Instanton bundles on $\mathbb{C}P^3$ and special holonomies

Misha Verbitsky

The Seventh Congress of Romanian Mathematicians

Brașov, July 1, 2011

Instanton bundles

DEFINITION: An mathematical instanton bundle on $\mathbb{C}P^n$ is a holomorphic bundle *E* with $c_1(E) = 0$ which satisfies

- 1. For $n \ge 2$, $H^0(E(-1)) = H^n(E(-n)) = 0$.
- 2. For $n \ge 3$, $H^1(E(-2)) = H^{n-1}(E(1-n)) = 0$.
- 3. For $n \ge 4$, $H^p(E(k)) = 0$, $2 \le p \le n-2$ and $\forall k$.

REMARK: Mathematical instanton bundles are stable.

DEFINITION: Let $C \subset \mathbb{C}P^n$ be a projective subspace of codimension 2. **Framing** of a holomorphic bundle E is a trivialization of $E|_C$.

The main result of this talk: The moduli space of framed instantons on $\mathbb{C}P^3$ is smooth. The moduli of rank 2 instantons on $\mathbb{C}P^3$ is smooth.

(A joint work with Marcos Jardim).

Plan of the talk.

- 1. Hyperkähler manifolds, hyperkähler reduction and quiver varieties.
- 2. Complexification of a hyperkähler manifold and its twistor space.
- 3. Trihyperkähler reduction and the space of instantons.

Hyperkähler manifolds

DEFINITION: A hyperkähler structure on a manifold M is a Riemannian structure g and a triple of complex structures I, J, K, satisfying quaternionic relations $I \circ J = -J \circ I = K$, such that g is Kähler for I, J, K.

REMARK: A hyperkähler manifold has three symplectic forms $\omega_I := g(I, \cdot), \ \omega_J := g(J, \cdot), \ \omega_K := g(K, \cdot).$

REMARK: This is equivalent to $\nabla I = \nabla J = \nabla K = 0$: the parallel translation along the connection preserves I, J, K.

REMARK: The form $\Omega := \omega_J + \sqrt{-1} \omega_K$ is holomorphic and symplectic on (M, I).

DEFINITION: Let M be a Riemannian manifold, $x \in M$ a point. The subgroup of $GL(T_xM)$ generated by parallel translations (along all paths) is called **the holonomy group** of M.

REMARK: A hyperkähler manifold can be defined as a manifold which has holonomy in Sp(n) (the group of all endomorphisms preserving I, J, K).

Hyperkähler reduction

DEFINITION: Let G be a compact Lie group, ρ its action on a hyperkähler manifold M by hyperkähler isometries, and \mathfrak{g}^* a dual space to its Lie algebra. A hyperkähler moment map is a G-equivariant smooth map $\mu : M \to \mathfrak{g}^* \otimes \mathbb{R}^3$ such that $\langle \mu_i(v), g \rangle = \omega_i(v, d\rho(g))$, for every $v \in TM$, $g \in \mathfrak{g}$ and i = 1, 2, 3, where ω_i is one three Kähler forms associated with the hyperkähler structure.

DEFINITION: Let ξ_1, ξ_2, ξ_3 be three *G*-invariant vectors in \mathfrak{g}^* . The quotient manifold $M/\!\!/\!/ G := \mu^{-1}(\xi_1, \xi_2, \xi_3)/G$ is called **the hyperkähler quotient** of *M*.

THEOREM: (Hitchin, Karlhede, Lindström, Roček) **The quotient** $M/\!\!/ G$ is hyperkaehler.

Quiver representations

DEFINITION: A **quiver** is an oriented graph. A **quiver representation** is a diagram of complex Hermitian vector spaces and arrows associated with a quiver:

Here, V_i are vector spaces, and φ_i linear maps.

REMARK: If one fixes the spaces V_i , the space of quiver representations is a Hermitian vector space.

Quiver varieties

Starting from a single graph, one can double it up, as follows, obtaining a Nakajima double quiver.

A Nakajima quiver for the Dynkin diagram D_5 .

CLAIM: The space M of representations of a Nakajima's double quiver is a quaternionic vector space, and the group $G := U(V_1) \times U(V_2) \times ... \times U(V_n)$ acts on M preserving the quaternionic structure.

DEFINITION: A Nakajima quiver variety is a quotient $M/\!\!/ G$.

Hyperkähler manifolds as quiver varieties

Many non-compact manifolds are obtained as quiver varieties.

EXAMPLE: A 4-dimensional ALE (asymptotically locally Euclidean) space obtained as a resolution of a du Val singularity, that is, a quotient \mathbb{C}^2/G , where $G \subset SU(2)$ is a finite group.

REMARK: Since finite subgroups of SU(2) are classified by the Dynkin diagrams of type A,D,E, these ALE quotients are called **ALE spaces of A-D-E type**.

EXAMPLE: A Hilbert scheme of points on an ALE space of A-D-E type.

EXAMPLE: The moduli asymptotically flat Hermitian Yang-Mills connections on ALE spaces of A-D-E type.

The most important for us example is:

EXAMPLE: The moduli of framed instantons on $\mathbb{C}P^2$ is a quiver variety, hence hyperkähler. In particular, it is smooth and connected.

Complexification of a manifold

DEFINITION: Let M be a complex manifold, equipped with an anticomplex involution ι . The fixed point set $M_{\mathbb{R}}$ of ι is called **a real analytic manifold**, and a germ of M in $M_{\mathbb{R}}$ is called **a complexification** of $M_{\mathbb{R}}$.

QUESTION: What is a complexification of a Kähler manifold (considered as real analytic variety)?

THEOREM: (D. Kaledin, B. Feix) Let M be a real analytic Kähler manifold, and $M_{\mathbb{C}}$ its complexification. Then $M_{\mathbb{C}}$ admits a hyperkähler structure ture, determined uniquely and functorially by the Kähler structure on M.

QUESTION: What is a complexification of a hyperkähler manifold?

ANSWER: Trisymplectic manifolds!

Twistor space

DEFINITION: Induced complex structures on a hyperkähler manifold are complex structures of form $S^2 \cong \{L := aI + bJ + cK, a^2 + b^2 + c^2 = 1.\}$ **They are usually non-algebraic**. Indeed, if *M* is compact, for generic *a*, *b*, *c*, (*M*, *L*) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkähler manifold is a complex manifold obtained by gluing these complex structures into a holomorphic family over $\mathbb{C}P^1$. More formally:

Let $\mathsf{Tw}(M) := M \times S^2$. Consider the complex structure $I_m : T_m M \to T_m M$ on M induced by $J \in S^2 \subset \mathbb{H}$. Let I_J denote the complex structure on $S^2 = \mathbb{C}P^1$.

The operator $I_{\mathsf{T}\mathsf{W}} = I_m \oplus I_J : T_x \mathsf{T}\mathsf{W}(M) \to T_x \mathsf{T}\mathsf{W}(M)$ satisfies $I_{\mathsf{T}\mathsf{W}}^{=} - \mathsf{Id}$. It **defines an almost complex structure on** $\mathsf{T}\mathsf{W}(M)$. This almost complex structure is known to be integrable (Obata, Salamon)

EXAMPLE: If
$$M = \mathbb{H}^n$$
, $\mathsf{Tw}(M) = \mathsf{Tot}(\mathcal{O}(1)^{\oplus n}) \cong \mathbb{C}P^{2n+1} \setminus \mathbb{C}P^{2n-1}$

REMARK: For *M* compact, Tw(M) never admits a Kähler structure.

Rational curves on Tw(M).

REMARK: The twistor space has many rational curves.

DEFINITION: Denote by Sec(M) the space of holomorphic sections of the twistor fibration $Tw(M) \xrightarrow{\pi} \mathbb{C}P^1$.

DEFINITION: For each point $m \in M$, one has a horizontal section $C_m := \{m\} \times \mathbb{C}P^1$ of π . The space of horizontal sections is denoted $Sec_{hor}(M) \subset Sec(M)$

REMARK: The space of horizontal sections of π is identified with M. The normal bundle $NC_m = \mathcal{O}(1)^{\dim M}$. Therefore, **some neighbourhood** of $Sec_{hor}(M) \subset Sec(M)$ is a smooth manifold of dimension $2 \dim M$.

DEFINITION: A twistor section $C \subset \mathsf{Tw}(M)$ is called regular, if $NC = \mathcal{O}(1)^{\dim M}$.

CLAIM: For any $I \neq J \in \mathbb{C}P^n$, consider the evaluation map $Sec(M) \xrightarrow{E_{I,J}} (M,I) \times (M,J)$, $s \longrightarrow s(I) \times s(J)$. Then $E_{I,J}$ is an isomorphism around the set $Sec_0(M)$ of regular sections.

Complexification of a hyperkähler manifold.

REMARK: Consider an anticomplex involution $\mathsf{Tw}(M) \xrightarrow{\iota} \mathsf{Tw}(M)$ mapping (m,t) to (m,i(t)), where $i : \mathbb{C}P^1 \longrightarrow \mathbb{C}P^1$ is a central symmetry. Then $\mathsf{Sec}_{hor}(M) = M$ is a component of the fixed set of ι .

COROLLARY: Sec(M) is a complexification of M.

QUESTION: What are geometric structures on Sec(M)?

Answer 1: For compact M, Sec(M) is holomorphically convex (Stein if dim M = 2).

Answer 2: The space $Sec_0(M)$ admits a holomorphic, torsion-free connection with holonomy $Sp(n, \mathbb{C})$ acting on $\mathbb{C}^{2n} \otimes \mathbb{C}^2$.

Mathematical instantons

DEFINITION: A mathematical instanton on $\mathbb{C}P^3$ is a stable bundle *B* with $c_1(B) = 0$ and $H^1(B(-1)) = 0$. **A framed instanton** is a mathematical instanton equipped with a trivialization of $B|_{\ell}$ for some fixed line $\ell = \mathbb{C}P^1 \subset \mathbb{C}P^3$.

DEFINITION: An instanton on $\mathbb{C}P^2$ is a stable bundle *B* with $c_1(B) = 0$. A framed instanton is an instanton equipped with a trivialization $B|_x$ for some fixed point $x \in \mathbb{C}P^2$.

THEOREM: (Atiyah-Drinfeld-Hitchin-Manin) The space $\mathcal{M}_{r,c}$ of framed instantons on $\mathbb{C}P^2$ is **smooth**, **connected**, **hyperkähler**.

THEOREM: (Jardim–V.) The space $M_{r,c}$ of framed mathematical instantons on $\mathbb{C}P^3$ is naturally identified with the space of twistor sections $Sec(\mathcal{M}_{r,c})$.

REMARK: This correspondence is not surprising if one realizes that $Tw(\mathbb{H}) = \mathbb{C}P^3 \setminus \mathbb{C}P^1$.

The space of instantons on $\mathbb{C}P^3$

THEOREM: (Jardim–V.) The space $M_{r,c}$ is smooth.

REMARK: To prove that $\mathcal{M}_{r,c}$ is smooth, one could use hyperkähler reduction. To prove that $\mathbb{M}_{r,c}$ is smooth, we develop **trihyperkähler reduction**, which is **a reduction defined on trisymplectic manifolds**.

We prove that $\mathbb{M}_{r,c}$ is a trihyperkähler quotient of a vector space by a reductive group action, hence smooth.

Trisymplectic manifolds

DEFINITION: Let Ω be a 3-dimensional space of holomorphic symplectic 2-forms on a complex manifold. Suppose that

- Ω contains a non-degenerate 2-form
- For each non-zero degenerate $\Omega \in \Omega$, one has $\operatorname{rk} \Omega = \frac{1}{2} \operatorname{dim} V$.

Then Ω is called a trisymplectic structure on M.

REMARK: The bundles ker Ω are involutive, because Ω is closed.

THEOREM: (Jardim–V.) For any trisymplectic structure on M, M is equipped with a unique holomorphic, torsion-free connection, preserving the forms Ω_i . It is called **the Chern connection** of M.

REMARK: The Chern connection has holonomy in $Sp(n, \mathbb{C})$ **acting** on $\mathbb{C}^{2n} \otimes \mathbb{C}^2$.

Trisymplectic structure on $Sec_0(M)$

EXAMPLE: Consider a hyperkähler manifold M. Let $I \in \mathbb{C}P^1$, and ev_I : Sec₀(M) \longrightarrow (M,I) be an evaluation map putting $S \in$ Sec₀(M) to S(I). Denote by Ω_I the holomorphic symplectic form on (M,I). Then $ev_I^*\Omega_I$, $I \in \mathbb{C}P^1$ generate a trisymplectic structure.

COROLLARY: Sec₀(M) is equipped with a holomorphic, torsion-free connection with holonomy in $Sp(n, \mathbb{C})$.

Trihyperkähler reduction

DEFINITION: A trisymplectic moment map $\mu_{\mathbb{C}}$: $M \longrightarrow \mathfrak{g}^* \otimes_{\mathbb{R}} \Omega^*$ takes vectors $\Omega \in \Omega, g \in \mathfrak{g} = \text{Lie}(G)$ and maps them to a holomorphic function $f \in \mathcal{O}_M$, such that $df = \Omega \lrcorner g$, where $\Omega \lrcorner g$ denotes the contraction of Ω and the vector field g

DEFINITION: Let (M, Ω, S_t) be a trisymplectic structure on a complex manifold M. Assume that M is equipped with an action of a compact Lie group G preserving Ω , and an equivariant trisymplectic moment map

$$\mu_{\mathbb{C}}$$
: $M \longrightarrow \mathfrak{g}^* \otimes_{\mathbb{R}} \Omega^*$.

Let $\mu_{\mathbb{C}}^{-1}(0)$ be the corresponding level set of the moment map. Consider the action of the complex Lie group $G_{\mathbb{C}}$ on $\mu_{\mathbb{C}}^{-1}(c)$. Assume that it is proper and free. Then the quotient $\mu_{\mathbb{C}}^{-1}(c)/G_{\mathbb{C}}$ is a smooth manifold called **the trisymplectic quotient** of (M, Ω, S_t) , denoted by M///G.

THEOREM: Suppose that the restriction of Ω to $\mathfrak{g} \subset TM$ is non-degenerate. **Then** M///G **trisymplectic.**

Mathematical instantons and the twistor correspondence

REMARK: Using the monad description of mathematical instantons, we prove that that the map $\text{Sec}_0(\mathcal{M}_{r,c}) \longrightarrow \mathbb{M}_{r,c}$ to the space of mathematical instantons is an isomorphism (Frenkel-Jardim, Jardim-V.).

REMARK: The smoothness of the space $Sec_0(\mathcal{M}_{r,c}) = \mathbb{M}_{r,c}$ follows from the trihyperkähler reduction procedure:

THEOREM: Let M be flat hyperkähler manifold, and G a compact Lie group acting on M by hyperkähler automorphisms. Suppose that the hyperkähler moment map exists, and the hyperkähler quotient $M/\!\!/ G$ is smooth. Then there exists an open embedding

$$\operatorname{Sec}_0(M)//// G \xrightarrow{\Psi} \operatorname{Sec}_0(M/// G),$$

which is compatible with the trisymplectic structures on $\text{Sec}_0(M)////G$ and $\text{Sec}_0(M///G)$.

THEOREM: If *M* is the space of quiver representations which gives $M/\!\!/ G = \mathcal{M}_{2,c}$, Ψ gives an isomorphism $\operatorname{Sec}_0(M)/\!\!/ G = \operatorname{Sec}_0(M/\!\!/ G)$.