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Hypercomplex manifolds

DEFINITION: Let M be a smooth manifold equipped with endomor-

phisms I, J,K : TM −→ TM , satisfying the quaternionic relation I2 = J2 =

K2 = IJK = − Id . Suppose that I, J, K are integrable almost complex

structures. Then (M, I, J,K) is called a hypercomplex manifold.

THEOREM: (Obata, 1955) On any hypercomplex manifold there exists

a unique torsion-free connection ∇ such that ∇I = ∇J = ∇K.

DEFINITION: Such a connection is called the Obata connection.

REMARK: The holonomy of Obata connection lies in GL(n,H).

REMARK: A torsion-free connection ∇ on M with Hol(∇) ⊂ GL(n,H)

defines a hypercomplex structure on M.
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Examples of hypercomplex manifolds

EXAMPLE: A Hopf surface M = H\0/Z ∼= S1 × S3. The holonomy of

Obata connection Hol(M) = 0.

EXAMPLE: Compact holomorphically symplectic manifolds are hy-

perkähler (by Calabi-Yau theorem), hence hypercomplex. Here Hol(M) ⊂
Sp(n) (this is equivalent to being hyperkähler).

PROPOSITION: A compact hypercomplex manifold (M, I, J,K) with

(M, I) of Kähler type also admits a hyperkähler structure.

REMARK: In dimension 1, compact hypercomplex manifolds are classified

(C. P. Boyer, 1988). This is the complete list: torus, K3 surface, Hopf

surface.

3



Quaternionic Calabi-Yau metrics M. Verbitsky

Examples of hypercomplex manifolds (2)

EXAMPLE: The Lie groups

SU(2l + 1), T1 × SU(2l), T l × SO(2l + 1),

T2l × SO(4l), T l × Sp(l), T2 × E6,

T7 × E7, T8 × E8, T4 × F4, T2 ×G2.

Some other homogeneous spaces (D. Joyce and physicists Ph. Spindel,

A. Sevrin, W. Troost, A. Van Proeyen). Holonomy unknown (but likely

GL(n,H)).

EXAMPLE: Many nilmanifolds (quotients of a nilpotent Lie group by a

cocompact lattice) admit hypercomplex structures. In this case Hol(M) ⊂
SL(n,H).
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Quaternionic Hermitian structures

DEFINITION: Let (M, I, J,K) be a hypercomplex manifold, and g a Rie-
mannian metric. We say that g is quaternionic Hermitian if I, J,K are
orthogonal with respect to g.

CLAIM: Quaternionic Hermitian metrics always exist.

Proof: Take any Riemannian metric g and consider its average AvSU(2) g
with respect to SU(2) ⊂ H∗.

Given a quaternionic Hermitian metric g on (M, I, J,K), consider its Her-
mitian forms

ωI(·, ·) = g(·, I·), ωJ , ωK
(real, but not closed). Then Ω = ωJ +

√
−1ωK is of Hodge type (2,0) with

respect to I.

If dΩ = 0, (M, I, J,K, g) is hyperkähler (this is one of the definitions).

Consider a weaker condition:

∂Ω = 0, ∂ : Λ2,0(M, I)−→ Λ3,0(M, I)
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HKT structures

DEFINITION: (Howe, Papadopoulos, 1998)

Let (M, I, J,K) be a hypercomplex manifold, g a quaternionic Hermitian

metric, and Ω = ωJ +
√
−1 ωK the corresponding (2,0)-form. We say that

g is HKT (“hyperkähler with torsion”) if ∂Ω = 0..

HKT-metrics play in hypercomplex geometry the same role as Kähler

metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of

an “HKT-class” (similar to Kähler class) in a certain finite-dimensional

coholology group. Two metrics in the same HKT-class differ by a potential,

which is a function.

2. When (M, I) has trivial canonical bundle, a version of Hodge the-

ory is established giving an sl(2)-action on holomorphic cohomology

H∗(M,O(M,I)).
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HKT potential

Defining Kähler metric via Kähler potentials: A Kähler metric on (M, I)
is one which is locally given as

g(·, ·) =
√
−1 ∂∂ϕ(·, I·)

where ϕ is a function called a Kähler potential.

Defining HKT metric through HKT potentials: An HKT metric on
(M, I) is one which is locally given as

g(·, ·) = D(ϕ), where D(ϕ) := AvSU(2)(
√
−1 ∂∂ϕ(·, I·))

and ϕ is a function called an HKT potential.

THEOREM: (Banos-Swann)
This definition is equivalent to the usual one.

DEFINITION: A function which is an HKT potential of some HKT metric
is called strictly H-plurisubharmonic, or H-psh.

REMARK: For a H-psh function ϕ, at least 1/4 eigenvalues of Hess(ϕ)
must be positive. Therefore, there are no globally defined H-psh
functions on compact manifolds.
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HKT forms

DEFINITION: Let g be an HKT metric. The corresponding (2,0)-form

Ω = ωJ +
√
−1 ωK is called an HKT form.

CLAIM: Consider the multiplicative action of J on Λ∗(M). Then J maps

Λp,q(M)) to Λq,p(M)).

Proof: I and J anticommute.

DEFINITION: A (2,0)-form Ω on (M, I) is called real if J(Ω) = Ω and

positive if Ω(x, J(x)) > 0 for each non-zero x ∈ T1,0
I (M).

CLAIM: Any HKT form is positive and real. Moreover, any ∂-closed

positive real form Ω ∈ Λ2,0
I (M) defines an HKT-metric g(x, y) :=

Ω(x, J(y)).
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An HKT cone.

Let g, g′ be HKT metrics. We say that they are equivalent if g = g′+D(ϕ)
for some globally defined potential.

DEFINITION: An HKT cone is the set of all HKT metrics up to this
equivalence.

CLAIM: Let g, g′ be HKT metrics, with g = g′ + D(ϕ). Then the cor-
responding HKT forms are related as Ω = Ω′+ ∂∂Jϕ, where ∂J(ϕ) :=
J(∂ϕ).

COROLLARY: An HKT cone is an open, convex subset in the
cohomology group

H(M) :=
Λ2,0(M,R)∂−closed

∂∂J(C∞M)
.

This complex is elliptic, hence H(M) is finite-dimensional when M is
compact.

MAIN QUESTION: Given a class [Ω] in the HKT cone, find a privileged
(extremal) metric in this class.
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Canonical bundle of a hypercomplex manifold.

0. Quaternionic Hermitian structure always exists.

1. Complex dimension is even.

2. The canonical line bundle Λn,0(M, I) of (M, I) is always trivial

topologically. Indeed, a non-degenerate section of canonical line bundle

is provided by top power of a form Ω associated with some quaternionic

Hermitian strucure. In particular, c1(M, I) = 0.

3. Canonical bundle is non-trivial holomorphically in many cases. How-

ever, when M is a nilmanifold, Λn,0(M, I) is trivial, and holonomy of

Obata connection lies in SL(n,H) (Barberis-Dotti-V., 2007)

4. If Hol(M) lies in SL(n,H), canonical bundle is trivial. The converse is

true when M is compact and HKT (V., 2004): an HKT manifold with

holomorphically trivial canonical bunlde satisfies Hol(M) ⊂ SL(n,H).
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HKT manifolds with trivial canonical bundle.

THEOREM: Let (M, I, J,K,Ω) be an HKT-manifold, dimHM = n. Then

the following conditions are equivalent.

1. ∂(Ωn) = 0: this means that Ωn is a holomorphic section of a

canonical bundle on (M, I)

2. ∇(Ωn) = 0, where ∇ is the Obata connection. This implies, in

particular, that Hol(∇) ⊂ SL(n,H).

3. The manifold (M, I) with the induced quaternionic Hermitian metric

is balanced (in the sense of Hermitial geometry): d(ω2n−1
I ) = 0.

DEFINITION: An HKT metric satisfying any of these conditions is called

a Calabi-Yau HKT metric.

REMARK: It is obtained as a solution of the quaternionic Monge-

Ampere equation. In particular, such a metric is unique in its co-

homology class (existence is conjectured).

11



Quaternionic Calabi-Yau metrics M. Verbitsky

HKT-Einstein manifolds

REMARK: Solving the quaternionic Monge-Ampere equation gives an
extremal metric for HKT manifolds with trivial canonical bundle
(analogue of Calabi-Yau manifolds). For non-trivial canonical bundle, the
problem is more delicate.

REMARK: Let η ∈ Λ1,1(M, I) be a (1,1)-form, associated with a metric
g. Then J(η) is also a (1,1)-form, and it is positive if η is positive. The
Hermitian form of g′ := AvSU(2)(g) is written as η′ := η + J(η).

DEFINITION: A real form η ∈ Λ1,1(M, I) is called H-positive if η + J(η)
is a positive (1,1)-form.

DEFINITION: Let (M, I, J,K, g) be an HKT manifold, Ωn(M, I) its canon-
ical bundle with induced metric, and ρ its curvature. Then M is called
HKT-Einstein if ρ+J(ρ) = λωI, where ωI is the Hermitian form of (M, I),
and λ ∈ R.

REMARK: When Ωn(M, I) admits a metric with H-positive curvature,
uniqueness of HKT-Einstein metrics is easy to check, existence is
conjectured. When the curvature is H-negative, the problem is similar to
Fano case (quite hard).
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Quaternionic Monge-Ampere equation

Let M be an HKT-manifold with holonomy in SL(n,H) (this is equiv-

alent to having trivial canonical bundle). Then the canonical bundle

is trivialized by a form ΦI ∈ Λ2n,0, non-degenerate, closed and satisfying

J(ΦI) = ΦI.

Quaternionic Monge-Ampere equation:

(Ω + ∂∂Jϕ)n = Afe
fΦI (∗)

where Ω+∂∂Jϕ is an HKT-form. Here ϕ is unknown, and Af is a number

determined from ∫
M

Ωn ∧ΦI = Af

∫
M
efΦI ∧ΦI

Theorem: (Alesker, V.) The solution ϕ of (*) is unique, if exists.

Moreover, any solution of (*) admits a C0-estimation in terms of f,ΦI ,Ω.

Conjecture: (“hypercomplex Calabi-Yau”)

The equation (*) has a solution for all f,ΦI ,Ω.
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Uniqueness of solutions of Monge-Ampere equations

Suppose Ω1,Ω2 are HKT-forms which are solutions of M-A, Ω1 − Ω2 =

∂∂Jϕ. Then Ωn
1 −Ωn

2 = 0. This gives

0 = Ωn
1 −Ωn

2 = ∂∂Jϕ ∧
n−1∑
i=0

Ωi
1 ∧Ωn−1−i

2 .

Denote by P the form
∑n−1
i=0 Ωi

1 ∧Ωn−1−i
2 and consider the differential op-

erator D : C∞(M)−→ C∞(M)

ϕ−→
∂∂Jϕ ∧ P

Ωn
.

Then D is a second order operator with positive symbol.

Solutions of D(f) = 0 cannot have local maxima (“generalized max-

imum principle”). Since M is compact, all solutions of D(f) = 0 are

constant.

14



Quaternionic Calabi-Yau metrics M. Verbitsky

A Lagrangian calibration form and quaternionim Monge-Ampere

The group SU(2) of unitary quaternions acts on TM . By multilinearity,

this action is extended to Λ∗(M).

THEOREM: Let (M, I, J,K, g) be an SL(n,H)-manifold and Ψ̃ ∈ Λ2n(M) a

2n-form which is the real part of the holomorphic section of the canonical

bundle on (M,J). Denote by Ψ the (p, p)-part of Ψ̃ with respect to I.

Then Ψ is a positive, closed form, and for any ϕ ∈ C∞M one has

(Ω + ∂∂Jϕ)n ∧Ωn = C(ωI + ddcϕ)n ∧Ψ,

where C is a positive constant.

COROLLARY: The quaternionic Monge-Ampere equation is equivalent

to a generalized Hessian equation of form

(ωI + ddcϕ)n ∧Ψ = Afe
f VolM

with this particular Ψ.
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