Brody lemma and Kobayashi hyperbolicity

Misha Verbitsky

November 7, Thursday, 2024,

seminar on geometric structures on manifolds, IMPA

Space forms

DEFINITION: Simply connected space form is a homogeneous manifold of one of the following types:

positive curvature: S^n (an *n*-dimensional sphere), equipped with an action of the group SO(n+1) of rotations

zero curvature: \mathbb{R}^n (an *n*-dimensional Euclidean space), equipped with an action of isometries

negative curvature: SO(1,n)/SO(n), equipped with the natural SO(1,n)action. This space is also called **hyperbolic space**, and in dimension 2 **hyperbolic plane** or **Poincaré plane** or **Bolyai-Lobachevsky plane**

LEMMA: Let G = SO(n) act on \mathbb{R}^n in a natural way. Then there exists a unique *G*-invariant symmetric 2-form: the standard Euclidean metric.

COROLLARY: Let M = G/H be a simply connected space form. Then M admits a unique, up to a constant multiplier, G-invariant Riemannian form.

Proof: The isotropy group is SO(n-1) in all three cases, and the previous lemma can be applied.

REMARK: From now on, the space forms are assumed to be homogeneous Riemannian manifolds.

Schwartz lemma

CLAIM: (maximum principle) Let f be a holomorphic function defined on an open set U. Then f cannot have strict maxima in U. If f has non-strict maxima, it is constant.

EXERCISE: Prove the maximum principle.

LEMMA: (Schwartz lemma) Let $f : \Delta \to \Delta$ be a map from disk to itself fixing 0. Then $|f'(0)| \leq 1$, and equality can be realized only if $f(z) = \alpha z$ for some $\alpha \in \mathbb{C}$, $|\alpha| = 1$.

Proof: Consider the function $\varphi := \frac{f(z)}{z}$. Since f(0) = 0, it is holomorphic, and since $f(\Delta) \subset \Delta$, on the boundary $\partial \Delta$ we have $|\varphi||_{\partial \Delta} \leq 1$. Now, the **maximum principle implies that** $|f'(0)| = |\varphi(0)| \leq 1$, and equality is realized only if $\varphi = const$.

Conformal automorphisms of the disk

CLAIM: Let $\Delta \subset \mathbb{C}$ be the unit disk. Then the group $Aut(\Delta)$ of its holomorphic automorphisms acts on Δ transitively.

Proof: Let $V_a(z) = \frac{z-a}{1-\overline{a}z}$ for some $a \in \Delta$. Then $V_a(0) = -a$. To prove transitivity, it remains to show that $V_a(\Delta) = \Delta$, which is implied from

$$|V_a(z)| = |V_a(z)||z| = \left|\frac{z\overline{z} - a\overline{z}}{1 - \overline{a}z}\right| = \left|\frac{1 - a\overline{z}}{1 - \overline{a}z}\right| = 1.$$

REMARK: The group $PU(1,1) \subset PGL(2,\mathbb{C})$ of unitary matrices preserving a pseudo-Hermitian form h of signature (1,1) acts on a disk $\{l \in \mathbb{C}P^1 \mid h(l,l) > 0\}$ by holomorphic automorphisms.

COROLLARY: Let $\Delta \subset \mathbb{C}$ be the unit disk, Aut(Δ) the group of its conformal automorphisms, and Ψ : $PU(1,1) \rightarrow Aut(\Delta)$ the map constructed above. Then Ψ is an isomorphism.

COROLLARY: Let *h* be a homogeneous metric on $\Delta = PU(1,1)/S^1$. Then (Δ, h) is conformally equivalent to $(\Delta, \text{flat metric})$.

Upper half-plane

REMARK: The map $z \rightarrow -\sqrt{-1} (z-1)^{-1}$ induces a diffeomorphism from the unit disc in \mathbb{C} to the upper half-plane \mathbb{H} .

PROPOSITION: The group $\operatorname{Aut}(\Delta)$ acts on the upper half-plane \mathbb{H} as $z \xrightarrow{A} \frac{az+b}{cz+d}$, where $a, b, c, d \in \mathbb{R}$, and $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} > 0$.

REMARK: The group of such A is naturally identified with $PSL(2,\mathbb{R}) \subset PSL(2,\mathbb{C})$. Since $PSL(2,\mathbb{R})$ acts on its Lie algebra preserving the Killing form, $PSL(2,\mathbb{R})$ embeds to SO(1,2). Both of these groups are 3-dimensional, since they are isomorphic.

REMARK: We have shown that $\mathbb{H} = SO(1,2)/S^1$. This gives a **natural** isomorphism of \mathbb{H} and the hyperbolic space. Under this isomorphism, holomorphic automorphisms correspond to isometries.

Poincaré metric on disk

DEFINITION: Poincaré metric on a unit disk $\Delta \subset \mathbb{C}$ is an Aut(Δ)-invariant metric (it is unique up to a constant multiplier).

DEFINITION: Let $f : M \longrightarrow M_1$ be a map of metric spaces. Then f is called *C*-Lipschitz if $d(x,y) \ge Cd(f(x), f(y))$. A map is called Lipschitz if it is *C*-Lipschitz for some C > 0.

THEOREM: (Schwartz-Pick lemma)

Any holomorphic map $\varphi : \Delta \longrightarrow \Delta$ from a unit disk to itself is 1-Lipschitz with respect to the Poicaré metric.

Proof. Step 1: We need to prove that for each $x \in \Delta$ the norm of the differential satisfies $|D\varphi_x| \leq 1$. Since the automorphism group acts on Δ transitively, it suffices to prove that $|D\varphi_x| \leq 1$ when x = 0 and $\varphi(x) = 0$.

Step 2: This is Schwartz lemma. ■

Kobayashi pseudometric

DEFINITION: Pseudometric on M is a function $d : M \times M \longrightarrow \mathbb{R}^{\geq 0}$ which is symmetric: d(x,y) = d(y,x) and satisfies the triangle inequality $d(x,y) + d(y,z) \geq d(x,z)$.

REMARK: Let \mathfrak{D} be a set of pseudometrics. Then $d_{\max}(x, y) := \sup_{d \in \mathfrak{D}} d(x, y)$ is also a pseudometric.

DEFINITION: The Kobayashi pseudometric on a complex manifold M is d_{max} for the set \mathfrak{D} of all pseudometrics such that any holomorphic map from the Poincaré disk to M is distance-decreasing.

EXERCISE: Prove that the distance between points x, y in Kobayashi pseudometric is infimum of the Poincaré distance over all sets of Poincaré disks connecting x to y.

EXAMPLE: The Kobayashi pseudometric on \mathbb{C} vanishes.

CLAIM: Any holomorphic map $X \xrightarrow{\varphi} Y$ is 1-Lipschitz with respect to the Kobayashi pseudometric.

Proof: If $x \in X$ is connected to x' by a sequence of Poincare disks $\Delta_1, ..., \Delta_n$, then $\varphi(x)$ is connected to $\varphi(x')$ by $\varphi(\Delta_1), ..., \varphi(\Delta_n)$.

Kobayashi hyperbolic manifolds

COROLLARY: Let $B \subset \mathbb{C}^n$ be a unit ball, and $x, y \in B$ points with coordinates $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$. Since x_i, y_i belongs to Δ , it makes sense to compute the Poincare distance $d_P(x_i, y_i)$. Then $d_K(x, y) \ge \max_i d_P(x_i, y_i)$.

Proof: Each of projection maps $\Pi_i : B \longrightarrow \Delta$ is 1-Lipschitz.

DEFINITION: A variety is called **Kobayashi hyperbolic** if the Kobayashi pseudometric d_K is non-degenerate.

DEFINITION: A domain in \mathbb{C}^n is an open subset. A bounded domain is an open subset contained in a ball.

COROLLARY: Any bounded domain Ω in \mathbb{C}^n is Kobayashi hyperbolic.

Proof: Without restricting generality, we may assume that $\Omega \subset B$ where B is an open ball. Then the Kobayashi distance in Ω is \geq that in B. However, the Kobayashi distance in B is bounded by the metric $d(x, y) := \max_i d_P(x_i, y_i)$ as follows from above.

Caratheodory metric

DEFINITION: Let $x, y \in M$ be points on a complex manifold. Define **Caratheodory pseudometric** as $d_C(x, y) = \sup\{d_P(f(x), f(y))\}$, where the supremum is taken over all holomorphic map $f : M \longrightarrow \Delta$, and d_P is Poincare metric on the disk Δ .

REMARK: Usually the term "Kobayashi/Caratheodory pseudometric" is abbreviated to "Kobayashi/Caratheodory metric", **even when it is not a metric.**

REMARK: Caratheodory pseudometric **satisfies the triangle inequality** because a supremum of pseudometrics satisfies triangle inequality.

Exercise: Prove that **Caratheodory pseudometric is bounded by the Kobayashi pseudometric:** $d_K \ge d_C$.

REMARK: Clearly, $d_C \neq 0$ on any bounded domain.

Complex hyperbolic space

DEFINITION: Let $V = \mathbb{C}^{n+1}$ be a complex vector space equipped with a Hermitian metric h of signature (1, n), and $\mathbb{H}^n_{\mathbb{C}} \subset \mathbb{P}V$ projectivization of the set of positive vectors $\{x \in V \mid h(x, \overline{x}) > 0\}$. Then $\mathbb{H}^n_{\mathbb{C}}$ is equipped with a homogeneous action of U(1, n). The same argument as used for space forms implies that $\mathbb{H}^n_{\mathbb{C}}$ admits a U(1, n)-invariant Hermitian metric, which is unique up to a constant multiplier. This Hermitian complex manifold is called **complex hyperbolic space**.

REMARK: For n > 1 it is not isometric, to the real hyperbolic spaces defined earlier.

REMARK: As a complex manifold $\mathbb{H}^n_{\mathbb{C}}$ is isomorphic to an open ball in \mathbb{C}^n .

REMARK: The Kobayashi metric and the Caratheodory metric on $\mathbb{H}^n_{\mathbb{C}}$ are U(1,n)-invariant, because U(1,n) acts holomorphically, hence proportional to the hyperbolic metric, which is also called **Bergman metric** on an open ball.

Exercise: Prove that Kobayashi metric on a ball in \mathbb{C}^n is equal to the Caratheodory metric.

Uniform convergence for Lipschitz maps

DEFINITION: A sequence of maps $f_i : M \longrightarrow N$ between metric spaces **uni**formly converges (or converges uniformly on compacts) to $f : M \longrightarrow N$ if for any compact $K \subset M$, we have $\lim_{i \to \infty} \sup_{x \in K} d(f_i(x), f(x)) = 0$.

Claim 1: Suppose that a sequence $f_i : M \longrightarrow N$ of 1-Lipschitz maps converges to f pointwise in a countable dense subset $M' \subset M$. Then f_i converges to f uniformly on compacts.

Proof: Let $K \subset M$ be a compact set, and $N_{\varepsilon} \subset M'$ a finite subset such that K is a union of ε -balls centered in N_{ε} (such N_{ε} is called **an** ε -**net**). Then there exists N such that $\sup_{x \in N_{\varepsilon}} d(f_{N+i}(x), f(x)) < \varepsilon$ for all $i \ge 0$. Since f_i are 1-Lipschitz, this implies that

$$\sup_{y \in K} d(f_{N+i}(y), f(y)) \leq \\ \leq \sup_{x \in N_{\varepsilon}} d(f_{N+i}(x), f(x)) + \inf_{x \in N_{\varepsilon}} (d(f_{N+i}(x), y) + d(f(x), y)) \leq 3\varepsilon.$$

Exercise: Prove that the limit f is also 1-Lipschitz.

REMARK: This proof works when M is a pseudo-metric space, as long as N is a metric space.

Arzelà-Ascoli theorem for Lipschitz maps

DEFINITION: Let M, N be metric spaces. A subset $B \subset M$ is **bounded** if it is contained in a ball. A family $\{f_{\alpha}\}$ of functions $f_{\alpha} : M \longrightarrow N$ is called **uniformly bounded on compacts** if for any compact subset $K \subset M$, there is a bounded subset $C_K \subset N$ such that $f_{\alpha}(K) \subset C_K$ for any element f_{α} of the family.

THEOREM: (Arzelà-Ascoli for Lipschitz maps)

Let $\mathcal{F} := \{f_{\alpha}\}$ be an infinite uniformly bounded set of 1-Lipschitz maps $f_{\alpha} : M \longrightarrow \mathbb{C}$, where M is a pseudo-metric space. Assume that M has countable base of open sets and can be obtained as a countable union of compact subsets. Then there is a sequence $\{f_i\} \subset \mathcal{F}$ which converges to $f : M \longrightarrow \mathbb{C}$ uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: Suppose we can prove Arzelà-Ascoli when M is compact. Then we can choose a sequence of compact subsets $K_i \subset M$, find subsequences in \mathcal{F} converging on each K_i , and use the diagonal method to find a subsequence converging on all K_i . Therefore, we can assume that M is bounded, and all maps $f_{\alpha} : M \longrightarrow \mathbb{C}$ map M into a compact subset $N \subset \mathbb{C}$.

Arzelà-Ascoli theorem for Lipschitz maps (2)

THEOREM: (Arzelà-Ascoli for Lipschitz maps)

Let $\mathcal{F} := \{f_{\alpha}\}$ be an infinite uniformly bounded set of 1-Lipschitz maps $f_{\alpha} : M \longrightarrow \mathbb{C}$, where M is a pseudo-metric space. Assume that M has countable base of open sets and can be obtained as a countable union of compact subsets. Then there is a sequence $\{f_i\} \subset \mathcal{F}$ which converges to $f : M \longrightarrow \mathbb{C}$ uniformly.

REMARK: The limit f is clearly also 1-Lipschitz.

Proof. Step 1: We can assume that M is compact, and all maps $f_{\alpha} : M \longrightarrow \mathbb{C}$ map M into a compact subset $N \subset \mathbb{C}$.

Step 2: Find a dense, countable subset $Z \subset M$. Using diagonal method, find a sequence $\{f_i\} \subset \mathcal{F}$ converging pointwise to some f at all $z \in Z$.

Step 3: Being a pointwise limit of Lipschitz functions, $f|_Z$ is also Lipschitz, and f_i converge to f uniformly on Z.

Step 4: Since a Lipschitz function maps Cauchy sequences to Cauchy sequences, it can be extended to a Lipschitz function on the completion \overline{M} .

Normal families of holomorphic functions

DEFINITION: Let M be a complex manifold. A family $\mathcal{F} := \{f_{\alpha}\}$ of holomorphic functions $f_{\alpha} : M \longrightarrow \mathbb{C}$ is called **normal family** if \mathcal{F} is uniformly bounded on compact subsets.

THEOREM: (Montel's theorem)

Let M be a complex manifold with countable base, and \mathcal{F} a normal, infinite family of holomorphic functions. Then there is a sequence $\{f_i\} \subset \mathcal{F}$ which converges to $f : M \longrightarrow \mathbb{C}$ uniformly, and f is holomorphic.

Proof. Step 1: As in the first step of Arzelà-Ascoli, it suffices to prove Montel's theorem on a subset of M where \mathcal{F} is bounded. Therefore, we may assume that all f_{α} map M into a disk Δ .

Step 2: All f_{α} are 1-Lipschitz with respect to Kobayashi metric. Therefore, **Arzelà-Ascoli theorem can be applied, giving a uniform limit** $f = \lim f_i$.

Step 3: A uniform limit of holomorphic functions is holomorphic by Cauchy formula. ■

REMARK: The sequence $f = \lim f_i$ converges uniformly with all derivatives, again by Cauchy formula.

Normal families in complete generality

DEFINITION: A set of holomorphic maps f_{α} : $X \longrightarrow Y$ is called a normal family if any sequence $\{f_i\}$ in $\{f_{\alpha}\}$ has a subsequence converging unformly on compacts.

THEOREM: Let $f_{\alpha} : X \longrightarrow Y$ be a family of holomorphic maps such that for any point $x \in X$ there exists its neighbourhood with compact closure $K \subset X$ and a Kobayashi hyperbolic open subset $V_K \subset Y$ such that all f_{α} map K to V_k . Then f_{α} is a normal family.

Proof: $f_{\alpha}|_{K}$ is Lipschitz with respect to the Kobayashi metric, and Arzelà-Ascoli theorem can be applied.

Brody curves and Brody maps

DEFINITION: Let M be a complex Hermitian manifold. Brody curve is a non-constant holomorphic map $f : \mathbb{C} \longrightarrow M$ such that $|df| \leq C$ for some constant C. Here |df| is understood as an operator norm of $df : T_z \mathbb{C} \longrightarrow TM$, where \mathbb{C} is equipped with the standard Euclidean metric.

DEFINITION: Let (Δ_r, g_r) be a disk of radius r in \mathbb{C} with the Poincare metric g_r , rescaled in such a way that the unit tangent vector to 0 has length 1. **Brody map** to a Hermitian complex manifold is a map $f : \Delta_r \longrightarrow M$ such that $|df| \leq 1$ (here the operator norm is taken with respect to the Poincare metric on Δ_r) and |df|(z) = 1 at z = 0.

Lemma 1: Let $f_r : \Delta_r \to M$ be a sequence of Brody maps with $r \to \infty$. Then f_r converges uniformly to a Brody curve f satisfying |df|(z) = 1 at z = 0.

Proof. Step 1: Let $r_1 < r_2$. The identity map $\tau : (\Delta_{r_1}, g_{r_1}) \longrightarrow (\Delta_{r_2}, g_{r_2})$ is 1-Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincare metric: $\tau^*(r_2^{-2}g_{r_2}) \leq r_1^{-2}g_{r_1}$. Since $r_1 < r_2$, this gives $\tau^*\mathfrak{g}_{r_2} \leq g_{r_1}$.

Brody curves and Brody maps (2)

Lemma 1: Let $f_r : \Delta_r \longrightarrow M$ be a sequence of Brody maps with $r \longrightarrow \infty$. Then f_r converges uniformly to a Brody curve f satisfying |df|(z) = 1at z = 0.

Proof. Step 1: Let $r_1 < r_2$. The identity map $\tau : (\Delta_{r_1}, g_{r_1}) \longrightarrow (\Delta_{r_2}, g_{r_2})$ is 1-Lipschitz. Indeed, it is 1-Lipschitz with respect to the usual Poincare metric: $\tau^*(r_2^{-2}g_{r_2}) \leqslant r_1^{-2}g_{r_1}$. Since $r_1 < r_2$, this gives $\tau^*g_{r_2} \leqslant g_{r_1}$.

Step 2: Restricted on any disk Δ_R , the family $\{f_r, r > R\}$ is a normal family (it is Lipschitz), hence converges uniformly to a Lipschitz map. Since a uniform limit of holomorphic maps is holomorphic, the family $\{f_r|_{\Delta_R}, r > R\}$ converges to a holomorphic map on $\varphi_R : \Delta_R \longrightarrow M$.

Step 3: The map φ_R is Lipschitz with respect to all metrics g_r , r > R. Since $\lim_{r} g_r$ is the standard Euclidean metric g_{∞} , φ_R is Lipschitz with respect to g_{∞} .

Step 4: $\lim_{R} \varphi_R$ converges to a holomorphic Lipschitz map $\mathbb{C} \longrightarrow M$. Since all f_r and φ_R satisfy $|d\varphi_R|(z) = 1$ at z = 0, the same is true for the limit.

Brody curves and Brody maps

THEOREM: (Brody lemma)

Let M be a compact complex manifold which is not Kobayashi hyperbolic. Then M contains a Brody curve.

Let us equip M with a Hermitian metric h. If $|df|(0) \leq C$ for any holomorphic map $(\Delta_1, g_1) \longrightarrow M$, then the Kobayashi metric satisfies $d_K \geq C^{-1}h$, and Mis Kobayashi hyperbolic. If it is non-bounded, we can always rescale the disc to obtain a map $f_r: (\Delta_r, g_r) \longrightarrow M$ with r = |df|(0), and then $|df_r|(0) = 1$.

Then Brody lemma follows from Lemma 1 and the following lemma.

LEMMA: Let M be a compact Hermitian manifold, and $\psi_r : (\Delta_r, g_r) \longrightarrow M$ a sequence of holomorphic maps satisfying $|d\psi_r|(0) \ge 1$, $r \longrightarrow \infty$. Then there exists a sequence of Brody maps $f_s : (\Delta_s, g_s) \longrightarrow M$, with $s \longrightarrow \infty$.

Brody curves and Brody maps (2)

LEMMA: Let M be a compact Hermitian manifold, and $\psi_r : (\Delta_r, g_r) \longrightarrow M$ a sequence of holomorphic maps satisfying $|d\psi_r|(0) \ge 1$, $r \longrightarrow \infty$. Then there exists a sequence of Brody maps $f_s : (\Delta_s, g_s) \longrightarrow M$, with $s \longrightarrow \infty$.

Proof. Step 1: We need to construct a sequence of holomorphic maps f_s : $(\Delta_s, g_s) \longrightarrow M$, which are 1-Lipschitz and satisfy $|df_s|(0) = 1$. The identity map

$$\Psi_{r-\varepsilon,r}$$
: $(\Delta_{r-\varepsilon},g_{r-\varepsilon}) \longrightarrow (\Delta_r,g_r)$

is 1-Lipschitz, and satisfies

$$\lim_{z \longrightarrow \partial \Delta_{r-\varepsilon}} |d\Psi_{r-\varepsilon,r}|(z) = 0.$$

Let $u := r - \varepsilon$ and $\tilde{f}_u := \Psi_{r-\varepsilon,r} \circ \psi_r$ be a restriction of f_r to the disk $(\Delta_{r-\varepsilon}, g_{r-\varepsilon})$. Then f_u is also Lipschitz and $|d\tilde{f}_u|$ reaches maximum at a point z_u somewhere inside the disk Δ_u .

Step 2: Applying appropriate holomorphic isometry of Δ_u , we may assume that $|d\tilde{f}_u|(z)$ takes maximum $C_u \ge 1$ for z = 0. Rescaling \tilde{f}_u , and putting $s := C_u u$, we obtain a map $f_s : \Delta_s \longrightarrow M$ which is 1-Lipschitz and satisfies $|df_s| \le 1$, $|df_s|(0) = 1$.

Algebraically hyperbolic manifolds

DEFINITION: Let M be a projective manifold. We say that M is **algebraically hyperbolic** if there exists A > 0 such that for any curve $C \subset M$ of genus g one has deg C < A(g-1).

REMARK: Algebraically hyperbolic manifolds **contain no elliptic nor ra-tional curves.**

THEOREM: Kobayashi hyperbolic implies algebraically hyperbolic.

Converse implication ("algebraically hyperbolic implies Kobayashi hyperbolic") was conjectured by J.-P. Demailly who introduced the notion of algebraic hyperbolicity.

Kobayashi hyperbolic implies algebraically hyperbolic

THEOREM: Kobayashi hyperbolic implies algebraically hyperbolic.

Proof. Step 1: Let $C \subset M$ be a curve in a Kobayashi hyperbolic manifold. Then its genus g is > 1, and its universal covering is a disk. Denote by $\varphi_C : \Delta \longrightarrow M$ the universal covering map. The volume of C with the Fubini-Study metric on M is deg C, and its volume with the Poincare metric is $\int_C c_1(T^*C) = 2\pi(2g-2)$. Therefore, $\sup_\Delta |d\varphi_C| > \frac{\deg C}{2\pi(2g-2)}$.

Step 2: Brody lemma implies that the Kobayashi metric d_K is bounded from below by εd_{ω} , where ω is a given Hermitian form on M, and d the corresponding distance function. Since any holomorphic map is Lipschitz with respect to the Kobayashi metric, this gives $\varepsilon d_{\omega}(\varphi_C(x), \varphi_C(y)) \leq d_K(\varphi_C(x), \varphi_C(y)) \leq d(x, y)$ for any $x, y \in \Delta$. This gives $\varepsilon |d\varphi_C| \leq 1$.

Step 3: Comparing Step 1 and Step 2, we obtain that $\varepsilon^{-1} \ge \sup_{\Delta} |d\varphi_C| > \frac{\deg C}{2\pi(2g-2)}$, hence $\frac{\deg C}{2\pi(2g-2)}$ is bounded from above.

Kobayashi hyperbolic implies algebraically hyperbolic: alternative proof

Another proof of the same statement

THEOREM: Kobayashi hyperbolic implies algebraically hyperbolic.

Proof. Step 1: Let $C \subset M$ be a curve in a Kobayashi hyperbolic manifold. Then its genus g is > 1, and its universal cover is a disk. Denote by φ_C : $\Delta \longrightarrow M$ the universal cover map. The volume of C with the Fubini-Study metric on M is deg C, and its volume with Poincare metric is $\int_C c_1(T^*C) = 2\pi(2g-2)$. Therefore, $|\varphi_C| > \frac{\deg C}{2\pi(2g-2)}$ somewhere on Δ .

Step 2: *M* is not algebraically hyperbolic \Leftrightarrow there is a sequence C_i of curves in *M* with $\lim_i \frac{\deg C_i}{2\pi(2g(C_i)-2)} \to \infty$. Suppose that *M* is not algebraically hyperbolic. Step 1 gives a sequence $\varphi_{C_i} : \Delta_1 \to M$ with $|\varphi_{C_i}| > \frac{\deg C_i}{2\pi(2g(C_i)-2)}$ somewhere on Δ . Replacing Δ_1 by $\Delta_{1-\varepsilon}$ as above, we may assume that $|\varphi_{C_i}|$ reaches maximum somewhere on Δ_1 . Applying isometry of Δ_1 , we may assume that $|\varphi_{C_i}|$ reaches maximum R_i in $0 \in \Delta_1$. Rescaling φ_{C_i} by R_i , we **obtain a sequence of disks** $\tilde{\varphi}_{C_i}(z) = \varphi_{C_i}(z/R_i) : \Delta_{R_i} \to M$, giving a **Brody curve (Lemma 1).**