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Instanton bundles

DEFINITION: An mathematical instanton bundle on CP™ is a holo-
morphic bundle E with ¢1(EF) = 0 which satisfies

1. For n>2, HY(E(-1)) = H*(E(—n)) = 0.
2. Forn>3, HY(E(-2)) = H" 1(E(1-n)) =0.
3. Form>4, HP(E(k)) =0, 2 <p<n—2 and Vk.

REMARK: Mathematical instanton bundles are stable.

DEFINITION: Let C ¢ CP™ be a projective subspace of codimension 2.
Framing of a holomorphic bundle E is a trivialization of F|..

T he main result of this talk: The moduli space of framed instantons
on CP3 is smooth. The moduli of rank 2 instantons on CP3 is
smooth.

(A joint work with Marcos Jardim).
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Plan of the talk.
1. Hyperkahler manifolds, hyperkahler reduction and quiver varieties.
2. Complexification of a hyperkahler manifold and its twistor space.

3. Trihyperkahler reduction and the space of instantons.
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Hyperkahler manifolds

DEFINITION: A hyperkahler structure on a manifold M is a Riemannian
structure g and a triple of complex structures I, J, K, satisfying quaternionic
relations ToJ = —J ol = K, such that g is Kahler for I, J, K.

REMARK: A hyperkahler manifold has three symplectic forms
wy .= g(Ia)! Wy .= g(J7)’ WK = g(K7)

REMARK: This is equivalent to VI = VJ = VK = 0: the parallel trans-
lation along the connection preserves I, J, K.

REMARK: The form Q2 := w5+ v/—1 wg is holomorphic and symplectic
on (M,I).

DEFINITION: Let M be a Riemannian manifold, x € M a point. The
subgroup of GL(T,M) generated by parallel translations (along all paths)
is called the holonomy group of M.

REMARK: A hyperkahler manifold can be defined as a manifold
which has holonomy in Sp(n) (the group of all endomorphisms preserving
I,J K).
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Hyperkahler reduction

DEFINITION: Let G be a compact Lie group, p its action on a hy-
perkdahler manifold M by hyperkdhler isometries, and g* a dual space to
its Lie algebra. A hyperkahler moment map is a G-equivariant smooth
map p: M — g* @ R3 such that (u;(v),g) = w;(v,dp(g)), for every v € TM,
g e gand = 1,23, where w; is one three Kahler forms associated with
the hyperkahler structure.

DEFINITION: Let £1,&>,£3 be three G-invariant vectors in g*. The quo-
tient manifold M /G := p~1(¢1,65,£3)/G is called the hyperkahler quo-
tient of M.

THEOREM: (Hitchin, Karlhede, Lindstrom, RocCek)
The quotient M //G is hyperkaehler.
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Quiver representations

DEFINITION: A quiver is an oriented graph. A quiver representation

IS a diagram of complex Hermitian vector spaces and arrows associated
with a quiver:

0 0 0s D4
V, Vs Vs

Vi

v

2
Vs
Here, V; are vector spaces, and ¢; linear maps.

REMARK: If one fixes the spaces Vj;, the space of quiver representations
IS @ Hermitian vector space.
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Quiver varieties

Starting from a single graph, one can double it up, as follows, obtaining a
Nakajima double quiver.

o, 0 05 d s

H/' 2w VS Ve
5 g 07 (

A Nakajima quiver for the Dynkin diagram Ds.

CLAIM: The space M of representations of a Nakajima's double quiver is

a quaternionic vector space, and the group G :=U (V1) xU (Vo) X ...x U(Vp)
acts on M preserving the quaternionic structure.

DEFINITION: A Nakajima quiver variety is a quotient M //G.
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Hyperkahler manifolds as quiver varieties

Many non-compact manifolds are obtained as quiver varieties.
EXAMPLE: A 4-dimensional ALE (asymptotically locally Euclidean) space
obtained as a resolution of a du Val singularity, that is, a quotient (CQ/G,
where G C SU(2) is a finite group.

REMARK: Since finite subgroups of SU(2) are classified by the Dynkin
diagrams of type A,D,E, these ALE quotients are called ALE spaces of
A-D-E type.

EXAMPLE: A Hilbert scheme of points on an ALE space of A-D-E type.

EXAMPLE: The moduli asymptotically flat Hermitian Yang-Mills connec-
tions on ALE spaces of A-D-E type.

The most important for us example is:

EXAMPLE: The moduli of framed instantons on CP? is a quiver
variety, hence hyperkahler. In particular, it is smooth and connected.
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Complexification of a manifold

DEFINITION: Let M be a complex manifold, equipped with an anticom-
plex involution . The fixed point set My of ¢ is called a real analytic
manifold, and a germ of M in Mp is called a complexification of Mp.

QUESTION: What is a complexification of a Kahler manifold (con-
sidered as real analytic variety)?

THEOREM: (D. Kaledin, B. Feix) Let M be a real analytic Kahler mani-
fold, and Mg its complexification. Then M admits a hyperkahler struc-
ture, determined uniquely and functorially by the Kahler structure on M.

QUESTION: What is a complexification of a hyperkahler manifold?

ANSWER: Trisymplectic manifolds!
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Twistor space

DEFINITION: Induced complex structures on a hyperkahler manifold
are complex structures of form S2 £ {[ ;= al +bJ+cK, a?+b°+c2=1.}
They are usually non-algebraic. Indeed, if M is compact, for generic
a,b,c, (M,L) has no divisors (Fujiki).

DEFINITION: A twistor space Tw(M) of a hyperkahler manifold is a
complex manifold obtained by gluing these complex structures into
a holomorphic family over cPrl. More formally:

Let Tw(M) := M x S2. Consider the complex structure Iy, : TynM — TyM
on M induced by J € S2 ¢ H. Let I; denote the complex structure on
S2 = CP1.

The operator I7y = Im®1;: Tp TW(M) — T Tw(M) satisfies IF,, —Id. It

defines an almost complex structure on Tw(M). This almost complex
structure is known to be integrable (Obata, Salamon)

EXAMPLE: If M = H?, Tw(M) = Tot(O(1)®n) & cp2r+1\cp2n-1

REMARK: For M compact, Tw(M) never admits a Kahler structure.
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Rational curves on Tw(M).
REMARK: The twistor space has many rational curves.

DEFINITION: Denote by Sec(M) the space of holomorphic sections
of the twistor fibration Tw(M) — CP1.

DEFINITION: For each point m € M, one has a horizontal section
Cm = {m} x CP! of n. The space of horizontal sections is denoted
Secy, (M) C Sec(M)

REMARK: The space of horizo_ntal sections of = is identified with M.
The normal bundle NCy, = O(1)4MM  Therefore, some neighbourhood
of Secy,. (M) C Sec(M) is a smooth manifold of dimension 2dim M.

DEFINITION: A twistor section C C Tw(M) is called regular,
if NC = O(1)dmM,

E
CLAIM: For any I # J € CP", consider the evaluation map Sec(M) L
(M, I) x (M,J), s—s(I) xs(J). Then E; ; is an isomorphism around
the set Secy(M) of regular sections.
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Complexification of a hyperkahler manifold.

REMARK: Consider an anticomplex involution Tw(M) — Tw(M) map-
ping (m,t) to (m,i(t)), wherei: CPl — CP1l is a central symmetry. Then
Secy, (M) = M is a component of the fixed set of ..

COROLLARY: Sec(M) is a complexification of M.

QUESTION: What are geometric structures on Sec(M)?

Answer 1: For compact M, Sec(M) is holomorphically convex (Stein if
dimM = 2).

Answer 2: The space Secg(M) admits a holomorphic, torsion-free
connection with holonomy Sp(n,C) acting on C2" @ C2.
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Mathematical instantons

DEFINITION: A mathematical instanton on CP3 is a stable bundle B
with ¢1(B) = 0 and H}(B(-1)) = 0. A framed instanton is a mathe-
matical instanton equipped with a trivialization of B|, for some fixed line
¢ =CP! c CP3.

DEFINITION: An instanton on CP? is a stable bundle B with ¢1(B) = 0.
A framed instanton is an instanton equipped with a trivialization B|, for
some fixed point z € CP?2.

THEOREM: (Atiyah-Drinfeld-Hitchin-Manin) The space M, . of framed
instantons on CP2 is smooth, connected, hyperkahler.

THEOREM: (Jardim—V.) The space M, . of framed mathematical instan-
tons on CP3 is naturally identified with the space of twistor sections
Sec(Myc).

REMARK: This correspondence is not surprising if one realizes that
Tw((H) = CP3\(CP1.
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The space of instantons on CP3
THEOREM: (Jardim—V.) The space M; . is smooth.

REMARK: To prove that M. is smooth, one could use hyperkahler
reduction. To prove that M, . is smooth, we develop trihyperkahler re-
duction, which is a reduction defined on trisymplectic manifolds.

We prove that M, . is a trihyperkahler quotient of a vector space by a
reductive group action, hence smooth.
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Trisymplectic manifolds

DEFINITION: Let €2 be a 3-dimensional space of holomorphic symplectic
2-forms on a complex manifold. Suppose that

e () contains a non-degenerate 2-form

e For each non-zero degenerate 2 € 2, one has rk2 = %dim V.

Then € is called a trisymplectic structure on M.

REMARK: The bundles ker 2 are involutive, because 2 is closed.

THEOREM: (Jardim—V.) For any trisymplectic structure on M, M is
equipped with a unique holomorphic, torsion-free connection, preserving
the forms €2;. It is called the Chern connection of M.

REMARK: The Chern connection has holonomy in Sp(n,C) acting
on C2" @ C2.
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Trisymplectic structure on Secg(M)

EXAMPLE: Consider a hyperkdhler manifold M. Let I € CP1, and ev; :
Seco(M) — (M,I) be an evaluation map putting S € Seco(M) to S(I).
Denote by €2; the holomorphic symplectic form on (M, I). Then ev7<y,
I € CPl generate a trisymplectic structure.

COROLLARY: Secg(M) is equipped with a holomorphic, torsion-free
connection with holonomy in Sp(n,C).
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Trihyperkahler reduction

DEFINITION: A trisymplectic moment map p¢ : M — g*®Qp 2" takes
vectors Q € Q,g9g € g = Lie(G) and maps them to a holomorphic function
f € Oy, such that df = 2.9, where €219 denotes the contraction of £2 and
the vector field g

DEFINITION: Let (M,(2,S;) be a trisymplectic structure on a complex
manifold M. Assume that M is equipped with an action of a compact Lie
group G preserving €2, and an equivariant trisymplectic moment map

He - M—>g*®RQ*

Let ;1,(_:1(0) be the corresponding level set of the moment map. Consider
the action of the complex Lie group G¢ on uél(c). Assume that it is proper
and free. Then the quotient uél(c)/G@ is @ smooth manifold called the
trisymplectic quotient of (M, €, S;), denoted by M J/G.

THEOREM: Suppose that the restriction of 2 to g C T'M is non-degenerate.
Then M /G trisymplectic.
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Mathematical instantons and the twistor correspondence

REMARK: Using the monad description of mathematical instantons, we
prove that that the map Secg(M;, ) — M, . to the space of mathe-
matical instantons is an isomorphism (Frenkel-Jardim, Jardim-V.).

REMARK: The smoothness of the space Secg(M; ) = M, follows from
the trihyperkahler reduction procedure:

THEOREM: Let M be flat hyperkahler manifold, and G a compact Lie
group acting on M by hyperkahler automorphisms. Suppose that the
hyperkahler moment map exists, and the hyperkdhler quotient M /G is
smooth. Then there exists an open embedding

Seco(M) /)G -, Seco(M )| G),

which is compatible with the trisymplectic structures on Secq(M) /)G and
Seco(M J|G).

THEOREM: If M is the space of quiver representations which gives
M/)/G = Mo ., W gives an isomorphism Seco(M) /)G = Seco(M j|G).
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