Multiplicity of singularities is not a bi-Lipschitz invariant

Misha Verbitsky

Joint work with L. Birbrair, A. Fernandes, J. E. Sampaio

Estruturas geométricas em variedades
January 4, 2023.

Zariski conjecture

PROPOSITION: Let Z be a germ of a complex hypersurface in \mathbb{C}^{n}. Then a generic linear projection $\pi: Z \longrightarrow \mathbb{C}^{n-1}$ is a finite map (that is, Z is a graph of a multi-valued function on \mathbb{C}^{n-1}.)

DEFINITION: Degree of this map (number of preimages) is called multiplicity of the singularity $z \in Z$.

REMARK: It is independent from the complex embedding $Z \subset \mathbb{C}^{n}$. The same way one defines multiplicity for any singularity.

Zariski multiplicity conjecture (1971): Let $Z_{1}, Z_{2} \subset \mathbb{C}^{n}$ be germs of hypersurfaces in 0 , and $\Phi: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ a germ of a homeomorphism inducing a homeomorphism between Z_{1} and Z_{2}. Then Z_{1}, Z_{2} have the same multiplicity.

REMARK: Zariski has proven this conjecture when $\operatorname{dim} Z=1$. For any other dimension Zariski conjecture is open.

What is known about Zariski conjecture. Bi-Lipschitz maps.

(Campo, Lê, 1973): Zariski conjecture is true if Z_{1} is smooth
Zariski conjecture is known for $\operatorname{dim} Z_{i}=2$ and:

1. multiplicity 2 (Navarro Aznar, 1980)
2. isolated, homogeneus singularities (Xu-Yau, 1989)

DEFINITION: A map $f: M_{1} \longrightarrow M_{2}$ between metric spaces is bi-Lipschitz if there is a constant $C>1$ such that for any $x, y \in M_{1}$, one has

$$
C^{-1} d(x, y) \leqslant d(f(x), f(y)) \leqslant C d(x, y)
$$

Then C is called (bi-)Lipschitz constant.
DEFINITION: Two germs $Z, Z^{\prime} \subset \mathbb{C}^{n}$ are called ambient bi-Lipschitz equivalent if they are homeomorphic, and this homeomorphism is induced by a bi-Lipschitz map on \mathbb{C}^{n}.

THEOREM: (Risler-Trotman, 1980) Anbient bi-Lipschitz equivalent singularities have the same multiplicities.

Generalizations of Risler-Trotman

What about other dimensions?
THEOREM: (Comte, 1998) Let $Z_{1}, Z_{2} \subset \mathbb{C}^{n}$ be germs of k-dimensional subvarieties. Then there exists a constant ε, depending only on k and n, such that any germs $Z_{1}, Z_{2} \subset \mathbb{C}^{n}$ which are ambient bi-Lipschitz invariant with Lipschitz constant $C<1+\varepsilon$ have the same multiplicity.

QUESTION: Can we drop the $C<1+\varepsilon$ restriction in this theorem?
THEOREM: (L. Birbrair, A. Fernandes, D. T. Lê and J. E. Sampaio) Let $Z \subset \mathbb{C}^{n}$ be a germ subvariety which is ambient bi-Lipschitz equivalent to smooth. Then Z is smooth.

THEOREM: (J. F. de Bobadilla, A. Fernandes and J. E. Sampaio) Let $Z_{1}, Z_{2} \subset \mathbb{C}^{n}$ be germs of k-dimensional subvarieties of dimension 1 or 2, which are ambient bi-Lipschitz invariant. Then they have the same multiplicity.

THEOREM: (L. Birbrair, A. Fernandes, J. E. Sampaio, V.) There are ambient bi-Lipschitz equivalent subvarieties of dimension 3 with isolated singularities which have non-equal multiplicities.

Zariski multiplicity conjecture for families
CONJECTURE: (Zariski multiplicity conjecture for families; still open) Let X_{t} be a family of isolated singularities of hypersurfaces which is topologically trivial (that is, the group of homeomorphisms of the family acts transitively on fibers). Then the multiplicities of X_{t} are constant.

DEFINITION: Let X be a germ of hypersurface in \mathbb{C}^{n} defined by an analytic equation $f=0$, where f has no multiple factors. Milnor number of X is $\operatorname{dim} \mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right] /\left\langle\frac{\partial f}{\partial x_{i}}\right\rangle$. A μ-constant family is a family of isolated singularities with constant Milnor number.
THEOREM: (Milnor, 1968)
Any topologically trivial family is μ-constant.
THEOREM: If $n \neq 3$, any μ-constant family is topologically trivial. Proof: Lê-Ramanujam (1997); for $n=3$ this is still open.

THEOREM: (J. F. de Bobadilla, T. Petka, 2021)
Any μ-constant family has constant multiplicity.
REMARK: This implies the Zariski conjecture for families.
REMARK: Its proof is based on MacLean's algebraic-geometric interpretatuon of Floer cohomology.

Homogeneous singularities

DEFINITION: Let $Z \subset \mathbb{C} P^{n}$ be a projective variety, given by a homogeneous polynomials $P_{1}, \ldots, P_{k} \in \mathbb{C}\left[z_{1}, \ldots, z_{n+1}\right]$ The set $C(Z)$ of common zeros of $P_{1}, \ldots ., P_{k}$ in \mathbb{C}^{n+1} is called projective cone of Z. Clearly, $C(Z) \backslash\{0\}$ is fibered over Z with fiber \mathbb{C}^{n}.

DEFINITION: Homogeneous singularity is a singularity of a projective cone.

PROPOSITION: Let $X \subset \mathbb{C} P^{n}$ be a projective variety, $x \in X$ a point with homogeneous singularity, and $Z \subset \mathbb{C} P^{n-1}$ its projectivized tangent cone. Then the multiplicity of X in x is equal to the degree of Z.

Strategy of finding bi-Lipschitz equivalent germs of different degree: find two projective varieties X, Y of different degree such that their cones are diffeomorphic.

THEOREM: There exists two 2-dimensional projective varieties $X_{1}, X_{2} \subset$ $\mathbb{C} P^{n}$, both biholomorphic to $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$, such that the cones $C\left(X_{1}\right) \subset \mathbb{C}^{n+1}$ and $C\left(X_{2}\right) \subset \mathbb{C}^{n+1}$ are bi-Lipschitz equivalent, but X_{1}, X_{2} have different degree.

Linking form

CLAIM: Let M be a compact manifold. Denote by $\tau H^{n-i}(M)$ the torsion part of cohomology. Then

$$
\tau H^{n-i}(M)=\operatorname{Ext}\left(H_{n-i-1}(M), \mathbb{Z}\right)=\operatorname{Hom}\left(\tau H_{n-i-1}(M), \mathbb{Q} / \mathbb{Z}\right)
$$

DEFINITION: Let M be an odd-dimensional manifold, $\operatorname{dim} M=2 k+1$. Define the linking form

$$
\tau H_{k}(M) \otimes \tau H_{k}(M) \longrightarrow \mathbb{Q} / \mathbb{Z}
$$

using the isomorphism $\tau H^{k+1} M=\operatorname{Hom}\left(\tau H_{k} M, \mathbb{Q} / \mathbb{Z}\right)$ and the Poincaré isomorphism $H_{k}(M)=H^{k+1} M$.

REMARK: If M is rational homology sphere, the linking form σ is symmetric when n is odd, and antisymmetric otherwise. For a 5-manifold M, σ is antisymmetric when M is spin.

Classification of 5-manifolds

DEFINITION: A simply connected, compact, oriented 5-manifold is called Smale-Barden manifold.

The Smale-Barden manifolds are uniquely determined by their second Stiefel-Whitney class and the linking form.

THEOREM: Let X, X^{\prime} be two Smale-Barden manifolds. Assume that $H^{2}(X)=$ $H^{2}\left(X^{\prime}\right)$ and this isomorphism is compatible with the linking form and preserves the second Stiefel-Whitney class. Then X is diffeomorphic to X^{\prime}.

COROLLARY: There exists only two Smale-Barden manifolds M with $H^{2}(M)=\mathbb{Z}$: the product $S^{2} \times S^{3}$ and the total space of a non-trivial S^{3}-bundle over S^{2}.

Proof: Indeed, the linking form on \mathbb{Z} vanishes, therefore the manifold is uniquely determined by the Stiefel-Whitney class $w_{2}(M)$. Hence we have only two possibilities: $w_{2}(M)=0$ and $w_{2}(M) \neq 0$.

S^{1}-fibrations over projective manifolds

Proposition 1: Let $\pi: M \longrightarrow B$ be a simply connected 5-manifold obtained as a total space of an S^{1}-bundle L over $B=\mathbb{C} P^{1} \times \mathbb{C} P^{1}$. Then $H^{2}(M)$ is torsion-free, and M is diffeomorphic to $S^{2} \times S^{3}$.

Proof. Step 1: Universal coefficients formula gives an exact sequence

$$
0 \longrightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(H_{1}(M ; \mathbb{Z}), \mathbb{Z}\right) \longrightarrow H^{2}(M ; \mathbb{Z}) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(H_{2}(M ; \mathbb{Z}), \mathbb{Z}\right) \longrightarrow 0 .
$$

This implies that $H^{2}(M ; \mathbb{Z})$ is torsion-free.
Step 2: Consider the following exact sequence of homotopy groups

$$
0 \longrightarrow \pi_{2}(M) \longrightarrow \pi_{2}(B) \xrightarrow{\varphi} \pi_{1}\left(S^{1}\right) \longrightarrow \pi_{1}(M)=0
$$

Since $\pi_{1}(M)=0$, the map φ, representing the first Chern class of L, is surjective. This exact sequence becomes

$$
0 \longrightarrow \pi_{2}(M) \longrightarrow \mathbb{Z}^{2} \longrightarrow \mathbb{Z} \longrightarrow 0
$$

giving $\pi_{2}(M)=\mathbb{Z}$, and $H^{2}(M)=\mathbb{Z}$ because $H^{2}(M)$ is torsion-free.
Step 3: To deduce Proposition 1 from the Smale-Barden classification, it remains to show that $w_{2}(M)=0$. However, $w_{2}(M)=\pi^{*}\left(w_{2}(B)\right)$ and the latter vanishes, because $w_{2}\left(S^{2}\right)=0$.

Links of projective cones of $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$

Proposition 2: Let $X \subset \mathbb{C} P^{n}$ be a variety isomorphic to $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$, and $S:=C(X) \cap S^{2 n+1}$ its link. Assume that and $\left.\mathcal{O}(1)\right|_{X}=\mathcal{O}(a, b)$. Then X has degree $2 a b$. If, in addition, a and b are relatively prime, the link of $C(X)$ is diffeomorphic to $S^{2} \times S^{3}$.

Proof. Step 1: Clearly, $c_{1}(\Theta(a, b))^{2}=2 a b$. On the other hand, degree of a subvariety $X \subset \mathbb{C} P^{n}$ is its intersection with the top power of the fundamental class $[H]=c_{1}(\mathcal{O}(1))$ of the hyperplane section H. This gives deg $X=2 a b=$ $c_{1}(\Theta(a, b))^{2}=2 a b$.

Step 2: Consider the homotopy exact sequence

$$
0 \longrightarrow \pi_{2}(S) \longrightarrow \pi_{2}(X) \xrightarrow{\varphi} \pi_{1}\left(S^{1}\right) \longrightarrow \pi_{1}(S) \longrightarrow 0
$$

for the circle bundle $\pi: S \longrightarrow X$. Since the map φ represents the first Chern class of $\left.\mathcal{O}(1)\right|_{X}$, it is obtained as a quotient of \mathbb{Z}^{2} by a subgroup generated by (a, b), and this map is surjective because a and b are relatively prime. Then $\pi_{1}(M)=0$, and Proposition 1 implies that S is diffeomorphic to $S^{2} \times S^{3}$.

Multiplicity of singularities is not a bi-Lipschitz invariant

THEOREM: There exists two 2-dimensional projective varieties $X_{1}, X_{2} \subset$ $\mathbb{C} P^{n}$, both biholomorphic to $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$, such that the cones $C\left(X_{1}\right) \subset \mathbb{C}^{n+1}$ and $C\left(X_{2}\right) \subset \mathbb{C}^{n+1}$ are bi-Lipschitz equivalent, but X_{1}, X_{2} have different degree.

Proof. Step 1: Consider the link of the singularity $S_{i}:=C\left(X_{i}\right) \cap S^{2 n+1}$, where $S^{2 n+1}$ is the unit sphere centered in 0. Clearly, a bi-Lipschitz map from S_{1} to S_{2} induces a bi-Lipschitz map of their cones. Moreover, any diffeomorphism of the sphere $S^{2 n+1}$ to itself mapping S_{1} to S_{2} induces a bi-Lipschitz map of the ambient vector space \mathbb{C}^{n+1}, identified with the Riemannian cone of $S^{2 n+1}$, mapping $C\left(X_{1}\right)$ to $C\left(X_{2}\right)$.

Step 2: Any diffeomorphism of a smooth subvariety $Z \subset S^{2 n+1}$ to $Z^{\prime} \subset S^{2 n+1}$ can be extended to a diffeomorphism of $S^{2 n+1}$ to itself, if $2 \operatorname{dim} Z+1<$ $2 n+1$. However, dimension of the ambient space can be increased arbitrarily by adding extra variables. Therefore, to prove Theorem it would suffice to find X_{1}, X_{2} such that the corresponding links S_{1}, S_{2} are diffeomorphic. This follows from Proposition 2.

