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Space forms

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: Sn (an n-dimensional sphere), equipped with an
action of the group SO(n+ 1) of rotations

zero curvature: Rn (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1, n)/SO(n), equipped with the natural SO(1, n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

LEMMA: Let G = SO(n) act on Rn in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n − 1) in all three cases, and the previous
lemma can be applied.

REMARK: From now on, the space forms are assumed to be homo-
geneous Riemannian manifolds.
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Schwartz lemma

CLAIM: (maximum principle) Let f be a holomorphic function defined

on an open set U . Then f cannot have strict maxima in U. If f has

non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let f : ∆−→∆ be a map from disk to itself

fixing 0. Then |f ′(0)| 6 1, and equality can be realized only if f(z) = αz

for some α ∈ C, |α| = 1.

Proof: Consider the function ϕ := f(z)
z . Since f(0) = 0, it is holomorphic,

and since f(∆) ⊂ ∆, on the boundary ∂∆ we have |ϕ||∂∆ 6 1. Now, the

maximum principle implies that |f ′(0)| = |ϕ(0)| 6 1, and equality is realized

only if ϕ = const.
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Conformal automorphisms of the disk

CLAIM: Let ∆ ⊂ C be the unit disk. Then the group Aut(∆) of its

holomorphic automorphisms acts on ∆ transitively.

Proof: Let Va(z) = z−a
1−az for some a ∈ ∆. Then Va(0) = −a. To prove

transitivity, it remains to show that Va(∆) = ∆, which is implied from

|Va(z)| = |Va(z)||z| =
∣∣∣∣zz − az1− az

∣∣∣∣ =
∣∣∣∣1− az1− az

∣∣∣∣ = 1.

REMARK: The group PU(1,1) ⊂ PGL(2,C) of unitary matrices preserving a

pseudo-Hermitian form h of signature (1,1) acts on a disk {l ∈ CP1 | h(l, l) >

0} by holomorphic automorphisms.

COROLLARY: Let ∆ ⊂ C be the unit disk, Aut(∆) the group of its con-

formal automorphisms, and Ψ : PU(1,1)−→ Aut(∆) the map constructed

above. Then Ψ is an isomorphism.

COROLLARY: Let h be a homogeneous metric on ∆ = PU(1,1)/S1. Then

(∆, h) is conformally equivalent to (∆,flat metric).
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Upper half-plane

REMARK: The map z −→ −
√
−1 (z − 1)−1 induces a diffeomorphism from

the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(∆) acts on the upper half-plane H as

z
A−→ az+b

cz+d, where a, b, c, d ∈ R, and det

(
a b
c d

)
> 0.

REMARK: The group of such A is naturally identified with PSL(2,R) ⊂
PSL(2,C). Since PSL(2,R) acts on its Lie algebra preserving the Killing form,

PSL(2,R) embeds to SO(1,2). Both of these groups are 3-dimensional, since

they are isomorphic.

REMARK: We have shown that H = SO(1,2)/S1. This gives a natural

isomorphism of H and the hyperbolic space. Under this isomorphism,

holomorphic automorphisms correspond to isometries.
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Poincaré metric on disk

DEFINITION: Poincaré metric on a unit disk ∆ ⊂ C is an Aut(∆)-invariant

metric (it is unique up to a constant multiplier).

DEFINITION: Let f : M −→M1 be a map of metric spaces. Then f is

called C-Lipschitz if d(x, y) > Cd(f(x), f(y)). A map is called Lipschitz if it

is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map ϕ : ∆−→∆ from a unit disk to itself is 1-

Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each x ∈ ∆ the norm of the

differential satisfies |Dϕx| 6 1. Since the automorphism group acts on ∆

transitively, it suffices to prove that |Dϕx| 6 1 when x = 0 and ϕ(x) = 0.

Step 2: This is Schwartz lemma.
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Kobayashi pseudometric

DEFINITION: Pseudometric on M is a function d : M ×M −→ R>0 which
is symmetric: d(x, y) = d(y, x) and satisfies the triangle inequality d(x, y) +
d(y, z) > d(x, z).

REMARK: Let D be a set of pseudometrics. Then dmax(x, y) := supd∈D d(x, y)
is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set D of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points x, y in Kobayashi
pseudometric is infimum of the Poincaré distance over all sets of
Poincaré disks connecting x to y.

EXAMPLE: The Kobayashi pseudometric on C vanishes.

CLAIM: Any holomorphic map X
ϕ−→ Y is 1-Lipschitz with respect to

the Kobayashi pseudometric.

Proof: If x ∈ X is connected to x′ by a sequence of Poincare disks ∆1, ...,∆n,
then ϕ(x) is connected to ϕ(x′) by ϕ(∆1), ..., ϕ(∆n).
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Kobayashi hyperbolic manifolds

COROLLARY: Let B ⊂ Cn be a unit ball, and x, y ∈ B points with coordi-

nates x = (x1, ..., xn), y = (y1, ..., yn). Since xi, yi belongs to ∆, it makes sense

to compute the Poincare distance dP (xi, yi). Then dK(x, y) > maxi dP (xi, yi).

Proof: Each of projection maps Πi : B −→∆ is 1-Lipschitz.

DEFINITION: A variety is called Kobayashi hyperbolic if the Kobayashi

pseudometric dK is non-degenerate.

DEFINITION: A domain in Cn is an open subset. A bounded domain is

an open subset contained in a ball.

COROLLARY: Any bounded domain Ω in Cn is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that Ω ⊂ B where B is

an open ball. Then the Kobayashi distance in Ω is > that in B. However, the

Kobayashi distance in B is bounded by the metric d(x, y) := maxi dP (xi, yi) as

follows from above.
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Caratheodory metric

DEFINITION: Let x, y ∈ M be points on a complex manifold. Define

Caratheodory pseudometric as dC(x, y) = sup{dP (f(x), f(y))}, where the

supremum is taken over all holomorphic map f : M −→∆, and dP is Poincare

metric on the disk ∆.

REMARK: Usually the term “Kobayashi/Caratheodory pseudometric” is ab-

breviated to “Kobayashi/Caratheodory metric”, even when it is not a met-

ric.

REMARK: Caratheodory pseudometric satisfies the triangle inequality

because a supremum of pseudometrics satisfies triangle inequality.

Exercise: Prove that Caratheodory pseudometric is bounded by the

Kobayashi pseudometric: dK > dC.

REMARK: Clearly, dC 6= 0 on any bounded domain.
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Complex hyperbolic space

DEFINITION: Let V = Cn+1 be a complex vector space equipped with a
Hermitian metric h of signature (1, n), and HnC ⊂ PV projectivization of the
set of positive vectors {x ∈ V h(x, x) > 0}. Then HnC is equipped with
a homogeneous action of U(1, n). The same argument as used for space
forms implies that HnC admits a U(1, n)-invariant Hermitian metric, which is
unique up to a constant multiplier. This Hermitian complex manifold is called
complex hyperbolic space.

REMARK: For n > 1 it is not isometric, to the real hyperbolic spaces
defined earlier.

REMARK: As a complex manifold HnC is isomorphic to an open ball in
Cn.

REMARK: The Kobayashi metric and the Caratheodory metric on HnC are
U(1, n)-invariant, because U(1, n) acts holomorphically, hence proportional to
the hyperbolic metric, which is also called Bergman metric on an open ball.

Exercise: Prove that Kobayashi metric on a ball in Cn is equal to the
Caratheodory metric.
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Uniform convergence for Lipschitz maps

DEFINITION: A sequence of maps fi : M −→N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f : M −→N
if for any compact K ⊂M , we have lim

i→∞
supx∈K d(fi(x), f(x)) = 0.

Claim 1: Suppose that a sequence fi : M −→N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M ′ ⊂ M . Then fi con-
verges to f uniformly on compacts.

Proof: Let K ⊂M be a compact set, and Nε ⊂M ′ a finite subset such that
K is a union of ε-balls centered in Nε (such Nε is called an ε-net). Then
there exists N such that supx∈Nε d(fN+i(x), f(x)) < ε for all i > 0. Since fi
are 1-Lipschitz, this implies that

sup
y∈K

d(fN+i(y), f(y)) 6

6 sup
x∈Nε

d(fN+i(x), f(x)) + inf
x∈Nε

(d(fN+i(x), y) + d(f(x), y)) 6 3ε.

Exercise: Prove that the limit f is also 1-Lipschitz.

REMARK: This proof works when M is a pseudo-metric space, as long
as N is a metric space.
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Arzelà-Ascoli theorem for Lipschitz maps

DEFINITION: Let M , N be metric spaces. A subset B ⊂ M is bounded
if it is contained in a ball. A family {fα} of functions fα : M −→N is called
uniformly bounded on compacts if for any compact subset K ⊂ M , there
is a bounded subset CK ⊂ N such that fα(K) ⊂ CK for any element fα of the
family.

THEOREM: (Arzelà-Ascoli for Lipschitz maps)
Let F := {fα} be an infinite uniformly bounded set of 1-Lipschitz maps fα :
M −→ C, where M is a pseudo-metric space. Assume that M has countable
base of open sets and can be obtained as a countable union of compact
subsets. Then there is a sequence {fi} ⊂ F which converges to f :
M −→ C uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: Suppose we can prove Arzelà-Ascoli when M is compact.
Then we can choose a sequence of compact subsets Ki ⊂ M , find subse-
quences in F converging on each Ki, and use the diagonal method to find
a subsequence converging on all Ki. Therefore, we can assume that M

is bounded, and all maps fα : M −→ C map M into a compact subset
N ⊂ C.

13



Brody curves M. Verbitsky

Arzelà-Ascoli theorem for Lipschitz maps (2)

THEOREM: (Arzelà-Ascoli for Lipschitz maps)
Let F := {fα} be an infinite uniformly bounded set of 1-Lipschitz maps fα :
M −→ C, where M is a pseudo-metric space. Assume that M has countable
base of open sets and can be obtained as a countable union of compact
subsets. Then there is a sequence {fi} ⊂ F which converges to f :
M −→ C uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: We can assume that M is compact, and all maps
fα : M −→ C map M into a compact subset N ⊂ C.

Step 2: Find a dense, countable subset Z ⊂M . Using diagonal method, find
a sequence {fi} ⊂ F converging pointwise to some f at all z ∈ Z.

Step 3: Being a pointwise limit of Lipschitz functions, f |Z is also Lipschitz,
and fi converge to f uniformly on Z.

Step 4: Since a Lipschitz function maps Cauchy sequences to Cauchy se-
quences, it can be extended to a Lipschitz function on the completion M .
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Normal families of holomorphic functions

DEFINITION: Let M be a complex manifold. A family F := {fα} of holo-
morphic functions fα : M −→ C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)
Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {fi} ⊂ F which
converges to f : M −→ C uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzelà-Ascoli, it suffices to prove
Montel’s theorem on a subset of M where F is bounded. Therefore, we may
assume that all fα map M into a disk ∆.

Step 2: All fα are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzelà-Ascoli theorem can be applied, giving a uniform limit f = lim fi.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula.

REMARK: The sequence f = lim fi converges uniformly with all deriva-
tives, again by Cauchy formula.
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Normal families in complete generality

DEFINITION: A set of holomorphic maps fα : X −→ Y is called a normal

family if any sequence {fi} in {fα} has a subsequence converging unformly

on compacts.

THEOREM: Let fα : X −→ Y be a family of holomorphic maps such that for

any point x ∈ X there exists its neighbourhood with compact closure K ⊂ X

and a Kobayashi hyperbolic open subset VK ⊂ Y such that all fα map K to

Vk. Then fα is a normal family.

Proof: fα|K is Lipschitz with respect to the Kobayashi metric, and Arzelà-

Ascoli theorem can be applied.
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Brody curves and Brody maps

DEFINITION: Let M be a complex Hermitian manifold. Brody curve is

a non-constant holomorphic map f : C−→M such that |df | 6 C for some

constant C. Here |df | is understood as an operator norm of df : TzC−→ TM ,

where C is equipped with the standard Euclidean metric.

DEFINITION: Let (∆r, gr) be a disk of radius r in C with the Poincare

metric gr, rescaled in such a way that the unit tangent vector to 0 has length

1. Brody map to a Hermitian complex manifold is a map f : ∆r −→M such

that |df | 6 1 (here the operator norm is taken with respect to the Poincare

metric on ∆r) and |df |(z) = 1 at z = 0.

Lemma 1: Let fr : ∆r −→M be a sequence of Brody maps with r −→∞.

Then fr converges uniformly to a Brody curve f satisfying |df |(z) = 1

at z = 0.

Proof. Step 1: Let r1 < r2. The identity map τ : (∆r1, g1)−→ (∆r2, g2)

is 1-Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincare

metric: τ∗(r−2
2 g2) 6 r−2

1 g1. Since r1 < r2, this gives τ∗g2 6 g1.
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Brody curves and Brody maps (2)

Lemma 1: Let fr : ∆r −→M be a sequence of Brody maps with r −→∞.

Then fr converges uniformly to a Brody curve f satisfying |df |(z) = 1

at z = 0.

Proof. Step 1: Let r1 < r2. The identity map τ : (∆r1, g1)−→ (∆r2, g2)

is 1-Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincare

metric: τ∗(r−2
2 g2) 6 r−2

1 g1. Since r1 < r2, this gives τ∗g2 6 g1.

Step 2: Restricted on any disk ∆R, the family {fr, r > R} is a normal family

(it is Lipschitz), hence converges uniformly to a Lipschitz map. Since a

uniform limit of holomorphic maps is holomorphic, the family {fr
∣∣∣∆R

, r > R}
converges to a holomorhic map on ϕR : ∆R −→M.

Step 3: The map ϕR is Lipschitz with respect to all metrics gr, r > R. Since

lim
r
gr is the standard Euclidean metric g∞, ϕR is Lipschitz with respect to

g∞.

Step 4: lim
R
ϕR converges to a holomorphic Lipschitz map C−→M . Since all

fr and ϕR satisfy |dϕR|(z) = 1 at z = 0, the same is true for the limit.
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Brody curves and Brody maps

THEOREM: (Brody lemma)

Let M be a compact complex manifold which is not Kobayashi hyperbolic.

Then M contains a Brody curve.

Let us equip M with a Hermitian metric h. If |df |(0) 6 C for any holomorphic

map (∆1, g1)−→M , then the Kobayashi metric satisfies dK > C−1h, and M

is Kobayashi hyperbolic. If it is non-bounded, we can always rescale the disc

to obtain a map fr : (∆r, gr)−→M with r = |df |(0), and then |dfr|(0) = 1.

Then Brody lemma follows from Lemma 1 and the following lemma.

LEMMA: Let M be a compact Hermitian manifold, and ψr : (∆r, gr)−→M

a sequence of holomorphic maps satisfying |dψr|(0) > 1, r −→∞. Then there

exists a sequence of Brody maps fs : (∆s, gs)−→M, with s−→∞.
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Brody curves and Brody maps (2)

LEMMA: Let M be a compact Hermitian manifold, and ψr : (∆r, gr)−→M

a sequence of holomorphic maps satisfying |dψr|(0) > 1, r −→∞. Then there

exists a sequence of Brody maps fs : (∆s, gs)−→M, with s−→∞.

Proof. Step 1: We need to construct a sequence of Brody maps, which are

1-Lipschitz maps fs : (∆s, gs)−→M , with |dfs|(0) = 1. The identity map

Ψr−ε,r : (∆r−ε, gr−ε)−→ (∆r, gr)

is 1-Lipschitz, and satisfies

lim
z −→ ∂∆r−ε

|dΨr−ε,r|(z) = 0.

Let u := r−ε and f̃u := Ψr−ε,r◦ψr be a restriction of fr to the disk (∆r−ε, gr−ε).

Then fu is also Lipschitz and |df̃u| reaches maximum at a point zu somewhere

inside the disk ∆u.

Step 2: Applying appropriate holomorphic isometry of ∆u, we may assume

that |df̃u|(z) takes maximum Cu > 1 for z = 0. Rescaling f̃u, and putting

s := Cuu, we obtain a map fs : ∆s −→M which is 1-Lipschitz and satisfies

|dfs| 6 1, |dfs|(0) = 1.
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Currents and generalized functions

DEFINITION: Let F be a Hermitian bundle with connection ∇, on a Rie-

mannian manifold M with Levi-Civita connection, and

‖f‖Ck := sup
x∈M

(
|f |+ |∇f |+ ...+ |∇kf |

)
the corresponding Ck-norm defined on smooth sections with compact sup-

port. The Ck-topology is independent from the choice of connection

and metrics.

DEFINITION: A generalized function is a functional on top forms with

compact support, which is continuous in one of Ci-topologies.

DEFINITION: A k-current is a functional on (dimM − k)-forms with com-

pact support, which is continuous in one of Ci-topologies.

REMARK: Currents are forms with coefficients in generalized functions.
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Currents on complex manifolds

DEFINITION: The space of currents is equipped with weak topology (a

sequence of currents converges if it converges on all forms with compact

support).

CLAIM: De Rham differential is continuous on currents, and the Poincare

lemma holds. Hence, the cohomology of currents are the same as coho-

mology of smooth forms.

DEFINITION: On an complex manifold, (p, q)-currents are (p, q)-forms with

coefficients in generalized functions

REMARK: In the literature, this is sometimes called (n − p, n − q)-

currents.

CLAIM: The Poincare and Poincare Dolbeault-Grothendieck lemma hold on

(p, q)-currents, and the d- and ∂-cohomology are the same as for forms.
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Positive currents

REMARK: Positive generalized functions are all C0-continuous as functionals
on C∞M . A positive generalized function multiplied by a positive volume form
gives a measure on a manifold, and all measures are obtained this way.

DEFINITION: Let dimCM = n. The cone of positive (n − 1, n − 1)-
currents is generated by α(−

√
−1 )n−1α

∏n−1
i=1 dzi ∧ dzi, where α is a non-

negative generalized function (that is, a measure), and zi holomorphic func-
tions.

REMARK: An (n−1, n−1)-current α on an n-dimensional complex manifold
is positive if and only if

∫
M α ∧ β > 0, where β = (−

√
−1 )1αdz ∧ dz, z a

holomorphic function, and α a smooth non-negative function with compact
support.

EXAMPLE: A current of integration β −→
∫
Z β is positive, for any 1-

dimensional complex subvariety Z ⊂M .

REMARK: If Z is without boundary, the current of integration CZ is closed
by Stokes’ theorem. If Z has boundary, we have

〈dCz, β〉 =
∫
Z
dβ =

∫
∂Z
β,

and this is usually non-zero.
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Ahlfors currents

THEOREM: Let ϕ : C−→M be a Brody curve on a complex Hermitian

manifold, and ∆r ⊂ M the corresponding disk embeddings. Denote by A(r)

the area of ∆r in M , and let C∆r be its current of integration. Then there

exists a sequence ri such that limiA(r−1)C∆r converges to a closed

current.

REMARK: Any of such limits is called Ahlfors current. It is positive, closed,

non-zero (n − 1, n − 1) current, which can be understood as “the current of

integration” along the Brody curve.

Proof. Step 1: Let l(r) be the length of ∂∆r. Using

〈dCz, β〉 =
∫
Z
dβ =

∫
∂Z
β,

we obtain that it suffices to show that limi
l(ri)
A(ri)

= 0 for an appropriate

sequence ri.
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Ahlfors currents (2)

THEOREM: Let ϕ : C−→M be an entire curve on a complex Hermitian
manifold, and ∆r ⊂ M the corresponding disk embeddings. Denote by A(r)
the area of ∆r in M , and let C∆r be its current of integration. Then there
exists a sequence ri such that limiA(r−1)C∆r converges to a closed
current.

Step 1: Let l(r) be the length of ∂∆r. Then it suffices to show that
limi

l(ri)
A(ri)

= 0 for an appropriate sequence ri.

Step 2: Consider the function f(x) = |dϕ|(x) on C. Then A(r) =
∫
∆r

f2 and
l(r) =

∫
∂∆r

f (from now on, all integrals are taken with respect to the usual
area and length Lebesgue measure on C and ∂∆r). If such {ri} does not
exist, we obtain that l(r)/A(r) > C for some constant C > 0.

Step 3: Since ϕ is conformal, the volume of a thin strip ∆r\∆r−ε ⊂ M is
approximately equal to ε

∫
∂∆r

f2. This gives
∫
∂Dr f

2 = A′(r).

Step 4: Now we can forget about M entirely. We are given a positive,
bounded function f on C which satisfies

∫
∂Dr f

2 = A′(r),
∫
∂Dr f = l(r),

and l(r)/A(r) > C. We need to show that this is impossible.
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Ahlfors currents (3)

Step 4: Now we can forget about M entirely. We are given a positive,

bounded function f on C which satisfies
∫
∂Dr f

2 = A′(r),
∫
∂Dr f = l(r),

and l(r)/A(r) > C. We need to show that this is impossible.

Step 5: Using Cauchy-Bunyakovsky-Schwarz inequality, we obtain(∫
∂Dr

f

)2
= l(r)2 6 2πr

∫
∂Dr

f2 = 2πrA′(r).

Then l(r) > CA(r) gives C2A2(r) 6 2πrA′(r). Writing C1 = C2(2π)−1, we

obtain rA′(r) > A(r)2C1.

Step 6: We have (
1

−A(r)

)′
=

A′(r)

A2(r)
>
C1

r

Integrating both sides, we get

−
1

A(r)
> C1 log(r)− C2

which is impossible, because A(r) is monotonous.
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