta\rangle$$

These connections are usually denoted by the same letter ∇ .

REMARK: For any tensor bundle $\mathcal{B}_1 := B^* \otimes B^* \otimes ... \otimes B^* \otimes B \otimes B \otimes ... \otimes B$ a connection on *B* defines a connection on \mathcal{B}_1 using the Leibniz formula:

$$\nabla(b_1 \otimes b_2) = \nabla(b_1) \otimes b_2 + b_1 \otimes \nabla(b_2).$$

Levi-Civita connection

DEFINITION: Torsion of a connection ∇ is $T(X, Y) := \nabla_X Y - \nabla_Y X - [X, Y]$, where $X, Y \in TM$.

An exercise: Prove that torsion is a $C^{\infty}M$ -linear.

DEFINITION: Let (M,g) be a Riemannian manifold. A connection ∇ is called **orthogonal** if $\nabla(g) = 0$. It is called **Levi-Civita** if it is torsion-free.

THEOREM: ("the main theorem of differential geometry") **For any Riemannian manifold, the Levi-Civita connection exists, and it is unique**.

Levi-Civita connection and Kähler geometry

THEOREM: Let (M, I, g) be an almost complex Hermitian manifold. Then the following conditions are equivalent.

(i) The complex structure I is integrable, and the Hermitian form ω is closed.

(ii) One has $\nabla(I) = 0$, where ∇ is the Levi-Civita connection.

REMARK: The implication (ii) \Rightarrow (i) is clear. Indeed, $[X,Y] = \nabla_X Y - \nabla_Y X$, hence it is a (1,0)-vector field when X, Y are of type (1,0), and then I is integrable. Also, $d\omega = 0$, because ∇ is torsion-free, and $d\omega = \operatorname{Alt}(\nabla \omega)$.

The implication (i) \Rightarrow (ii) is proven by the same argument as used to construct the Levi-Civita connection.

Holonomy group

DEFINITION: (Cartan, 1923) Let (B, ∇) be a vector bundle with connection over M. For each loop γ based in $x \in M$, let $V_{\gamma,\nabla}$: $B|_x \longrightarrow B|_x$ be the corresponding parallel transport along the connection. The holonomy group of (B, ∇) is a group generated by $V_{\gamma,\nabla}$, for all loops γ . If one takes all contractible loops instead, $V_{\gamma,\nabla}$ generates the local holonomy, or the restricted holonomy group.

REMARK: A bundle is **flat** (has vanishing curvature) **if and only if its restricted holonomy vanishes.**

REMARK: If $\nabla(\varphi) = 0$ for some tensor $\varphi \in B^{\otimes i} \otimes (B^*)^{\otimes j}$, the holonomy group preserves φ .

DEFINITION: Holonomy of a Riemannian manifold is holonomy of its Levi-Civita connection.

EXAMPLE: Holonomy of a Riemannian manifold lies in $O(T_x M, g|_x) = O(n)$.

EXAMPLE: Holonomy of a Kähler manifold lies in $U(T_xM, g|_x, I|_x) = U(n)$.

REMARK: The holonomy group does not depend on the choice of a point $x \in M$.

Ambrose-Singer theorem

DEFINITION: Let (B, ∇) be a bundle with connection, $\Theta \in \Lambda^2(M) \otimes \text{End}(B)$ its curvature, and $a, b \in T_x M$ tangent vectors. An endomorphism $\Theta(a, b) \in \text{End}(B)|_x$ is called a curvature element.

THEOREM: (Ambrose-Singer) The restricted holonomy group of B, ∇ at $z \in M$ is a Lie group, with its Lie algebra generated by all curvature elements $\Theta(a, b) \in \text{End}(B)|_x$ transported to z along all paths.

Holonomy representation

DEFINITION: Let (M,g) be a Riemannian manifold, G its holonomy group. A holonomy representation is the natural action of G on TM.

THEOREM: (de Rham) Suppose that the holonomy representation is not irreducible: $T_xM = V_1 \oplus V_2$. Then *M* locally splits as $M = M_1 \times M_2$, with $V_1 = TM_1$, $V_2 = TM_2$.

Proof. Step 1: Using the parallel transform, we extend $V_1 \oplus V_2$ to a **splitting** of vector bundles $TM = B_1 \oplus B_2$, preserved by holonomy.

Step 2: The sub-bundles B_1 , $B_2 \subset TM$ are integrable: $[B_1, B_1] \subset B_i$ (the Levi-Civita connection is torsion-free)

Step 3: Taking the leaves of these integrable distributions, we obtain a local decomposition $M = M_1 \times M_2$, with $V_1 = TM_1$, $V_2 = TM_2$.

Step 4: Since the splitting $TM = B_1 \oplus B_2$ is preserved by the connection, **the leaves** M_1, M_2 are totally geodesic.

Step 5: Therefore, **locally** *M* **splits (as a Riemannian manifold)**: $M = M_1 \times M_2$, where M_1, M_2 are any leaves of these foliations.

The de Rham splitting theorem

COROLLARY: Let M be a Riemannian manifold, and $\mathcal{H}ol_0(M) \xrightarrow{\rho} End(T_xM)$ a reduced holonomy representation. Suppose that ρ is reducible: $T_xM = V_1 \oplus V_2 \oplus ... \oplus V_k$. Then $G = \mathcal{H}ol_0(M)$ also splits: $G = G_1 \times G_2 \times ... \times G_k$, with each G_i acting trivially on all V_j with $j \neq i$.

Proof: Locally, this statement follows from the local splitting of M proven above. To obtain it globally in M, use the Lasso Lemma.

THEOREM: (de Rham) A complete, simply connected Riemannian manifold with non-irreducible holonomy **splits as a Riemannian product**.

REMARK: It is easy to find non-complete or non-simply connected counterexamples to de Rham theorem.

Simons' theorem

DEFINITION: A symmetric space is a complete Riemannian manifold X such that for all $x \in X$ there exists an isometry of X fixing x and acting as -1 in $T_x X$.

EXERCISE: Prove that isometry group acts transitively on any symmetric manifold.

THEOREM: (Simons, 1962) Let M be a manifold with irreducible holonomy. **Then either** M **is locally symmetric, or** $\mathcal{H}ol(M)$ **acts transitively on the unit sphere in** T_xM .

James Harris Simons, 1938-2024

12

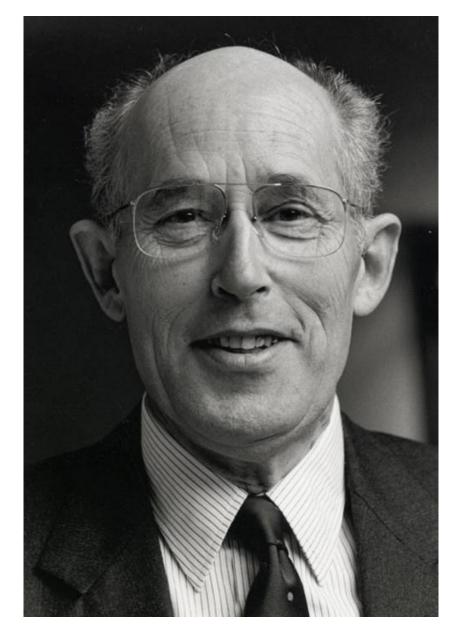
Berger's theorem

THEOREM: (Berger's theorem, 1955) Let G be an irreducible holonomy group of a Riemannian manifold which is not locally symmetric. Then G belongs to the Berger's list:

Berger's list	
Holonomy	Geometry
$SO(n)$ acting on \mathbb{R}^n	Riemannian manifolds
$U(n)$ acting on \mathbb{R}^{2n}	Kähler manifolds
$SU(n)$ acting on \mathbb{R}^{2n} , $n>2$	Calabi-Yau manifolds
$Sp(n)$ acting on \mathbb{R}^{4n}	hyperkähler manifolds
$Sp(n) imes Sp(1)/\{\pm 1\}$	quaternionic-Kähler
acting on \mathbb{R}^{4n} , $n>1$	manifolds
G_2 acting on \mathbb{R}^7	G ₂ -manifolds
$Spin(7)$ acting on \mathbb{R}^8	Spin(7)-manifolds

REMARK: There is one more group acting transitively on a sphere: Spin(9) acting on $S^{15} \subset \mathbb{R}^{16}$. In 1968, D. Alekseevsky has shown that a manifold with holonomy Spin(9) is always locally symmetric.

REMARK: A similar list exists for non-orthogonal irreducible holonomy without torsion (Merkulov, Schwachhöfer, 1999).



Marcel Berger (1927 - 2016)

Hyperkähler manifolds

REMARK: A Riemannian manifold is Kähler if and only if the holonomy of its Levi-Civita connection belongs to U(n).

DEFINITION: Let $V = \mathbb{R}^{4n} = \mathbb{H}^n$ be a quaternionic vector space. Quaternionic Hermitian form is a Eucidean metric h on V which is invariant under the action of I, J, K. A unitary quaternionic map is an \mathbb{H} -linear map $V \longrightarrow V$ which preserves the metric.

DEFINITION: Sp $(n) = U(n, \mathbb{H})$ is the group of unitary quaternionic matrices.

DEFINITION: A hyperkähler manifold is a Riemannian manifold such that the holonomy of its Levi-Civita connection belongs to Sp(n)

Hyperkähler manifolds (2)

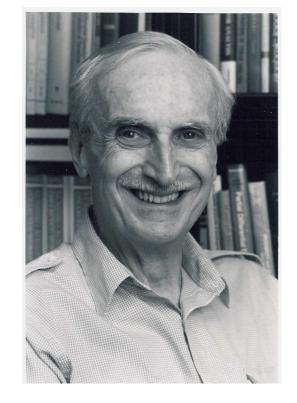
DEFINITION: (E. Calabi, 1978)

Let (M,g) be a Riemannian manifold equipped with three complex structure operators I, J, K: $TM \longrightarrow TM$, satisfying the quaternionic relations

$$I^2 = J^2 = K^2 = IJK = - \text{Id}$$
.

Suppose that I, J, K are Kähler. Then (M, I, J, K, g) is called **hyperkähler**.

REMARK: This is the same as $\mathcal{H}ol(M) \subset Sp(n)$. Indeed, if $\mathcal{H}ol(M) \subset Sp(n)$, we have 3 complex structures $I, J, K : TM \longrightarrow TM$, such that $\nabla(I) = \nabla(J) = \nabla(K) = 0$, which implies that I, J, K are Kähler. Conversely, if I, J, K are Kähler, we have $\nabla(I) = \nabla(J) = \nabla(K) = 0$.



Eugenio Calabi, b. 1923

Holomorphic symplectic geometry

REMARK: A hyperkähler manifold (M, I, J, K) is equipped with 3 symplectic forms ω_I , ω_J , ω_K , with

$$\omega_I(x,y) := g(x,Iy), \ \omega_J(x,y) := g(x,Jy), \ \omega_K(x,y) := g(x,Ky).$$

LEMMA: The form $\Omega := \omega_J + \sqrt{-1}\omega_K$ is a holomorphic symplectic 2-form on (M, I).

Converse is also true, as follows from the famous conjecture, made by Calabi in 1952.

THEOREM: (S.-T. Yau, 1978)

Let M be a compact, holomorphically symplectic Kähler manifold. Then M admits a hyperkähler metric, which is uniquely determined by the cohomology class of its Kähler form ω_I .

Hyperkähler geometry is essentially the same as holomorphic symplectic geometry



Eugenio Calabi (1923-2023), Shing-Tung Yau (b. 04.04.1949)

Bogomolov's decomposition theorem

THEOREM: (Cheeger-Gromoll) Let M be a compact Ricci-flat Riemannian manifold with $\pi_1(M)$ infinite. Then a universal covering of M is a product of \mathbb{R} and a Ricci-flat manifold.

COROLLARY: A fundamental group of a compact Ricci-flat Riemannian manifold is "virtually polycyclic": it has a finite index free abelian sub-group.

REMARK: This is equivalent to any compact Ricci-flat manifold having a finite covering which has free abelian fundamental group.

REMARK: This statement contains the Bieberbach's solution of Hilbert's 18-th problem on classification of crystallographic groups.

THEOREM: (Bogomolov's decomposition) Let M be a compact, Ricciflat Kaehler manifold. Then there exists a finite covering \tilde{M} of M which is a product of Kaehler manifolds of the following form:

 $\tilde{M} = T \times M_1 \times \ldots \times M_i \times K_1 \times \ldots \times K_j,$

with all M_i , K_i simply connected, T a torus, and $Hol(M_l) = Sp(n_l)$, $Hol(K_l) = SU(m_l)$

The Bogomolov-Beauville-Fujiki (BBF) form

THEOREM: (Fujiki). Let $\eta \in H^2(M)$, and dim M = 2n, where M is hyperkähler. Then $\int_M \eta^{2n} = cq(\eta, \eta)^n$, for some primitive integer quadratic form q on $H^2(M, \mathbb{Z})$, and c > 0 a rational number.

Definition: This form is called **Bogomolov-Beauville-Fujiki (BBF) form**. **It is defined by the Fujiki's relation uniquely, up to a sign.** The sign is determined from the following formula (Bogomolov, Beauville)

$$\lambda q(\eta, \eta) = \int_X \eta \wedge \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^{n-1} - \frac{n-1}{n} \left(\int_X \eta \wedge \Omega^{n-1} \wedge \overline{\Omega}^n \right) \left(\int_X \eta \wedge \Omega^n \wedge \overline{\Omega}^{n-1} \right)$$

where Ω is the holomorphic symplectic form, and $\lambda > 0$.

Remark: *q* has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on $\langle \Omega, \overline{\Omega}, \omega \rangle$, where ω is a Kähler form.

COROLLARY: The space $H^{1,1}(M)$ of *I*-invariant cohomology classes has signature $(1, b_2 - 2)$ (hyperbolic signature).