Extremal metrics in quaternionic geometry

Misha Verbitsky

Complex and Riemannian Geometry
CIRM, Luminy, February 08, 2011

Hypercomplex manifolds

DEFINITION: Let M be a smooth manifold equipped with endomorphisms $I, J, K: T M \longrightarrow T M$, satisfying the quaternionic relation $I^{2}=J^{2}=$ $K^{2}=I J K=-$ Id . Suppose that I, J, K are integrable almost complex structures. Then (M, I, J, K) is called a hypercomplex manifold.

THEOREM: (Obata, 1955) On any hypercomplex manifold there exists a unique torsion-free connection ∇ such that $\nabla I=\nabla J=\nabla K$.

DEFINITION: Such a connection is called the Obata connection.

REMARK: The holonomy of Obata connection lies in $G L(n, \mathbb{H})$.

REMARK: A torsion-free connection ∇ on M with $\mathcal{H o l}(\nabla) \subset G L(n, \mathbb{H})$ defines a hypercomplex structure on M.

Examples of hypercomplex manifolds

EXAMPLE: A Hopf surface $M=\mathbb{H} \backslash 0 / \mathbb{Z} \cong S^{1} \times S^{3}$. The holonomy of Obata connection $\mathcal{H o l}(M)=0$.

EXAMPLE: Compact holomorphically symplectic manifolds are hyperkähler (by Calabi-Yau theorem), hence hypercomplex. Here $\mathcal{H o l}(M) \subset$ $S p(n)$ (this is equivalent to being hyperkähler).

PROPOSITION: A compact hypercomplex manifold (M, I, J, K) with (M, I) of Kähler type also admits a hyperkähler structure.

REMARK: In dimension 1, compact hypercomplex manifolds are classified (C. P. Boyer, 1988). This is the complete list: torus, K3 surface, Hopf surface.

Examples of hypercomplex manifolds (2)

EXAMPLE: The Lie groups

$$
\begin{aligned}
& S U(2 l+1), \quad T^{1} \times S U(2 l), \quad T^{l} \times S O(2 l+1), \\
& T^{2 l} \times S O(4 l), \quad T^{l} \times S p(l), \quad T^{2} \times E_{6}, \\
& T^{7} \times E^{7}, \quad T^{8} \times E^{8}, \quad T^{4} \times F_{4}, \quad T^{2} \times G_{2} .
\end{aligned}
$$

Some other homogeneous spaces (D. Joyce and physicists Ph. Spindel, A. Sevrin, W. Troost, A. Van Proeyen). Holonomy unknown (but likely $G L(n, \mathbb{H})$).

EXAMPLE: Many nilmanifolds (quotients of a nilpotent Lie group by a cocompact lattice) admit hypercomplex structures. In this case $\mathcal{H o l}(M) \subset$ $S L(n, \mathbb{H})$.

Quaternionic Hermitian structures

DEFINITION: Let (M, I, J, K) be a hypercomplex manifold, and g a Riemannian metric. We say that g is quaternionic Hermitian if I, J, K are orthogonal with respect to g.

CLAIM: Quaternionic Hermitian metrics always exist.
Proof: Take any Riemannian metric g and consider its average $\mathrm{Av}_{S U(2)} g$ with respect to $S U(2) \subset \mathbb{H}^{*}$.

Given a quaternionic Hermitian metric g on (M, I, J, K), consider its Hermitian forms

$$
\omega_{I}(\cdot, \cdot)=g(\cdot, I \cdot), \omega_{J}, \omega_{K}
$$

(real, but not closed). Then $\Omega=\omega_{J}+\sqrt{-1} \omega_{K}$ is of Hodge type $(2,0)$ with respect to I.

If $d \Omega=0,(M, I, J, K, g)$ is hyperkähler (this is one of the definitions).
Consider a weaker condition:

$$
\partial \Omega=0, \quad \partial: \Lambda^{2,0}(M, I) \longrightarrow \Lambda^{3,0}(M, I)
$$

HKT structures

DEFINITION: (Howe, Papadopoulos, 1998)
Let (M, I, J, K) be a hypercomplex manifold, g a quaternionic Hermitian metric, and $\Omega=\omega_{J}+\sqrt{-1} \omega_{K}$ the corresponding (2,0)-form. We say that g is HKT ("hyperkähler with torsion") if $\partial \Omega=0$..

HKT-metrics play in hypercomplex geometry the same role as Kähler metrics play in complex geometry.

1. They admit a smooth potential (locally). There is a notion of an "HKT-class" (similar to Kähler class) in a certain finite-dimensional coholology group. Two metrics in the same HKT-class differ by a potential, which is a function.
2. When (M, I) has trivial canonical bundle, a version of Hodge theory is established giving an $\mathfrak{s l}(2)$-action on holomorphic cohomology $H^{*}\left(M, \mathcal{O}_{(M, I)}\right)$.

HKT potential

Defining Kähler metric via Kähler potentials: A Kähler metric on (M, I) is one which is locally given as

$$
g(\cdot, \cdot)=\sqrt{-1} \partial \bar{\partial} \varphi(\cdot, I \cdot)
$$

where φ is a function called a Kähler potential.
Defining HKT metric through HKT potentials: An HKT metric on (M, I) is one which is locally given as

$$
g(\cdot, \cdot)=D(\varphi), \quad \text { where } \quad D(\varphi):=\operatorname{Av}_{S U(2)}(\sqrt{-1} \partial \bar{\partial} \varphi(\cdot, I \cdot))
$$

and φ is a function called an HKT potential.
THEOREM: (Banos-Swann)
This definition is equivalent to the usual one.
DEFINITION: A function which is an HKT potential of some HKT metric is called strictly \mathbb{H}-plurisubharmonic, or \mathbb{H}-psh.

REMARK: For a \mathbb{H}-psh function φ, at least $\mathbf{1 / 4}$ eigenvalues of $\operatorname{Hess}(\varphi)$ must be positive. Therefore, there are no globally defined \mathbb{H}-psh functions on compact manifolds.

HKT forms

DEFINITION: Let g be an HKT metric. The corresponding $(2,0)$-form $\Omega=\omega_{J}+\sqrt{-1} \omega_{K}$ is called an HKT form.

CLAIM: Consider the multiplicative action of J on $\wedge^{*}(M)$. Then J maps $\left.\wedge^{p, q}(M)\right)$ to $\wedge^{q, p}(M)$).

Proof: I and J anticommute.

DEFINITION: A (2,0)-form Ω on (M, I) is called real if $J(\Omega)=\bar{\Omega}$ and positive if $\Omega(x, J(\bar{x}))>0$ for each non-zero $x \in T_{I}^{1,0}(M)$.

CLAIM: Any HKT form is positive and real. Moreover, any ∂-closed positive real form $\Omega \in \wedge_{I}^{2,0}(M)$ defines an HKT-metric $g(x, y):=$ $\Omega(x, J(\bar{y}))$.

An HKT cone.

Let g, g^{\prime} be HKT metrics. We say that they are equivalent if $g=g^{\prime}+D(\varphi)$ for some globally defined potential.

DEFINITION: An HKT cone is the set of all HKT metrics up to this equivalence.

CLAIM: Let g, g^{\prime} be HKT metrics, with $g=g^{\prime}+D(\varphi)$. Then the corresponding HKT forms are related as $\Omega=\Omega^{\prime}+\partial \partial_{J} \varphi$, where $\partial_{J}(\varphi):=$ $J(\bar{\partial} \varphi)$.

COROLLARY: An HKT cone is an open, convex subset in the cohomology group

$$
\mathcal{H}(M):=\frac{\Lambda^{2,0}(M, \mathbb{R})_{\partial-\text { closed }}}{\partial \partial_{J}\left(C^{\infty} M\right)}
$$

This complex is elliptic, hence $\mathcal{H}(M)$ is finite-dimensional when M is compact.

MAIN QUESTION: Given a class $[\Omega$] in the HKT cone, find a privileged (extremal) metric in this class.

Canonical bundle of a hypercomplex manifold.

0. Quaternionic Hermitian structure always exists.
1. Complex dimension is even.
2. The canonical line bundle $\wedge^{n, 0}(M, I)$ of (M, I) is always trivial topologically. Indeed, a non-degenerate section of canonical line bundle is provided by top power of a form Ω associated with some quaternionic Hermitian strucure. In particular, $c_{1}(M, I)=0$.
3. Canonical bundle is non-trivial holomorphically in many cases. However, when M is a nilmanifold, $\wedge^{n, 0}(M, I)$ is trivial, and holonomy of Obata connection lies in $S L(n, \mathbb{H})$ (Barberis-Dotti-V., 2007)
4. If $\mathcal{H o l}(M)$ lies in $S L(n, \mathbb{H})$, canonical bundle is trivial. The converse is true when M is compact and HKT (V., 2004): an HKT manifold with holomorphically trivial canonical bunlde satisfies $\mathcal{H} \circ(M) \subset S L(n, \mathbb{H})$.

HKT manifolds with trivial canonical bundle.
THEOREM: Let (M, I, J, K, Ω) be an HKT-manifold, $\operatorname{dim}_{\mathbb{H}} M=n$. Then the following conditions are equivalent.

1. $\bar{\partial}\left(\Omega^{n}\right)=0$: this means that Ω^{n} is a holomorphic section of a canonical bundle on (M, I)
2. $\nabla\left(\Omega^{n}\right)=0$, where ∇ is the Obata connection. This implies, in particular, that $\mathcal{H o l}(\nabla) \subset S L(n, \mathbb{H})$.
3. The manifold (M, I) with the induced quaternionic Hermitian metric is balanced (in the sense of Hermitial geometry): $d\left(\omega_{I}^{2 n-1}\right)=0$.

DEFINITION: An HKT metric satisfying any of these conditions is called a Calabi-Yau HKT metric.

REMARK: It is obtained as a solution of the quaternionic MongeAmpere equation. In particular, such a metric is unique in its cohomology class (existence is conjectured).

HKT-Einstein manifolds

REMARK: Solving the quaternionic Monge-Ampere equation gives an extremal metric for HKT manifolds with trivial canonical bundle (analogue of Calabi-Yau manifolds). For non-trivial canonical bundle, the problem is more delicate.

REMARK: Let $\eta \in \Lambda^{1,1}(M, I)$ be a (1,1)-form, associated with a metric g. Then $J(\eta)$ is also a (1,1)-form, and it is positive if η is positive. The Hermitian form of $g^{\prime}:=\operatorname{Av}_{S U(2)}(g)$ is written as $\eta^{\prime}:=\eta+J(\eta)$.

DEFINITION: A real form $\eta \in \wedge^{1,1}(M, I)$ is called \mathbb{H}-positive if $\eta+J(\eta)$ is a positive (1,1)-form.

DEFINITION: Let (M, I, J, K, g) be an HKT manifold, $\Omega^{n}(M, I)$ its canonical bundle with induced metric, and ρ its curvature. Then M is called HKT-Einstein if $\rho+J(\rho)=\lambda \omega_{I}$, where ω_{I} is the Hermitian form of (M, I), and $\lambda \in \mathbb{R}$.

REMARK: When $\Omega^{n}(M, I)$ admits a metric with \mathbb{H}-positive curvature, uniqueness of HKT-Einstein metrics is easy to check, existence is conjectured. When the curvature is \mathbb{H}-negative, the problem is similar to Fano case (quite hard).

Quaternionic Monge-Ampere equation

Let M be an HKT-manifold with holonomy in $S L(n, \mathbb{H})$ (this is equivalent to having trivial canonical bundle). Then the canonical bundle is trivialized by a form $\Phi_{I} \in \Lambda^{2 n, 0}$, non-degenerate, closed and satisfying $J\left(\Phi_{I}\right)=\bar{\Phi}_{I}$.

Quaternionic Monge-Ampere equation:

$$
\left(\Omega+\partial \partial_{J} \varphi\right)^{n}=A_{f} e^{f} \Phi_{I}
$$

where $\Omega+\partial \partial_{J} \varphi$ is an HKT-form. Here φ is unknown, and A_{f} is a number determined from

$$
\int_{M} \Omega^{n} \wedge \bar{\Phi}_{I}=A_{f} \int_{M} e^{f} \Phi_{I} \wedge \bar{\Phi}_{I}
$$

Theorem: (Alesker, V.) The solution φ of (*) is unique, if exists. Moreover, any solution of $(*)$ admits a C^{0}-estimation in terms of f, Φ_{I}, Ω.

Conjecture: ("hypercomplex Calabi-Yau")
The equation (*) has a solution for all f, Φ_{I}, Ω.

Uniqueness of solutions of Monge-Ampere equations

Suppose Ω_{1}, Ω_{2} are HKT-forms which are solutions of $\mathrm{M}-\mathrm{A}, \Omega_{1}-\Omega_{2}=$ $\partial \partial_{J} \varphi$. Then $\Omega_{1}^{n}-\Omega_{2}^{n}=0$. This gives

$$
0=\Omega_{1}^{n}-\Omega_{2}^{n}=\partial \partial_{J} \varphi \wedge \sum_{i=0}^{n-1} \Omega_{1}^{i} \wedge \Omega_{2}^{n-1-i}
$$

Denote by P the form $\sum_{i=0}^{n-1} \Omega_{1}^{i} \wedge \Omega_{2}^{n-1-i}$ and consider the differential operator $D: C^{\infty}(M) \longrightarrow C^{\infty}(M)$

$$
\varphi \longrightarrow \frac{\partial \partial_{J} \varphi \wedge P}{\Omega^{n}}
$$

Then D is a second order operator with positive symbol.

Solutions of $D(f)=0$ cannot have local maxima ("generalized maximum principle"). Since M is compact, all solutions of $D(f)=0$ are constant.

A Lagrangian calibration form and quaternionim Monge-Ampere

The group $S U(2)$ of unitary quaternions acts on $T M$. By multilinearity, this action is extended to $\wedge^{*}(M)$.

THEOREM: Let (M, I, J, K, g) be an $S L(n, \mathbb{H})$-manifold and $\tilde{\Psi} \in \Lambda^{2 n}(M)$ a $2 n$-form which is the real part of the holomorphic section of the canonical bundle on (M, J). Denote by ψ the (p, p)-part of $\tilde{\Psi}$ with respect to I. Then ψ is a positive, closed form, and for any $\varphi \in C^{\infty} M$ one has

$$
\left(\Omega+\partial \partial_{J} \varphi\right)^{n} \wedge \bar{\Omega}^{n}=C\left(\omega_{I}+d d^{c} \varphi\right)^{n} \wedge \Psi,
$$

where C is a positive constant.

COROLLARY: The quaternionic Monge-Ampere equation is equivalent to a generalized Hessian equation of form

$$
\left(\omega_{I}+d d^{c} \varphi\right)^{n} \wedge \psi=A_{f} e^{f} \operatorname{Vol}_{M}
$$

with this particular Ψ.

