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Complex manifolds

DEFINITION: Let M be a smooth manifold. An almost complex structure
is an operator I : TM −→ TM which satisfies I2 = − IdTM . The eigenvalues
of this operator are ±

√
−1 . The corresponding eigenvalue decomposition

is denoted TM = T0,1M ⊕ T1,0(M).

DEFINITION: An almost complex structure is integrable if ∀X,Y ∈ T1,0M ,
one has [X,Y ] ∈ T1,0M . In this case I is called a complex structure op-
erator. A manifold with an integrable almost complex structure is called a
complex manifold.

THEOREM: (Newlander-Nirenberg)
This definition is equivalent to the standard one.

CLAIM: (the Hodge decomposition determines the complex structure)
Let M be a smooth 2n-dimensional manifold. Then there is a bijective
correspondence between the set of almost complex structures, and
the set of sub-bundles T0,1M ⊂ TM ⊗R C satisfying dimC T

0,1M = n and
T0,1M ∩ TM = 0 (the last condition means that there are no real vectors in
T1,0M , that is, that T0,1M ∩ T1,0M = 0).

Proof: Set I
∣∣∣T1,0M =

√
−1 and I

∣∣∣T0,1M = −
√
−1 .
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Hodge theory

DEFINITION: Let (M, I) be a complex manifold, {Ui} its covering, and and

z1, ..., zn holomorphic coordinate system on each covering patch. The bundle

Λp,q(M, I) of (p, q)-forms on (M, I) is generated locally on each coordinate

patch by monomials dzi1 ∧ dzi2 ∧ ... ∧ dzip ∧ dzip+1
∧ ... ∧ dzip+q

. The Hodge

decomposition is a decomposition of vector bundles:

ΛdC(M) =
⊕

p+q=d

Λp,q(M).

DEFINITION: A manifold is called Kähler if it equipped with a closed real

(1,1)-form ω such that ω(Ix, x) > 0 for any non-zero vector x.

THEOREM: (“Hodge decomposition on cohomology”) Let M be a com-

pact Kähler manifold. Then any cohomology class can be represented

as a sum of closed (p, q)-forms.

3



Torelli for C-symplectic manifolds and its applications M. Verbitsky

Holomorphically symplectic manifolds

DEFINITION: Let (M, I) be a complex manifold, and Ω ∈ Λ2(M,C) a dif-

ferential form. We say that Ω is non-degenerate if ker Ω ∩ TRM = 0. We

say that it is holomorphically symplectic if it is non-degenerate, dΩ = 0,

and Ω(IX, Y ) =
√
−1 Ω(X,Y ).

REMARK: The equation Ω(IX, Y ) =
√
−1Ω(X,Y ) means that Ω is complex

linear with respect to the complex structure on TRM induced by I.

REMARK: Consider the Hodge decomposition TCM = T1,0M ⊕ T0,1M (de-

composition according to eigenvalues of I). Since Ω(IX, Y ) =
√
−1 Ω(X,Y )

and I(Z) = −
√
−1 Z for any Z ∈ T0,1(M), we have ker(Ω) ⊃ T0,1(M). Since

ker Ω ∩ TRM = 0, real dimension of its kernel is at most dimRM , giving

dimR ker Ω = dimM . Therefore, ker(Ω) = T0,1M.

COROLLARY: Let Ω be a holomorphically symplectic form on a complex

manifold (M, I). Then I is determined by Ω uniquely.
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C-symplectic structures

DEFINITION: (Bogomolov, Deev, V.) Let M be a smooth 4n-dimensional
manifold. A complex-valued form Ω on M is called almost C-symplectic if
Ωn+1 = 0 and Ωn ∧ Ωn is a non-degenerate volume form. It is called C-
symplectic when it is also closed.

THEOREM: Let Ω ∈ Λ2(M,C) be a C-symplectic form, and T
0,1
Ω (M) be

equal to ker Ω, where ker Ω := {v ∈ TM ⊗ C | Ωyv = 0}. Then T
0,1
Ω (M) ⊕

T
0,1
Ω (M) = TM ⊗R C, hence the sub-bundle T

0,1
Ω (M) defines an almost

complex structure IΩ on M. If, in addition, Ω is closed, IΩ is integrable,
and Ω is holomorphically symplectic on (M, IΩ).

Proof: Rank of Ω is 2n because Ωn+1 = 0 and Re Ω is non-degenerate. Then
ker Ω⊕ker Ω = TCM . The relation [T0,1

Ω (M), T0,1
Ω (M)] ⊂ T0,1

Ω (M) follows from
Cartan’s formula

dΩ(X1, X2, X3) =
1

6

∑
σ∈Σ3

(−1)σ̃ LieXσ1
Ω(Xσ2, Xσ3) + (−1)σ̃Ω([Xσ1, Xσ2], Xσ3)

which gives, for all X,Y ∈ T0,1M , and any Z ∈ TM ,

dΩ(X,Y, Z) = Ω([X,Y ], Z),

implying that [X,Y ] ∈ T0,1M .
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Local Torelli theorem

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold, and
CSymp the space of all C-symplectic forms. The quotient CTeich := CSymp

Diff0
is called the holomorphically symplectic Teichmüller space, and the map
CTeich −→H2(M,C) taking (M, I,Ω) to the cohomology class [Ω] ∈ H2(M,C)
the holomorphically symplectic period map.

DEFINITION: Let M be a compact complex manifold. We say that M

satisfies ∂∂-lemma in term Λp,q(M) if any ∂-closed, ∂-exact (p, q)-form
belongs to the image of ∂∂.

THEOREM: (“Local Torelli theorem”; Kurnosov, V.)
Let (M,Ω) be a C-symplectic manifold. Assume that H0,1(M) = 0, H2,0(M) =
C and M satisfies ∂∂-lemma in Λ1,2(M) and has Hodge decomposition in

H2(M). Let W := H2(M,C)
〈Ω〉 . Then the period map composed with the natural

projection H2(M,C) 7→ W defines a local difeomorphism from CTeich to
a neighbourhood of 0 in W .

REMARK: Today I will not give the proof of this theorem, but I will ex-
plain an explicit construction of a local deformation which is mapped to a
neighbourhood of 0 in W diffeomorphically.
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Schouten brackets

DEFINITION: Let M be a complex manifold, and Λ0,p(M) ⊗ T1,0M the

sheaf of T1,0M-valued (0, p)-forms. Consider the commutator bracket [·, ·] on

T1,0M , and let OM denote the sheaf of antiholomorphic functions. Since [·, ·] is

OM-linear, it is naturally extended to Λ0,p(M)⊗C∞MT1,0M = ΩpM⊗OMT
1,0M ,

giving a bracket

[·, ·] : Λ0,p(M)⊗ T1,0M × Λ0,q(M)⊗ T1,0M −→ Λ0,p+q(M)⊗ T1,0M.

This bracket is called Schouten bracket.

REMARK: Since [·, ·] is OM-linear, the Schouten bracket satisfies the Leibnitz

identity:

∂([α, β]) = [∂α, β] + [α, ∂β].

This allows one to extend the Schouten bracket to the ∂-cohomology of

the complex (Λ0,∗(M)⊗T1,0M,∂), which coincide with the cohomology of the

sheaf of holomorphic vector fields: [·, ·] : Hp(TM)×Hq(TM)−→Hp+q(TM).

7



Torelli for C-symplectic manifolds and its applications M. Verbitsky

Maurer-Cartan equation and deformations

CLAIM: Let (M, I) be an almost complex manifold, and B an abstract vector

bundle over C isomorphic to Λ0,1(M). Consider a differential operator ∂ :

C∞M −→B = Λ0,1(M) satisfying the Leibnitz rule. Its symbol is a linear map

u : Λ1(M,C)−→B. Then B = Λ1(M,C)
ker u = Λ0,1(M). Extend ∂ : C∞M −→B

to the corresponding exterior algebra using the Leibnitz rule:

C∞M ∂−→ B
∂−→ Λ2B

∂−→ Λ3B
∂−→ ...

Then integrability of I is equivalent to ∂
2

= 0.

Proof: This is essentially the Newlander-Nirenberg theorem.

REMARK: Almost complex deformations of I are given by the sections γ ∈
T1,0M ⊗Λ0,1(M), with the integrability relation (∂+ γ)2 = 0 rewritten as the

Maurer-Cartan equation ∂(γ) = −{γ, γ}. Here ∂(γ) is identified with the

anticommutator {∂, γ}, and {γ, γ} is anticommutator of γ with itself, where γ

is considered as a Λ0,1(M)-valued differential operator. This identifies {γ, γ}
with the Schouten bracket.

REMARK: We shall write [γ, γ] instead of {γ, γ}, because this usage is more

common.
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Solving the Maurer-Cartan equation recursively

DEFINITION: The Kuranishi deformation space, can be defined as the

space of solutions of Maurer-Cartan equation ∂(γ) = −[γ, γ] modulo the

diffeomorphism action.

DEFINITION: Write γ as power series, γ =
∑∞
i=0 t

i+1γi. Then the Maurer-

Cartan becomes

∂γ0 = 0, ∂γp = −
∑

i+j=p−1

[γi, γj]. (∗∗)

We say that deformations of complex structures are unobstructed if the

solutions γ1, ..., γn, ... of (**) can be found for γ0 in any given cohomology

class [γ0] ∈ H1(M,TM).

REMARK 1: Notice that the sum
∑
i+j=p−1[γi, γj] is always ∂-closed.

Indeed, the Schouten bracket commutes with ∂, hence

∂
∑

i+j=p−1

[γi, γj] = −
∑

i+j+k=p−1

[γi, [γj, γk]] + [[γi, γj], γk]. (∗ ∗ ∗)

vanishes as a sum of triple supercommutators. Obstructions to deforma-

tions are given by cohomology classes of the sums
∑
i+j=p−1[γi, γj], which

are defined inductively. These classes are called Massey powers of γ0.
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Tian-Todorov lemma

DEFINITION: Assume that M is a complex n-manifold with trivial canon-
ical bundle KM , and Φ a non-degenerate section of KM . We call a pair
(M,Φ) a Calabi-Yau manifold. Substitution of a vector field into Φ gives
an isomorphism TM ∼= Ωn−1(M). Similarly, one obtains an isomorphism

Λ0,qM ⊗ ΛpTM −→ Λ0,qM ⊗ Λn−p,0M = Λn−q,pM. (∗)
Yukawa product • : Λp,qM⊗Λp1,q1M −→ Λp+p1−n,q+q1M is obtained from the
usual product

Λ0,qM ⊗ ΛpTM × Λ0,q1M ⊗ Λp1TM −→ Λ0,q+q1M ⊗ Λp+p1TM

using the isomorphism (*).

TIAN-TODOROV LEMMA: Let (M,Φ) be a Calabi-Yau manifold, and

[·, ·] : Λ0,p(M)⊗ T1,0M × Λ0,q(M)⊗ T1,0M −→ Λ0,p+q(M)⊗ T1,0M.

its Schouten bracket. Using the isomorphism (*), we can interpret Schouten
bracket as a map

[·, ·] : Λn−1,p(M)× Λn−1,q(M)−→ Λn−1,p+q(M).

Then, for any α ∈ Λn−1,p(M), β ∈ Λn−1,p1(M), one has

[α, β] = ∂(α • β)− (∂α) • β − (−1)n−1+pα • (∂β),

where • denotes the Yukawa product.
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ddc-lemma

DEFINITION: Let M be a complex manifold, and I : TM −→ TM its
complex structure operator. The twisted differential of M is IdI−1 :
Λ∗(M)−→ Λ∗+1(M), where I acts on 1-forms as an operator dual to I :
TM −→ TM , and on the rest of differential forms multiplicatively.

REMARK: Consider the Hodge decomposition of the de Rham differential,
d = ∂+∂, where ∂ : Λp,q(M, I)−→ Λp+1,q(M, I) and ∂ : Λp,q(M, I)−→ Λp+1,q(M, I).
Then d = Re ∂ and dc = Im ∂. Also, ddc = 2

√
−1 ∂∂.

THEOREM: (ddc-lemma) Let η be a form on a compact Kähler manifold,
satisfying one of the following conditions.
(1). η is an exact (p, q)-form. (2). η is d-exact, dc-closed.
Then η is ddc-exact, that is, η ∈ im ddc. Equivalently, if η is ∂-exact and
∂-closed, it is ddc-exact.

REMARK: This statement is weaker that the Kähler condition, but it im-
mediately implies almost every cohomological property of Kähler manifolds,
except the Lefschetz sl(2)-action. In particular, ddc-lemma is sufficient to
prove the Bogomolov-Tian-Todorov theorem, claiming that the deforma-
tions of Calabi-Yau manifolds are unobstructed.
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Bogomolov-Tian-Todorov theorem

THEOREM: Let M be a compact complex n-manifold with trivial canon-
ical bundle which satisfies ddc-lemma. Then its deformations are unob-
structed.
Proof. Step 1: Let’s start with a cohomology class [γ0] ∈ H1(TM) =
H1(Ωn−1M). To prove that the deformations are unobstructed, we need to
solve the equation system

∂γ0 = 0, ∂γp = −
∑

i+j=p−1

[γi, γj]. (∗∗)

recursively, starting from a representative γ0 of [γ0]. Identifying Λ0,1(T1,0M)
with Λ0,1(Λn−1,0M) = Λn−1,1(M), we choose a representative γ0 ∈ Λn−1,1(M)
of [γ0] which is ∂ and ∂-closed; this is possible to do using ∂∂-lemma (in
Kähler situation, take a harmonic representative).

Step 2: Using induction, we may assume that (**) is solved up to γn−1, and,
moreover, the solutions satisfy ∂γi = 0. By Tian-Todorov lemma,

α := [γi, γj] = ∂(γi • γj)− (∂γi) • γj − (−1)n−1+pγi • (∂γj) = ∂(γi • γj),
hence it is ∂-exact; as shown in Remark 1 above, it is also ∂-closed. By ddc-
lemma, α is ∂∂-exact. This implies that −

∑
i+j=n−1[γi, γj] = ∂∂β. Taking

γn := ∂β, we obtain a solution of (**) which is also ∂-closed, hence
satisfy the induction assumptions.
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Tian-Todorov lemma for holomorphically symplectic manifolds

Let now Ω be a holomorphically symplectic form on a complex manifold M ,

dimCM = 2n. Then TM ∼= Ω1M , hence the Schouten bracket is defined as

Λ1,p(M)× Λ1,q(M)−→ Λ1,p+q(M).

LEMMA: Let M be a holomorphic symplectic manifold. Consider the oper-

ators LΩ(α) := Ω ∧ α, HΩ acting as multiplication by n − p on Λp,q(M), and

ΛΩ := ?Λ?. Then LΩ, HΩ,ΛΩ satisfy the sl(2) relations, similar to the

Lefschetz triple: [HΩ, LΩ] = 2LΩ, [HΩ,ΛΩ] = −2ΛΩ, [LΩ,ΛΩ] = HΩ.

LEMMA: (Tian-Todorov for holomorphically symplectic manifolds)

Let (M,Ω) be a holomorphically symplectic manifold, and

[·, ·]Ω : Λ1,p(M)× Λ1,q(M)−→ Λ1,p+q(M).

the Schouten bracket. Then for any a, b ∈ Λ1,∗(M), one has

[a, b] = δ(a ∧ b)− (δa) ∧ b− (−1)ãa ∧ δ(b),

where ã is parity of a, and δ := [ΛΩ, ∂].

Proof: Same as for the usual Tian-Todorov.
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Maurer-Cartan for Hamiltonian vector fields

REMARK: A solution of the Maurer-Cartan equation
(
∂ +

∑∞
i=0 t

i+1γi
)2

= 0

gives a holomorphically symplectic deformation whenever all γi belong

to Λ0,1(M)⊗HamM . Here t is a formal parameter, or t is chosem in such a

way that this sum converges.

Using Ω to identify vector fields and 1-forms, the sheaf of Hamiltonian vector

fields can be embedded to Λ1,0(M) as a sheaf of ∂-closed (1,0)-forms.

Similarly, if we use Ω to consider γi as sections of Λ0,1(M)⊗T1,0M = Λ1,1(M),

the condition γi ∈ Λ0,1(M)⊗HamM is interpreted as ∂γi = 0.

DEFINITION: Let (M, I,Ω) be a holomorphically symplectic manifold. We

say that the holomorphic symplectic deformations of (M, I,Ω) are unob-

structed if for any ∂- and ∂-closed γ0 ∈ Λ1,1(M) the Maurer-Cartan equation

∂γp = −
∑

i+j=p−1

[γi, γj], p = 1,2,3, ...

has a solution (γ1, γ2, ..., ), with γi ∈ Λ1,1(M) ∂-closed.
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Almost C-symplectic forms

The proof of local Torelli for K3 involves solving an order 2 equation Ω∧ρ0,2 =
−ρ1,1 ∧ ρ1,1, because the condition Ω2 = 0 is quadratic. To wpork any
dimension we write a degree 2 polynomial equation which describes
almost C-symplectic structures in the space of all complex-valued 2-
forms.
DEFINITION: Let V be a real vector space of dimension 4n, and Λ2

CV :=
Λ2V ⊗RC. A 2-form Ω ∈ Λ2

CV is C-symplectic if Ωn∧Ωn 6= 0 and Ωn+1 = 0.

Claim 1: Fix a complex structure I ∈ EndR V, I
2 = − Id on V , and let Θ ∈ Λ2

CV
be a C-symplectic form. Denote the (2,0)-component of Θ by Ω, let η1,1

be its (1,1)-component and η0,2 be its (0,2)-component. Assume that Ω is
C-symplectic, that is, has maximal rank. Then

η1,1 ∧ η1,1 ∧Ωn−1 = −η0,2 ∧Ωn. (∗)
Moreover, for any (1,1)-form η1,1, there exists a unique (0,2)-form η0,2

such that (*) holds.
Proof. Step 1: The (2n,2)-component of Θn+1 is equal to η1,1 ∧ η1,1 ∧
Ωn−2 + η0,2 ∧Ωn; now, Θn+1 = 0 implies (*) immediately.

Step 2: The map Λ0,2V
∧Ωn
−→ Λ2n,2V is clearly an isomorphism. Existence

and uniqueness of η0,2 solving (*) follows from this observation.
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The operator ΛΩ

We obtained a quadratic equation (*) from an order n+1-equation Θn+1 = 0.
We are going to show that the converse is also true: (*) implies Θn+1 =
0, at least in a neighbourxood of a C-symplectic structure Ω ∈ Λ2,0

C V .

DEFINITION: Fix a complex structure I ∈ EndR V, I
2 = − Id on V , and let

Ω ∈ Λ2,0
C V be a C-symplectic form. Consider a (2,2)-form Θ ∈ Λ2,2V and let

u ∈ Λ0,2V be a (0,2)-form which satisfies u ∧Ωn = Θ ∧Ωn−1. By Step 2 of
Claim 1, such u exists for any (2,2)-form Θ. The map which takes Θ to u

is denoted Θ 7→ ΛΩΘ.

REMARK: Using this notation, the equation (*) can be written as η0,2 =
−ΛΩ(η1,1 ∧ η1,1).

THEOREM A: Let V be a real vector space of dimension 4n, and I ∈
EndR V, I

2 = − Id a complex structure. Denote by Z the space of C-symplectic
structures Θ ∈ Λ2

CV , such that Θ2,0 is non-degenerate, and let Z1 be the
space of all triples Θ = Ω + η1,1 + η0,2, where Ω is a non-degenerate (2,0)-
form, and η0,2 = −ΛΩ(η1,1 ∧ η1,1). Then Z = Z1 in a sufficiently small
neighbourhood of a given non-degenerate (2,0)-form Θ0.

This theorem will not be proven today.
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The local Torelli theorem for C-symplectic manifolds

COROLLARY: Let (M, I,Ω) be a compact holomorphically symplectic man-

ifold which satisfies ∂∂-lemma in term Λ2,1(M), and η0 a closed (1,1)-form.

Consider a family of solutions of the Maurer-Catran equation

∂ηn = 0, ∂ηn =
∑

i+j=n−1

∂(ΛΩ(ηi ∧ ηj)). (∗ ∗ ∗)

which exists by holomorphic symplectic Bogomolov-Tian-Todorv lemma, and

let η :=
∑
ti+1ηi. Then Ωη := Ω + η − ΛΩ(η ∧ η) gives a formal deforma-

tion of C-symplectic structures, which can be chosen convergent for t

sufficiently small and an appropriate choice of solutions ηi.

Proof: By Theorem A, Ωη is an almost C-symplectic structure. It is closed,

which follows from (***) immediately. Convergence of
∑
ti+1ηi follows from

a routine calculation because the operator ∂
−1

= ∂
∗
∆−1
∂

which is used in

solving (***) is compact, and the Green operator ∆−1
∂

is a compact Hermitian

operator.
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Holomorphic Lagrangian subvarieties

DEFINITION: Let (M,Ω) be a holomorphically symplectic manifold, and

X ⊂ (M,Ω) a complex subvariety. It is called holomorphic Lagrangian if Ω

restricted to the set of smooth points of X vanishes.

PROPOSITION: (Hitchin’s lemma)

Let X ⊂ M be a real submanifold (or closed real analytic subvariety) such

that Ω|X = 0 and dimRX = 1
2 dimRM . Then X is a complex subvariety.

Proof. Step 1: This statement would follow if we prove the following linear-

algebraic statement. Let (V,Ω) be a real vector space equipped with a C-

symplectic form, I : V −→ V the induced complex structure operator, and

W ⊂ V a real subspace such that dimRW = 1
2 dimR V and Ω|W = 0. Then

I(W ) = W , that is, W is a complex subspace of V .

Proof: Let u,w ∈W . Since Ω is I-linear, one has 0 =
√
−1Ω(u,w) = Ω(Iu, w),

hence the space Wu := 〈W + Iu〉 generated by W and Iu is Lagrangian with

respect to Re Ω and Im Ω. Since the forms Re Ω and Im Ω are non-degenerate,

dimension of Wu cannot be bigger than dimRW = 1
2 dimR V , hence Wu = W .

18
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“Good” subvarieties

DEFINITION: Consider a closed complex subvariety X ⊂ M , and let M̃ a

blow-up of M such that the proper preimage of X is a subvariety X̃ ⊂ M̃ which

has simple normal crossings. The essential skeleton of X is a CW-complex

associated with X̃ as follows: its vertices are irreducible components of X̃,

and its k-simplexes with vertices associated to the components X1, ..., Xk are

irreducible components of the intersection
⋃k
i=1Xk. By a theorem of D. A.

Stepanov, the homotopy type of the essential skeleton is independent

from the choice of resolution.

DEFINITION: We call a function f on X smooth if its pullback to X̃ is

smooth.

DEFINITION: A closed, compact subvariety X ⊂ M is called good if the

resolution of X is Kähler, any smooth function on X can be extended to a

smooth function in a neighbourhood of X in M , and the essential skeleton S

of X satisfies H1(S) = 0.
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ddc-lemma and essential skeleton

Proposition 4: Let η be a (1,1)-form on M which is exact on X ⊂M , which
is a “good” complex subvariety. Then η = ddcf in a neighbourhood of X.

Proof. Step 1: Let X̃0 be the resolution of X, obtained from X̃ by taking
apart the branches. Then the pullback η0 of η to X̃0 is ddc-exact, because
X̃0 is smooth and Kähler, hence η0 = ddcf .

Step 2: Let π : X̃0 −→X be the projection, and x ∈ X any point. Since
ker ddc is holomorphic plus antiholomorphic functions, on a compact com-
plex variety ker ddc is constant functions. On each irreducible component of
π−1(x), the function f satisfies ddcf = 0, hence it is constant. Therefore, the
function f such that η0 = ddcf is uniquely, up to a constant, defined on each
connected component Xi of X̃0. To show that f is a pullback of a function
on X̃, and hence on X, we need to chose these constants in such a way
that f |Xi agrees on all intersections Xi ∩Xj.

Step 3: Choose a function fi which satisfies ddcfi = η0|Xi on each of these
components. The difference fi|Xi ∩Xj − fj|Xi ∩Xj is a constant function on
each intersection Xi∩Xj which sums up to zero on triple intersections, hence
it defines a 1-cocycle on S. To choose fi which agree on intersections, we
need to show that this cocycle is exact; this can be ensured by assuming
that H1(S) = 0, where S is the essential skeleton.
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Deformations of Lagrangian subvarieties

THEOREM: (joint with N. Kurnosov)
Let (M,Ω) be a compact C-symplectic manifold satisfying the assumptions
of local Torelli theorem, X ⊂ (M,Ω) a good closed holomorphic Lagrangian
subvariety. Consider the space CTeichX ⊂ CTeich consisting of all Ω′ ∈
CTeich such that the restriction of Ω′ to X is exact. Assume that X is “good”
in the sense of the above definition. Then locally around Ω ∈ CTeichX there
exist a choice of holomorphic symplectic representatives Ωt, smoothly
depending on t ∈ CTeichX, such that Ωt|X = 0 for all t.

Proof: Next slide.

REMARK: In other word, for a sufficiently small deformation Ωt ∈ CTeichX
of the C-symplectic structure Ω in CTeichX, the variety X can be deformed
to a Lagrangian subvariety in (M,Ωt).

REMARK: This result was proven by Voisin for smooth holomorphic La-
grangian X in projective M , and by C. Lehn when X are SNC holomor-
phic Lagrangian subvarieties in projective M . We needed this result for
Bogomolov-Guan manifolds, and found an improved proof of Voisin’s
theorem which also works for singular X and non-Kähler M.
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Deformations of Lagrangian subvarieties

THEOREM: Let (M,Ω) be a compact C-symplectic manifold satisfying the

assumptions of local Torelli theorem, X ⊂ (M,Ω) a good closed holomorphic

Lagrangian subvariety. Consider the space CTeichX ⊂ CTeich consisting of

all Ω′ ∈ CTeich such that the restriction of Ω′ to X is exact. Assume that

X is “good” in the sense of the above definition. Then locally around Ω ∈
CTeichX there exist a choice of holomorphic symplectic representatives

Ωt, smoothly depending on t ∈ CTeichX, such that Ωt|X = 0 for all t.

Proof. Step 1: After rescaling, we may assume that [Ωt]2,0 = Ω. We write

Ωt by solving (*) recursively, starting with a closed (1,1)-form γ0 representing

[Ωt]1,1:

∂γn = ∂ΛΩ

 ∑
i+j=n−1

γi ∧ γj

 . (∗∗)

Adding ddcfn to γn won’t affect (**). I will show that we can always choose

γn such that γn|X = 0 if γi|X = 0 for all i < n.
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Deformations of Lagrangian subvarieties (2)

Step 2: We use induction in n. Since X is “good”, it satisfies the ddc-lemma.
By Proposition 4, we can replace γ0 by γ0 − ddcf such that ddcf |X = γ0|X .
Smoothly extending f to a neighbourhood of X and replacing γ0 by γ0−ddcf ,
we obtain another closed representative of [γ0] which satisfies γ0|X = 0. This
is the basis of induction.

Step 3: We need the following linear-algebraic lemma. Let X ⊂ (M,Ω)
be a holomorphic Lagrangian subvariety, and α1, α2 ∈ Λ1,1(M) (1,1)-forms
which satisfty α1|X = α2|X = 0. Then ΛΩ(α1 ∧ α2)|X = 0. This is a local
statement; using Darboux theorem, we introduce the coordinates such that
Ω =

∑
i dpi ∧ dqi and all qi are constant on X. Then αk =

∑
i,j aijkdpi ∧ dqj +∑

i,j bijkdqi ∧ dpj +
∑
i,j cijkdqi ∧ dqj, which gives

ΛΩ(α1 ∧ α2) = −
∑
i,j,j′

aijkbij′kdqj ∧ dpj′ −
∑
i,j,j′

aijkcij′kdqj ∧ dqj′.

This form vanishes on X because qj is constant on X.

Step 4: Suppose that γi|X = 0 for all i < n. Then u := ΛΩ

(∑
i+j=n−1 γi ∧ γj

)
|X =

0 (Step 3). Solving the equation ∂γn = ∂u, γn ∈ im ∂, we obtain a solution
γn which is ∂-exact and ∂-closed on X. Applying Proposition 4 again, we
replace γn by another solution γn − ddcf which vanishes on X.
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