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Space forms

DEFINITION: Simply connected space form is a homogeneous manifold
of one of the following types:

positive curvature: S"™ (an n-dimensional sphere), equipped with an
action of the group SO(n 4+ 1) of rotations

zero curvature: R" (an n-dimensional Euclidean space), equipped with
an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)-
action. This space is also called hyperbolic space, and in dimension 2 hy-
perbolic plane or Poincaré plane or Bolyai-Lobachevsky plane

LEMMA: Let G = SO(n) act on R"™ in a natural way. Then there exists a
unique G-invariant symmetric 2-form: the standard Euclidean metric.

COROLLARY: Let M = G/H be a simply connected space form. Then M
admits a unique, up to a constant multiplier, G-invariant Riemannian
form.

Proof: The isotropy group is SO(n — 1) in all three cases, and the previous
lemma can be applied. =

REMARK: From now on, the space forms are assumed to be homo-
geneous Riemannian manifolds.
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Schwartz lemmma

CLAIM: (maximum principle) Let f be a holomorphic function defined
on an open set U. Then f cannot have strict maxima in U. If f has
non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.
LEMMA: (Schwartz lemma) Let f: A — A be a map from disk to itself

fixing 0. Then |f/(0)| < 1, and equality can be realized only if f(z) = az
for some o € C, |a| = 1.

Proof: Consider the function ¢ = f(;). Since f(0) = 0, it is holomorphic,
and since f(A) C A, on the boundary A we have |¢|lspa < 1. Now, the
maximum principle implies that |f/(0)| = |¢(0)] < 1, and equality is realized
only if ¢ = const. =
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Conformal automorphisms of the disk

CLAIM: Let A C C be the unit disk. Then the group Aut(A) of its
holomorphic automorphisms acts on A transitively.

Proof: Let Vi(2) = =% for some a € A. Then V4(0) = —a. To prove

1—-az
transitivity, it remains to show that V,(A) = A, which is implied from

ZZ — az
Va(2)| = [Va(2)||z| = = =1.

'1—02

1 —az 1 —az

REMARK: The group PU(1,1) C PGL(2,C) of unitary matrices preserving a
pseudo-Hermitian form h of signature (1,1) acts on a disk {{ € CP! | h(l,1) >
0} by holomorphic automorphisms.

COROLLARY: Let A C C be the unit disk, Aut(A) the group of its con-
formal automorphisms, and W : PU(1,1) — Aut(A) the map constructed
above. Then W is an isomorphism.

COROLLARY: Let h be a homogeneous metric on A = PU(1,1)/S!. Then

(A, h) is conformally equivalent to (A, flat metric).
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Upper half-plane

REMARK: The map z— —+v/—1 (2 — 1)~ 1 induces a diffeomorphism from
the unit disc in C to the upper half-plane H.

PROPOSITION: The group Aut(A) acts on the upper half-plane H as
2 Ay aztb \where a.b,c,d € R, and det (“ b) > 0.

cz+d’ c d

REMARK: The group of such A is naturally identified with PSL(2,R) C
PSL(2,C). Since PSL(2,R) acts on its Lie algebra preserving the Killing form,
PSL(2,R) embeds to SO(1,2). Both of these groups are 3-dimensional, since
they are isomorphic.

REMARK: We have shown that H = SO(1,2)/S!. This gives a natural
iIsomorphism of H and the hyperbolic space. Under this isomorphism,
holomorphic automorphisms correspond to isometries.
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Poincaré metric on disk

DEFINITION: Poincaré metric on a unit disk A C Cis an Aut(A)-invariant
metric (it is unique up to a constant multiplier).

DEFINITION: Let f: M — My be a map of metric spaces. Then f is
called C-Lipschitz if d(xz,y) > Cd(f(x), f(y)). A map is called Lipschitz if it
is C-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)
Any holomorphic map ¢ . A — A from a unit disk to itself is 1-
Lipschitz with respect to the Poicaré metric.

Proof. Step 1: We need to prove that for each x € A the norm of the
differential satisfies |Dyp;| < 1. Since the automorphism group acts on A
transitively, it suffices to prove that |[Dy,;| <1 when x =0 and ¢(x) = 0.

Step 2: This is Schwartz lemma. =
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Kobayashi pseudometric

DEFINITION: Pseudometric on M is a function d: M x M — R0 which
is symmetric: d(x,y) = d(y,x) and satisfies the triangle inequality d(x,vy) +
d(y, z) = d(z, 2).

REMARK: Let © be a set of pseudometrics. Then dmax(z,y) := sSupgep d(z,y)
Is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is
dmax for the set ® of all pseudometrics such that any holomorphic map from
the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points z,y in Kobayashi
pseudometric is infimum of the Poincaré distance over all sets of
Poincaré disks connecting = to y.

EXAMPLE: The Kobayashi pseudometric on C vanishes.

CLAIM: Any holomorphic map X -2 Y is 1-Lipschitz with respect to
the Kobayashi pseudometric.

Proof: If x € X is connected to 2’ by a sequence of Poincare disks A1, ..., Ap,
then p(z) is connected to ¢(z') by p(A1),...,0o(Ay). =
’
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Kobayashi hyperbolic manifolds

COROLLARY: Let B C C™ be a unit ball, and x,y € B points with coordi-
nates + = (z1,...,xn),y = (y1,...,yn). Since x;,y; belongs to A, it makes sense
to compute the Poincare distance dp(x;,y;). Then dyi(x,y) > max; dp(x;,vy;).

Proof: Each of projection maps Il;: B— A is 1-Lipschitz. =

DEFINITION: A variety is called Kobayashi hyperbolic if the Kobayashi
pseudometric dy is non-degenerate.

DEFINITION: A domain in C" is an open subset. A bounded domain is
an open subset contained in a ball.

COROLLARY: Any bounded domain €2 in C" is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that €2 C B where B is
an open ball. Then the Kobayashi distance in €2 is > that in B. However, the
Kobayashi distance in B is bounded by the metric d(x,y) := max; dp(x;,y;) as
follows from above. m
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Caratheodory metric

DEFINITION: Let z,y € M be points on a complex manifold. Define
Caratheodory pseudometric as dgo(x,y) = sup{dp(f(x), f(y))}, where the
supremum is taken over all holomorphic map f: M — A, and dp is Poincare
metric on the disk A.

REMARK: Usually the term “Kobayashi/Caratheodory pseudometric” is ab-
breviated to “Kobayashi/Caratheodory metric”, even when it is not a met-
ricC.

REMARK: Caratheodory pseudometric satisfies the triangle inequality
because a supremum of pseudometrics satisfies triangle inequality.

Exercise: Prove that Caratheodory pseudometric is bounded by the
Kobayashi pseudometric: dx > d¢.

REMARK: Clearly, do # 0 on any bounded domain.
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Complex hyperbolic space

DEFINITION: Let V = C"*t1 be a complex vector space equipped with a
Hermitian metric h of signature (1,n), and Hg C PV projectivization of the
set of positive vectors {x € V h(x,z) > 0}. Then ¢ is equipped with
a homogeneous action of U(1,n). The same argument as used for space
forms implies that HZ admits a U(1,n)-invariant Hermitian metric, which is
unique up to a constant multiplier. This Hermitian complex manifold is called
complex hyperbolic space.

REMARK: For n > 1 it i1s not isometric, to the real hyperbolic spaces
defined earlier.

REMARK: As a complex manifold H% IS Isomorphic to an open ball in
C™,

REMARK: The Kobayashi metric and the Caratheodory metric on H@ are
U(1,n)-invariant, because U(1,n) acts holomorphically, hence proportional to
the hyperbolic metric, which is also called Bergman metric on an open ball.

Exercise: Prove that Kobayashi metric on a ball in C" is equal to the
Caratheodory metric.
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Uniform convergence for Lipschitz maps

DEFINITION: A sequence of maps f; : M — N between metric spaces uni-
formly converges (or converges uniformly on compacts) to f: M — N
if for any compact K C M, we have lim sup,cx d(fi(x), f(z)) = 0.

71— 00

Claim 1: Suppose that a sequence f; : M — N of 1-Lipschitz maps con-
verges to f pointwise in a countable dense subset M’ C M. Then f; con-
verges to f uniformly on compacts.

Proof: Let K C M be a compact set, and N C M’ a finite subset such that
K is a union of e-balls centered in N: (such N: is called an e-net). Then
there exists N such that sup,cn. d(fn4i(x), f(x)) < e for all « > 0. Since f;
are 1-Lipschitz, this implies that

sup d(fn+i(y), f(y)) <
yeK

< sup d(fy4i(z), f(z)) + inf (d(fyv4i(x),y) +d(f(x),y)) < 3e.
xEN¢ x€Ne

|
Exercise: Prove that the limit f is also 1-Lipschitz.

REMARK: This proof works when M is a pseudo-metric space, as long
as N is a metric space.
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Arzela-Ascoli theorem for Lipschitz maps

DEFINITION: Let M, N be metric spaces. A subset B C M is bounded
if it is contained in a ball. A family {fs} of functions f, : M — N is called
uniformly bounded on compacts if for any compact subset K C M, there
is @ bounded subset Cyi C N such that fo(K) C Ck for any element f, of the
family.

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fa} be an infinite uniformly bounded set of 1-Lipschitz maps fq :
M — C, where M is a pseudo-metric space. Assume that M has countable
base of open sets and can be obtained as a countable union of compact
subsets. Then there is a sequence {f;} C F which converges to f :
M — C uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: Suppose we can prove Arzela-Ascoli when M is compact.
Then we can choose a sequence of compact subsets K, C M, find subse-
quences in JF converging on each K;, and use the diagonal method to find
a subsequence converging on all K;. Therefore, we can assume that M
IS bounded, and all maps fo: M —C map M into a compact subset
N C C.

12
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Arzela-Ascoli theorem for Lipschitz maps (2)

THEOREM: (Arzela-Ascoli for Lipschitz maps)

Let F := {fa} be an infinite uniformly bounded set of 1-Lipschitz maps fu :
M — C, where M is a pseudo-metric space. Assume that M has countable
base of open sets and can be obtained as a countable union of compact
subsets. Then there is a sequence {f;} C F which converges to f :
M — C uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: We can assume that M is compact, and all maps
fa: M — C map M into a compact subset N C C.

Step 2: Find a dense, countable subset Z C M. Using diagonal method, find
a sequence {f;} C F converging pointwise to some f at all z € Z.

Step 3: Being a pointwise limit of Lipschitz functions, f|, is also Lipschitz,
and f;, converge to f uniformly on ~Z.

Step 4: Since a Lipschitz function maps Cauchy sequences to Cauchy se-
quences, it can be extended to a Lipschitz function on the completion M.
|
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Normal families of holomorphic functions

DEFINITION: Let M be a complex manifold. A family F := {fa} of holo-
morphic functions fo, : M — C is called normal family if F is uniformly
bounded on compact subsets.

THEOREM: (Montel’s theorem)

Let M be a complex manifold with countable base, and F a normal, infinite
family of holomorphic functions. Then there is a sequence {f;} C 7 which
converges to f: M — C uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzela-Ascoli, it suffices to prove
Montel's theorem on a subset of M where F is bounded. Therefore, we may
assume that all f, map M into a disk A.

Step 2: All fo are 1-Lipschitz with respect to Kobayashi metric. Therefore,
Arzela-Ascoli theorem can be applied, giving a uniform limit f =1lim f;.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy
formula. m

REMARK: The sequence f = |lim f; converdges uniformly with all deriva-

tives, again by Cauchy formula.
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Normal families in complete generality

DEFINITION: A set of holomorphic maps fo : X — Y is called a normal
family if any sequence {f;} in {fa} has a subsequence converging unformly
on compacts.

THEOREM: Let fo: X — Y be a family of holomorphic maps such that for
any point x € X there exists its neighbourhood with compact closure K C X
and a Kobayashi hyperbolic open subset Vi C Y such that all fo, map K to
V.. Then f, is a normal family.

Proof: fu.|x is Lipschitz with respect to the Kobayashi metric, and Arzela-
Ascoli theorem can be applied. m
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Brody curves and Brody maps

DEFINITION: Let M be a complex Hermitian manifold. Brody curve is
a non-constant holomorphic map f : C— M such that |df| < C for some
constant C. Here |df| is understood as an operator norm of df : T.C — TM,
where C is equipped with the standard Euclidean metric.

DEFINITION: Let (A,,gr) be a disk of radius r in C with the Poincare
metric g, rescaled in such a way that the unit tangent vector to O has length
1. Brody map to a Hermitian complex manifold is a map f: A, — M such
that |df| < 1 (here the operator norm is taken with respect to the Poincare
metric on A,) and |df|(z) =1 at z = 0.

Lemma 1: Let f, : A, — M be a sequence of Brody maps with r — oo.
Then f, converges uniformly to a Brody curve f satisfying |df|(z) = 1
at z = 0.

Proof. Step 1: Let r; < rp. The identity map 7: (Ar,9r) — (Ars, gry)
IS 1-Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincare
metric: T*(er_ng,aQ) < r1_297~1. Since r1 < rp, this gives 7*g,, < gr;.

16
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Brody curves and Brody maps (2)

Lemma 1: Let f, : A, — M be a sequence of Brody maps with r — .
Then f,. converges uniformly to a Brody curve f satisfying |df|(z) = 1
at z = 0.

Proof. Step 1: Let r; <ry. The identity map 7: (Ary,g9r;) — (Ars, gry)
IS 1-Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincare
metric: T*(TQ_QQTQ) < "“1_297“1- Since r1 < rp, this gives 7*gr, < gr;.

Step 2: Restricted on any disk Ag, the family {fr,» > R} is a normal family
(it is Lipschitz), hence converges uniformly to a Lipschitz map. Since a
uniform limit of holomorphic maps is holomorphic, the family {fr/a,,r > R}
converges to a holomorhic map on ¢rp: Arp — M.

Step 3: The map ¢p is Lipschitz with respect to all metrics g, »r > R. Since
Ii7m gr IS the standard Euclidean metric goo, ¢@pr IS Lipschitz with respect to

goo -

Step 4. Ii{{n @R converges to a holomorphic Lipschitz map C — M. Since all

fr and @pg satisfy |[dpg|(z) =1 at z = 0, the same is true for the limit. =
17
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Brody curves and Brody maps

THEOREM: (Brody lemma)
Let M be a compact complex manifold which is not Kobayashi hyperbolic.
Then M contains a Brody curve.

Let us equip M with a Hermitian metric h. If |df|(0) < C for any holomorphic
map (A1,g91) — M, then the Kobayashi metric satisfies dp > C~1h, and M
is Kobayashi hyperbolic. If it is non-bounded, we can always rescale the disc
to obtain a map fr: (Ar,9r) — M with r = |df|(0), and then |df-|(0) = 1.

Then Brody lemma follows from Lemma 1 and the following lemma.

LEMMA: Let M be a compact Hermitian manifold, and ¢, : (Ar,g9r) — M
a sequence of holomorphic maps satisfying |dy»|(0) > 1, r — oco. Then there
exists a sequence of Brody maps fs: (As,g9s) — M, with s — co.

18
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Brody curves and Brody maps (2)

LEMMA: Let M be a compact Hermitian manifold, and ¢, : (Ar,g9r) — M
a sequence of holomorphic maps satisfying |dy»|(0) > 1, r — oco. Then there
exists a sequence of Brody maps fs: (Qs,g9s) — M, with s — co.

Proof. Step 1: We need to construct a sequence of holomorphic maps
fs + (As,gs) — M, which are 1-Lipschitz and satisfy |dfs|(0) = 1. The
identity map

Wy ecp: (Ar—c,gr—c) — (Ar, gr)

is 1-Lipschitz, and satisfies

lim dW,_ z) = 0.
Nime W] (2)
Let u :=r—e and fy, := W,_. roth be a restriction of f, to the disk (A,_¢, gr—¢).
Then f, is also Lipschitz and |dfy| reaches maximum at a point 2z, somewhere
inside the disk A,.

Step 2: Applying appropriate holomorphic isometry of Ay, we may assume
that |dfy|(z) takes maximum C, > 1 for z = 0. Rescaling f,, and putting
s .= Cyu, we obtain a map fs: As— M which is 1-Lipschitz and satisfies
dfs| <1, |dfs|(0) =1. m
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Algebraically hyperbolic manifolds

DEFINITION: Let M be a projective manifold. We say that M is alge-
braically hyperbolic if there exists A > 0 such that for any curve C C M of
genus g one has degC < A(g — 1).

REMARK: Algebraically hyperbolic manifolds contain no elliptic nor ra-
tional curves.

THEOREM: Kobayashi hyperbolic implies algebraically hyperbolic.

Converse implication (“algebraically hyperbolic implies Kobayashi hyper-
bolic” ) was conjectured by J.-P. Demailly who introduced the notion of
algebraic hyperbolicity.

20
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Kobayashi hyperbolic implies algebraically hyperbolic
THEOREM: Kobayashi hyperbolic implies algebraically hyperbolic.

Proof. Step 1: Let C C M be a curve in a Kobayashi hyperbolic manifold.
Then its genus g is > 1, and its universal covering is a disk. Denote by
oo - A — M the universal covering map. The volume of C with the Fubini-
Study metric on M is degC, and its volume with the Poincare metric is

o1 (T*C) = 2w (29 — 2). Therefore, supa |dec| > 27&@2%92).

Step 2: Brody lemma implies that the Kobayashi metric dx is bounded from
below by ed,,, where w is a given Hermitian form on M, and d the corresponding
distance function. Since any holomorphic map is Lipschitz with respect to the

Kobayashi metric, this gives edy(pc(x), pc(y)) < dr(vc(x),oc(y)) < d(z,y)
for any z,y € A. This gives ¢|dpo| < 1.

Step 3: Comparing Step 1 and Step 2, we obtain that e=1 > supa |doo| >

deg C degC .
5r(29-2)" hence 5r(2y-2) 1S bounded from above. =
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Kobayashi hyperbolic implies algebraically hyperbolic: alternative proof
Another proof of the same statement
THEOREM: Kobayashi hyperbolic implies algebraically hyperbolic.

Proof. Step 1: Let C C M be a curve in a Kobayashi hyperbolic manifold.
Then its genus g is > 1, and its universal cover is a disk. Denote by ¢¢ :
A — M the universal cover map. The volume of C with the Fubini-Study
metric on M is degC, and its volume with Poincare metric is [oc1(T*C) =

2n(2g — 2). Therefore, |po| > 2;'(6299(_12) somewhere on A.

Step 2: M is not algebraically hyperbolic < there is a sequence C; of curves

in M with lim; QW(Sge?Cf;_Q) » 00. Suppose that M is not algebraically hy-
deg C}

perbolic. Step 1 gives a sequence ¢, : Ay — M with |pc.| > 57 (29(C)=2)
somewhere on A. Replacing A1 by Aq_. as above, we may assume that
|g0(;rz.| reaches maximum somewhere on Aj1. Applying isometry of A1, we
may assume that [pc.| reaches maximum R; in 0 € Ay. Rescaling ¢¢, by R;,
we obtain a sequence of disks ¢ (2) = ¢, (2/R;) © Agr — M, giving a
Brody curve (Lemma 1). =
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