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Space forms

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: S™ (an n-dimensional sphere), equipped with an
action of the group SO(n 4+ 1) of rotations

zero curvature: R"™ (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =

REMARK: From now on, the space forms are assumed to be homo-
geneous Riemannian manifolds.
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Schwartz lemmma

CLAIM: (maximum principle) Let f be a holomorphic function defined
on an open set U. Then f cannot have strict maxima in U. If f has
non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.
LEMMA: (Schwartz lemma) Let f: A — A be a map from disk to itself

fixing 0. Then |f/(0)| < 1, and equality can be realized only if f(z) = az
for some a € C, |of = 1.

Proof: Consider the function ¢ := f(j). Since f(0) = 0, it is holomorphic,
and since f(A) C A, on the boundary 0A we have |p|llgan < 1. Now, the
maximum principle implies that |f/(0)| = |¢(0)] < 1, and equality is realized
only if ¢ = const. =



Brody curves M. Verbitsky

Conformal automorphisms of the disk

CLAIM: Let A C C be the unit disk. Then the group Aut(A) of its
holomorphic automorphisms acts on A transitively.

Proof: Let Vy(z) = =2 for some a € A. Then V4(0) = —a. To prove

1—az
transitivity, it remains to show that V,(A) = A, which is implied from

2Z —az 1 —az

= 1.

Va(2)| = [Va(2)]|2] =

1 —az 1 —az

REMARK: The group PU(1,1) Cc PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {{ € CP! | h(1,1) >
0} by holomorphic automorphisms.

COROLLARY: Let A C C be the unit disk, Aut(A) the group of its con-
formal automorphisms, and v : PU(1,1) — Aut(A) the map constructed
above. Then W is an isomorphism.

COROLLARY: Let h be a homogeneous metric on A = PU(1,1)/St. Then
(A, h) is conformally equivalent to (A, flat metric).
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Upper half-plane

REMARK: The map z— —+v—1(z — 1)—1 induces a diffeomorphism from
the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(A) acts on the upper half-plane H as

L A 353:3' where a,b,c,d € R, and det (‘CL Z) > 0.

REMARK: The group of such A is naturally identified with PSL(2,R) C
PSL(2,C). Since PSL(2,R) acts on its Lie algebra preserving the Killing form,
PSL(2,R) embeds to SO(1,2). Both of these groups are 3-dimensional, since
they are isomorphic.

REMARK: We have shown that H = SO(1,2)/S!. This gives a natural
iIsomorphism of H and the hyperbolic space. Under this isomorphism,
holomorphic automorphisms correspond to isometries.
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Poincaré metric on disk

DEFINITION: Poincaré metric on a unit disk A C Cis an Aut(A)-invariant
metric (it is unique up to a constant multiplier).

DEFINITION: Let f: M — M1 be a map of metric spaces. Then f is
called C-Lipschitz if d(z,y) > Cd(f(x), f(y)). A map is called Lipschitz if it
is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)
Any holomorphic map ¢ : A — A from a unit disk to itself is 1-
Lipschitz with respect to Poicaré metric.

Proof. Step 1: We need to prove that for each x € A the norm of the
differential satisfies |Dyp;| < 1. Since the automorphism group acts on A

transitively, it suffices to prove that |Dy;| <1 when z =0 and p(x) = 0.

Step 2: This is Schwartz lemma. =
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Kobayashi pseudometric

DEFINITION: Pseudometric on M is a function d: M x M — R0 which
is symmetric: d(x,y) = d(y,xz) and satisfies the triangle inequality d(x,vy) +
d(y, z) = d(z, z).

REMARK: Let © be a set of pseudometrics. Then dmax(z,y) := supgep d(z,y)
IS also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set ® of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points x,y in Kobayashi
pseudometric is infimum of the Poincaré distance over all sets of
Poincaré disks connecting x to y.

EXAMPLE: The Kobayashi pseudometric on C vanishes.

CLAIM: Any holomorphic map X 2y Y is 1-Lipschitz with respect to
the Kobayashi pseudometric.

Proof: If x € X is connected to 2’ by a sequence of Poincare disks A1, ..., Ay,
then () is connected to p(z’') by p(A1),...,0(Ar). =
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Kobayashi hyperbolic manifolds

COROLLARY: Let B C C™ be a unit ball, and x,y € B points with coordi-
nates + = (z1,...,xn),y = (y1,...,yn). Since x;,y; belongs to A, it makes sense
to compute the Poincare distance dp(x;,y;). Then dyi(x,y) > max; dp(x;,vy;).

Proof: Each of projection maps Il;: B— A is 1-Lipschitz. =

DEFINITION: A variety is called Kobayashi hyperbolic if the Kobayashi
pseudometric dy is non-degenerate.

DEFINITION: A domain in C" is an open subset. A bounded domain is
an open subset contained in a ball.

COROLLARY: Any bounded domain €2 in C" is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that €2 C B where B is
an open ball. Then the Kobayashi distance in €2 is > that in B. However, the
Kobayashi distance in B is bounded by the metric d(x,y) := max; dp(x;,y;) as
follows from above. m
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Caratheodory metric

DEFINITION: Let x,y € M be points on a complex manifold. Define
Caratheodory pseudometric as dgo(x,y) = sup{dp(f(x), f(y))}, where the
supremum is taken over all holomorphic map f: M — A, and dp is Poincare
metric on the disk A.

REMARK: Usually the term “Kobayashi/Caratheodory pseudometric” is ab-
breviated to “Kobayashi/Caratheodory metric”, even when it is not a met-
ricC.

REMARK: Caratheodory pseudometric satisfies the triangle inequality
because a supremum of pseudometrics satisfies triangle inequality.

EXxercise: Prove that Caratheodory pseudometric is bounded by the
Kobayashi pseudometric: dgi > d¢.

REMARK: Clearly, do &= 0 on any bounded domain.
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Complex hyperbolic space

DEFINITION: Let V = C*"T1 be a complex vector space equipped with a
Hermitian metric A of signature (1,n), and H# C PV projectivization of the
set of positive vectors {z € V h(z,z) > 0}. Then HZ is equipped with
a homogeneous action of U(1,n). The same argument as used for space
forms implies that HZ admits a U(1,n)-invariant Hermitian metric, which is
unique up to a constant multiplier. This Hermitian complex manifold is called
complex hyperbolic space.

REMARK: For n > 1 it i1s not isometric, to the real hyperbolic spaces
defined earlier.

REMARK: As a complex manifold H@ IS iIsomorphic to an open ball in
Ccm,

REMARK: The Kobayashi metric and the Caratheodory metric on Hg are
U(1,n)-invariant, because U(1,n) acts holomorphically, hence proportional to
the hyperbolic metric, which is also called Bergman metric on an open ball.

Exercise: Prove that Kobayashi metric on a ball in C" is equal to the
Caratheodory metric.
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Uniform convergence for Lipschitz maps

DEFINITION: A sequence of maps f; : M — N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f: M — N
if for any compact K C M, we have lim sup,cx d(fi(x), f(x)) = 0.

71— 00

Claim 1: Suppose that a sequence f; : M — N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M’ C M. Then f; con-
verges to f uniformly on compacts.

Proof: Let K C M be a compact set, and N C M’ a finite subset such that
K is a union of e-balls centered in N: (such N¢ is called an e-net). Then
there exists N such that sup,cn. d(fn4i(x), f(z)) < e for all « > 0. Since f;
are 1-Lipschitz, this implies that

sup d(fn+i(y), f(y)) <

ye
xENg ZUENFJ

|
Exercise: Prove that the limit f is also 1-Lipschitz.

REMARK: This proof works when M is a pseudo-metric space, as long
as N i1s a metric space.
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Arzela-Ascoli theorem for Lipschitz maps

DEFINITION: Let M, N be metric spaces. A subset B C M is bounded
if it is contained in a ball. A family {fs} of functions f, : M — N is called
uniformly bounded on compacts if for any compact subset K C M, there
is @ bounded subset Cx C N such that fo(K) C Cg for any element f, of the
family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fa} be an infinite uniformly bounded set of 1-Lipschitz maps fu :
M — C, where M is a pseudo-metric space. Assume that M has countable
base of open sets and can be obtained as a countable union of compact
subsets. Then there is a sequence {f;} C F which converges to f :
M — C uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: Suppose we can prove Arzela-Ascoli when M is compact.
Then we can choose a sequence of compact subsets K, C M, find subse-
quences in F converging on each K,;, and use the diagonal method to find
a subsequence converging on all K;. Therefore, we can assume that M
IS bounded, and all maps fo: M —C map M into a compact subset
N C C.
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Arzela-Ascoli theorem for Lipschitz maps (2)

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fa} be an infinite uniformly bounded set of 1-Lipschitz maps fu :
M — C, where M is a pseudo-metric space. Assume that M has countable
base of open sets and can be obtained as a countable union of compact
subsets. Then there is a sequence {f;} C F which converges to f :
M — C uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: We can assume that M is compact, and all maps
fa: M — C map M into a compact subset N C C.

Step 2: Find a dense, countable subset Z C M. Using diagonal method, find
a sequence {f;} C F converging pointwise to some f at all z € Z.

Step 3: Being a pointwise limit of Lipschitz functions, f|, is also Lipschitz,
and f;, converge to f uniformly on ~Z.

Step 4: Since a Lipschitz function maps Cauchy sequences to Cauchy se-
quences, it can be extended to a Lipschitz function on the completion M.
|
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Normal families of holomorphic functions

DEFINITION: Let M be a complex manifold. A family F := {fa} of holo-
morphic functions fo : M — C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)

Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {f;} C 7 which
converges to f: M — C uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove
Montel's theorem on a subset of M where F is bounded. Therefore, we may
assume that all f, map M into a disk A.

Step 2: All fo are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzela-Ascoli theorem can be applied, giving a uniform limit f =1lim f;.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula. m

REMARK: The sequence f = lim f; converges uniformly with all deriva-
tives, again by Cauchy formula.
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Normal families in complete generality

DEFINITION: A set of holomorphic maps fo : X — Y is called a normal
family if any sequence {f;} in {fa} has a subsequence converging unformly
on compacts.

THEOREM: Let fo: X — Y be a family of holomorphic maps such that for
any point x € X there exists its neighbourhood with compact closure K C X
and a Kobayashi hyperbolic open subset Vi C Y such that all f, map K to
V.. Then f, is a normal family.

Proof: fo|i is Lipschitz with respect to the Kobayashi metric, and Arzela-
Ascoli theorem can be applied. m
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Brody curves and Brody maps

DEFINITION: Let M be a complex Hermitian manifold. Brody curve is
a non-constant holomorphic map f : C— M such that |df| < C for some
constant C. Here |df| is understood as an operator norm of df : T.C — T M,
where C is equipped with the standard Euclidean metric.

DEFINITION: Let (Ar,gr) be a disk of radius » in C with the Poincare
metric g, rescaled in such a way that the unit tangent vector to O has length
1. Brody map to a Hermitian complex manifold is a map f: A, — M such
that |df| < 1 (here the operator norm is taken with respect to the Poincare
metric on A,) and |df|(z) =1 at z = 0.

Lemma 1: Let f,: A, — M be a sequence of Brody maps with r — oo.
Then f, converges uniformly to a Brody curve f satisfying |df|(z) = 1
at z = 0.

Proof. Step 1: Let r; < rp. The identity map 7: (Ar,91) — (Ars,92)
IS 1-Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincare
metric: T*(’r2_292> < r1_2g1. Since rq < ro, this gives 7¥g> < g1.
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Brody curves and Brody maps (2)

Lemma 1: Let f,: A, — M be a sequence of Brody maps with r — oo.
Then f, converges uniformly to a Brody curve f satisfying |df|(z) = 1
at z = 0.

Proof. Step 1: Let r1 < rp. The identity map 7: (Ar,91) — (A, 92)
IS 1-Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincare
metric: T*(’T’Q_QQQ) < 7“1_291. Since r1 < ro, this gives 7*¢g> < g1.

Step 2: Restricted on any disk Apg, the family {fr,r > R} is a normal family
(it is Lipschitz), hence converges uniformly to a Lipschitz map. Since a
uniform limit of holomorphic maps is holomorphic, the family {f; ApyT > R}
converges to a holomorhic map on ¢p: Ap — M.

Step 3: The map ¢p is Lipschitz with respect to all metrics g, r > R. Since
Ii?[n gr 1S the standard Euclidean metric goo, ¢ppr IS Lipschitz with respect to

goo -

Step 4: |ig1 @R converges to a holomorphic Lipschitz map C — M. Since all

fr and ¢pg satisfy |[dpgr|(z) =1 at z = 0, the same is true for the limit. =
18
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Brody curves and Brody maps

THEOREM: (Brody lemma)
Let M be a compact complex manifold which is not Kobayashi hyperbolic.
Then M contains a Brody curve.

Let us equip M with a Hermitian metric h. If |df|(0) < C for any holomorphic
map (A1,91) — M, then the Kobayashi metric satisfies dx > C~1h, and M
is Kobayashi hyperbolic. If it is non-bounded, we can always rescale the disc
to obtain a map fr: (Ar,gr) — M with » = |df|(0), and then |df-|(0) = 1.

Then Brody lemma follows from Lemma 1 and the following lemma.

LEMMA: Let M be a compact Hermitian manifold, and ¢, : (Ar,gr) — M
a sequence of holomorphic maps satisfying |dy»|(0) > 1, r — oco. Then there
exists a sequence of Brody maps fs: (As,g9s) — M, with s — .
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Brody curves and Brody maps (2)

LEMMA: Let M be a compact Hermitian manifold, and ¢, : (Ar,gr) — M
a sequence of holomorphic maps satisfying |dy»|(0) > 1, r — oco. Then there
exists a sequence of Brody maps fs: (QAs,g9s) — M, with s — .

Proof. Step 1: We need to construct a sequence of Brody maps, which are
1-Lipschitz maps fs: (As,gs) — M, with |dfs|(0) = 1. The identity map

Wy cp: (Ar—c, gr—c) — (Ar, gr)

is 1-Lipschitz, and satisfies

im  |dW,_.,|(z) = 0.

Z —> 8A7~_€

Letu :=r—e and fy := W, _¢ oty be a restriction of fr to the disk (Ay—_¢, gr—¢).
Then fy is also Lipschitz and |dfy| reaches maximum at a point z, somewhere
inside the disk Ay.

Step 2: Applying appropriate holomorphic isometry of A,, we may assume
that |dfy|(z) takes maximum C, > 1 for z = 0. Rescaling f,, and putting
s .= Cyu, we obtain a map fs: As— M which is 1-Lipschitz and satisfies
dfs| <1, |dfs|(0) =1. m
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Currents and generalized functions

DEFINITION: Let F be a Hermitian bundle with connection V, on a Rie-
mannian manifold M with Levi-Civita connection, and

. k
I £l = sup (IF+ V14 ..+ V57)

the corresponding C*-norm defined on smooth sections with compact sup-
port. The Ck—topology IS independent from the choice of connection
and metrics.

DEFINITION: A deneralized function is a functional on top forms with
compact support, which is continuous in one of C'*topologies.

DEFINITION: A k-current is a functional on (dim M — k)-forms with com-
pact support, which is continuous in one of C*-topologies.

REMARK: Currents are forms with coefficients in generalized functions.
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Currents on complex manifolds

DEFINITION: The space of currents is equipped with weak topology (a
sequence of currents converges if it converges on all forms with compact
support).

CLAIM: De Rham differential is continuous on currents, and the Poincare
lemma holds. Hence, the cohomology of currents are the same as coho-
mology of smooth forms.

DEFINITION: On an complex manifold, (p, q)-currents are (p, g)-forms with
coefficients in generalized functions

REMARK: In the literature, this is sometimes called (n — p,n — ¢)-
currents.

CLAIM: The Poincare and Poincare Dolbeault-Grothendieck lemma hold on
(p, q)-currents, and the d- and 0-cohomology are the same as for forms.
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Positive currents

REMARK: Positive generalized functions are all C%-continuous as functionals
on C°M. A positive generalized function multiplied by a positive volume form
gives a measure on a manifold, and all measures are obtained this way.

DEFINITION: Let dimgM = n. The cone of positive (n — 1,n — 1)-
currents is generated by a(—+v/—1 )”—1041‘[?:_11 dz; N\ dz;, where « is a non-
negative generalized function (that is, a measure), and z; holomorphic func-
tions.

REMARK: An (n—1,n—1)-current o on an n-dimensional complex manifold
is positive if and only if [j;aA B8 > 0, where 8 = (—v/—1 )ladz Adz, = a
holomorphic function, and « a smooth non-negative function with compact
support.

EXAMPLE: A current of integration g — [, 3 is positive, for any 1-
dimensional complex subvariety Z C M.

REMARK: If Z is without boundary, the current of integration C'5 is closed
by Stokes’ theorem. If Z has boundary, we have

(dC., B / = [ g
o7
and this is usually non-zero.
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Ahlfors currents

THEOREM: Let ¢ : C— M be a Brody curve on a complex Hermitian
manifold, and A, C M the corresponding disk embeddings. Denote by A(r)
the area of A, in M, and let Ca, be its current of integration. Then there
exists a sequence r; such that Iim@-A(r—l)CAr converges to a closed
current.

REMARK: Any of such limits is called Ahlfors current. It is positive, closed,
non-zero (n — 1,n — 1) current, which can be understood as ‘“the current of
integration” along the Brody curve.

Proof. Step 1: Let I(r) be the length of 9A,. Using

(dC., B / A3 =

we obtain that it suffices to show that |lim; j‘((”)) = 0 for an appropriate
sequence r;.
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Ahlfors currents (2)

THEOREM: Let o : C— M be an entire curve on a complex Hermitian
manifold, and A, C M the corresponding disk embeddings. Denote by A(r)
the area of A, in M, and let Ca,. be its current of integration. Then there
exists a sequence r; such that Iim@-A(r—l)CAr converges to a closed
current.

Step 1: Let I(r) be the length of 9A,. Then it suffices to show that

lim; i(("';fz_)) = 0 for an appropriate sequence r;.

Step 2: Consider the function f(z) = |dp|(z) on C. Then A(r) = [ f? and
I(r) = Jan, f (from now on, all integrals are taken with respect to the usual
area and length Lebesgue measure on C and 0A;). If such {r;} does not
exist, we obtain that I(r)/A(r) > C for some constant C > 0.

Step 3: Since ¢ is conformal, the volume of a thin strip A\A,— C M is
approximately equal to e [y f2. This gives [5p f2 = A'(r).

Step 4: Now we can forget about M entirely. We are given a positive,
bounded function f on C which satisfies [ 2 = Al(r), Jop, [ = 1(r),
and [(r)/A(r) > C. We need to show that this is impossible.
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Ahlfors currents (3)

Step 4: Now we can forget about M entirely. We are dgiven a positive,
bounded function f on C which satisfies [, 2 = A'(r), [op. [ = U(r),
and [(r)/A(r) > C. We need to show that this is impossible.

Step 5: Using Cauchy-Bunyakovsky-Schwarz inequality, we obtain

(/(9Dr f)2 = 1(r)? < 27r oD, 2 = 2nrAl(r).

Then I(r) > CA(r) gives C2A2(r) < 2nrA'(r). Writing C1 = C2%(27)~ 1, we
obtain rA'(r) > A(r)2C1.

Step 6: We have

( : )’: A'(r) >ﬁ
—A(r) A2(r) 7

Integrating both sides, we get
1
A(r)
which is impossible, because A(r) is monotonous. =
26

> C1log(r) —



